51
|
Karamacoska D, Barry RJ, De Blasio FM, Steiner GZ. EEG-ERP dynamics in a visual Continuous Performance Test. Int J Psychophysiol 2019; 146:249-260. [DOI: 10.1016/j.ijpsycho.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 11/26/2022]
|
52
|
Eidelman-Rothman M, Ben-Simon E, Freche D, Keil A, Hendler T, Levit-Binnun N. Sleepless and desynchronized: Impaired inter trial phase coherence of steady-state potentials following sleep deprivation. Neuroimage 2019; 202:116055. [PMID: 31351165 DOI: 10.1016/j.neuroimage.2019.116055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
Sleep loss has detrimental effects on cognitive and emotional functioning. These impairments have been associated with alterations in EEG measures of power spectrum and event-related potentials, however the impact of sleep loss on inter trial phase coherence (ITPC), a measure of phase consistency over experimental