51
|
Xu A, Zhou L, Deng Y, Chen X, Xiong X, Deng F, Wei S. A carboxymethyl chitosan and peptide-decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants. J Mater Chem B 2016; 4:1878-1890. [PMID: 32263065 DOI: 10.1039/c5tb02782a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses biomechanical properties such as elastic modulus similar to human bones and is becoming a dominant alternative to replace the traditional metallic implants. The defective osseointegration and bacterial infection risk of CFRPEEK, however, impede its clinical adoption. In the current study, a newly-developed carbon fiber-reinforced polyetheretherketone/nanohydroxyapatite (CFRPEEK/n-HA) ternary biocomposite was functionalized by covalently grafting carboxymethyl chitosan (CMC) followed by the decoration of a bone-forming peptide (BFP) assisted via the polydopamine tag strategy. Antibacterial test with Staphylococcus aureus (S. aureus) indicated that the CMC and peptide-conjugated substrates (pep-CMC-CFRPEEK/n-HA) significantly suppressed bacterial adhesion. In vitro cell attachment/growth, spreading assay, alkaline phosphatase activity, real-time PCR analysis, osteogenesis-related protein expression and calcium mineral deposition all disclosed greatly accelerated adhesion, proliferation and osteo-differentiation of human mesenchymal stem cells (hMSCs) on the pep-CMC-CFRPEEK/n-HA biocomposite due to the additive effect of the CMC polysaccharide and the small osteoinductive peptide. More importantly, in vivo evaluation of the beagle tibia model by means of micro-CT, histological analysis, SEM observation and fluorescent labeling confirmed the remarkably boosted bioactivity and osteointegration. The CFRPEEK/n-HA ternary composite with the dual functions of bacterial adhesion reduction and osteointegration promotion holds great potential as a bioactive implant material in orthopedic/dental applications based on this scheme.
Collapse
Affiliation(s)
- Anxiu Xu
- The 2nd Dental Center and Central Laboaratory, School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| | | | | | | | | | | | | |
Collapse
|
52
|
Wang X, Lu T, Wen J, Xu L, Zeng D, Wu Q, Cao L, Lin S, Liu X, Jiang X. Selective responses of human gingival fibroblasts and bacteria on carbon fiber reinforced polyetheretherketone with multilevel nanostructured TiO2. Biomaterials 2016; 83:207-18. [PMID: 26774566 DOI: 10.1016/j.biomaterials.2016.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Abstract
The long-term success of dental implants relies not only on stable osseointegration but also on the integration of implant surfaces with surrounding soft tissues. In our previous work, titanium plasma immersion ion implantation (PIII) technique was applied to modify the carbon-fiber-reinforced polyetheretherketone (CFRPEEK) surface, constructing a unique multilevel TiO2 nanostructure thus enhancing certain osteogenic properties. However, the interactions between the modified surface and soft-tissue cells are still not clear. Here, we fully investigate the biological behaviors of human gingival fibroblasts (HGFs) and oral pathogens on the structured surface, which determine the early peri-implant soft tissue integration. Scanning electron microscopy (SEM) shows the formation of nanopores with TiO2 nanoparticles embedded on both the sidewall and bottom. In vitro studies including cell adhesion, viability assay, wound healing assay, real-time PCR, western blot and enzyme-linked immunosorbent assay (ELISA) disclose improved adhesion, migration, proliferation, and collagen secretion ability of HGFs on the modified CFRPEEK. Moreover, the structured surface exhibits sustainable antibacterial properties towards Streptococcus mutans, Fusobacterium nucleatum and Porphyromonas gingivalis. Our results reveal that the multilevel TiO2 nanostructures can selectively enhance soft tissue integration and inhibit bacterial reproduction, which will further support and broaden the adoption of CFRPEEK materials in dental fields.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Tao Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jin Wen
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lianyi Xu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Deliang Zeng
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qianju Wu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lingyan Cao
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Shuxian Lin
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
53
|
Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int J Dent 2015; 2015:381759. [PMID: 26495000 PMCID: PMC4606406 DOI: 10.1155/2015/381759] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.
Collapse
|
54
|
Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces 2015; 136:64-73. [PMID: 26363268 DOI: 10.1016/j.colsurfb.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/18/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
As FDA-approved implantable material, polyetheretherketone (PEEK) is becoming a prime candidate to replace traditional surgical metallic implants made of titanium (Ti) and its alloys, since it has a lower elastic modulus than Ti. The bioinertness and defective osteointegration of PEEK, however, limit its clinical adoption as load-bearing dental/orthopedic material. The present work aimed at developing a PEEK bioactive ternary composite, polyetheretherketone/nano-hydroxyapatite/carbon fiber (PEEK/n-HA/CF), and evaluating it as a potential bone-repairing material by assessment of growth and differentiation of osteoblast-like MG63 cells and by estimation of osteointegration in vivo. Our results indicated that the adhesion, proliferation and osteogenic differentiation of cells, as well as the mechanical properties were greatly promoted for the PEEK/n-HA/CF biocomposite compared with pure PEEK matrix. More importantly, the ternary composite implant boosted in vivo bioactivity and osseointegration in canine tooth defect model. Thus, the PEEK/n-HA/CF ternary biocomposite with enhanced mechanics and biological performances hold great potential as bioactive implant material in dental and orthopedic applications.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ping Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixin Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoling Xiong
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Zhihui Tang
- 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
55
|
Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review. J Biomed Mater Res A 2015; 103:3689-702. [DOI: 10.1002/jbm.a.35480] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/22/2015] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Mohamed Ruslan Abdullah
- Centre for Composites; Department of Applied Mechanics and Design; Universiti Teknologi Malaysia (UTM); 81310 Skudai, Johor Malaysia
| | - Amirhossein Goharian
- Medical Devices & Technology Group; Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia (UTM); 81310 Skudai, Johor Malaysia
- R&D Department; Leonix Sdn. Bhd.; Penang 11960 Malaysia
| | - Mohammed Rafiq Abdul Kadir
- Medical Devices & Technology Group; Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia (UTM); 81310 Skudai, Johor Malaysia
| | - Mat Uzir Wahit
- Center for Composites, Institute of Vehicle System and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM); 81310 Skudai, Johor Malaysia
| |
Collapse
|