51
|
Göncü Y. Development of hybrid hydrogel to facilitate knee joint movement with an engineering approach. J Appl Polym Sci 2022. [DOI: 10.1002/app.53083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yapıncak Göncü
- Engineering Architecture Faculty, Department of Biomedical Engineering Eskisehir Osmangazi University Eskişehir Turkey
| |
Collapse
|
52
|
Liu Z, Zeng N, Yu J, Huang C, Huang Q. A novel dual MoS 2/FeGA quantum dots endowed injectable hydrogel for efficient photothermal and boosting chemodynamic therapy. Front Bioeng Biotechnol 2022; 10:998571. [PMID: 36110320 PMCID: PMC9468328 DOI: 10.3389/fbioe.2022.998571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Due to its responsiveness to the tumour microenvironment (TME), chemodynamic therapy (CDT) based on the Fenton reaction to produce cytotoxic reactive oxygen species (ROS) to destroy tumor has drawn more interest. However, the Fenton's reaction potential for therapeutic use is constrained by its modest efficacy. Here, we develop a novel injectable hydrogel system (FMH) on the basis of FeGA/MoS2 dual quantum dots (QDs), which uses near-infrared (NIR) laser in order to trigger the synergistic catalysis and photothermal effect of FeGA/MoS2 for improving the efficiency of the Fenton reaction. Mo4+ in MoS2 QDs can accelerate the conversion of Fe3+ to Fe2+, thereby promoting the efficiency of Fenton reaction, and benefiting from the synergistically enhanced CDT/PTT, FMH combined with NIR has achieved good anti-tumour effects in vitro and in vivo experiments. Furthermore, the quantum dots are easily metabolized after treatment because of their ultrasmall size, without causing any side effects. This is the first report to study the co-catalytic effect of MoS2 and Fe3+ at the quantum dot level, as well as obtain a good PTT/CDT synergy, which have implications for future anticancer research.
Collapse
Affiliation(s)
- Zeming Liu
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Huang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
53
|
Shin GR, Kim HE, Ju HJ, Kim JH, Choi S, Choi HS, Kim MS. Injectable click-crosslinked hydrogel containing resveratrol to improve the therapeutic effect in triple negative breast cancer. Mater Today Bio 2022; 16:100386. [PMID: 35991627 PMCID: PMC9386493 DOI: 10.1016/j.mtbio.2022.100386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Triple-negative breast cancer (TNBC) patients are considered intractable, as this disease has few effective treatments and a very poor prognosis even in its early stages. Here, intratumoral therapy with resveratrol (Res), which has anticancer and metastasis inhibitory effects, was proposed for the effective treatment of TNBC. An injectable Res-loaded click-crosslinked hyaluronic acid (Res-Cx-HA) hydrogel was designed and intratumorally injected to generate a Res-Cx-HA depot inside the tumor. The Res-Cx-HA formulation exhibited good injectability into the tumor tissue, quick depot formation inside the tumor, and the depot remained inside the injected tumor for extended periods. In vivo formed Res-Cx-HA depots sustained Res inside the tumor for extended periods. More importantly, the bioavailability and therapeutic efficacy of Res remained almost exclusively within the tumor and not in other organs. Intratumoral injection of Res-Cx-HA in animal models resulted in significant negative tumor growth rates (i.e., the tumor volume decreased over time) coupled with large apoptotic cells and limited angiogenesis in tumors. Therefore, Res-Cx-HA intratumoral injection is a promising way to treat TNBC patients with high efficacy and minimal adverse effects. Intratumoral injection was developed for treatment of triple negative breast cancer. Injectable formulation exhibited good injectability, quick depot formation. The formed depot remained inside the injected tumor for extended periods. Bioavailability and therapeutic efficacy of Res inside tumor were improved. In vivo formed depots resulted in significant negative cancer growth.
Collapse
|
54
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|
55
|
Yu J, Li X, Chen N, Xue S, Zhao J, Li S, Hou X, Yuan X. Microgel-integrated, high-strength in-situ formed hydrogel enables timely emergency trauma treatment. Colloids Surf B Biointerfaces 2022; 215:112508. [PMID: 35468430 DOI: 10.1016/j.colsurfb.2022.112508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
High-strength hydrogels formed in situ through a convenient gel transition process are highly desirable for emergency treatment due to their ability to quickly respond to accidents. However, current in-situ formed hydrogels require a laborious precursor preparation process or lack sufficient mechanical strength. Herein, we reported a series of microgels that were capable of convenient in-situ transition to high-strength hydrogels from their easily portable form, thereby facilitating emergency treatment. Three kinds of microgels were derived from two types of hydrogen bonds (H-bonds; OH⋯OC, NH⋯OC) crosslinked preformed hydrogels, and all exhibited excellent stability when stored at room temperature. After mixing with water, all these microgels could undergo a quick hydration process and then transform into high-strength hydrogels in situ through H-bonds. Specifically, stronger H-bond crosslinked microgels could build hydrogels with higher mechanical strength, albeit at the cost of longer hydration and operation time. Nevertheless, the whole operation process could be finished within several minutes, and the resultant hydrogels could exhibit maximally megapascal-level compressive strength and tens of kilopascal storage modulus. In the comparison of emergency application performance with commercial chitosan hemostatic powder (CHP), we found that the microgels could stop accidental bleeding almost immediately, and the whole process from taking out the stored microgels to hemostasis could be completed within 15 s, which was superior to CHP. Overall, the results indicated that the in-situ formed microgel-based hydrogels with convenient gel-transition ability and high strength showed great potential in emergency treatments.
Collapse
Affiliation(s)
- Jiaqi Yu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suling Xue
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
56
|
Zhao M, Zhang H, Li Z. A Bibliometric and Visual Analysis of Nanocomposite Hydrogels Based on VOSviewer From 2010 to 2022. Front Bioeng Biotechnol 2022; 10:914253. [PMID: 35814005 PMCID: PMC9256966 DOI: 10.3389/fbioe.2022.914253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Nanocomposite hydrogels (NHs) are stable composite materials formed by dispersing nanomaterials in hydrogels and have broad development prospects in the biomedical field. In this study, we aimed to systematically and comprehensively evaluate the trends and hot spots of biomedical applications of NHs from 2010 to 2022. Methods: In total, 713 articles and reviews related to NH applications in the biomedical field from 2010 to 2022 were retrieved from the Web of Science Core Collection (WOSCC). Two scientometric software programs, VOSviewer and Microsoft Excel 2019, were used to visually perform bibliometric analysis in terms of research trends, sources, the contribution of journals, co-citation, and the co-occurrence of keywords. Results: From 1 January 2010 to 3 February 2022, the number of annual scientific publications about NHs exhibited an upward trend, and research articles were published in a larger proportion (more than 77%). The top three countries in NH research were China, the United States, and India. Meanwhile, Tabriz University of Medical Sciences, the Chinese Academy of Sciences, and Tshwane University of Technology were the most active and contributive. In the contribution of journals, the journal Advanced Functional Materials had the highest number of publications, and the journal Int J Biol Macro had the most citations. Varaprasad K was the most prolific author, and Haraguchi K ranked first among co-cited authors. In the ranking of frequency in the co-cited references, Nanocomposite Hydrogels for Biomedical Applications, published by Gaharwar AK, was the most frequently cited reference. The keyword with the highest frequency was “drug delivery.” Conclusion: This study performed a full overview of NHs using bibliometrics and identified current trends and hot spots. This information may help researchers focusing on NHs to identify developments in this field.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Mingyi Zhao,
| | - Hanqi Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zixin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
57
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
58
|
Al homsi R, Altahir S, Jagal J, Ali Abdelkareem M, Ghoneim MM, Rawas-Qalaji MM, Greish K, Haider M. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int J Pharm 2022; 621:121786. [DOI: 10.1016/j.ijpharm.2022.121786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
|
59
|
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers (Basel) 2022; 14:polym14051010. [PMID: 35267833 PMCID: PMC8912535 DOI: 10.3390/polym14051010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Clinically available medications face several hurdles that limit their therapeutic activity, including restricted access to the target tissues due to biological barriers, low bioavailability, and poor pharmacokinetic properties. Drug delivery systems (DDS), such as nanoparticles (NPs) and hydrogels, have been widely employed to address these issues. Furthermore, the DDS improves drugs’ therapeutic efficacy while reducing undesired side effects caused by the unspecific distribution over the different tissues. The integration of NPs into hydrogels has emerged to improve their performance when compared with each DDS individually. The combination of both DDS enhances the ability to deliver drugs in a localized and targeted manner, paired with a controlled and sustained drug release, resulting in increased drug therapeutic effectiveness. With the incorporation of the NPs into hydrogels, it is possible to apply the DDS locally and then provide a sustained release of the NPs in the site of action, allowing the drug uptake in the required location. Additionally, most of the materials used to produce the hydrogels and NPs present low toxicity. This article provides a systematic review of the polymeric NPs-loaded hydrogels developed for various biomedical applications, focusing on studies that present in vivo data.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| |
Collapse
|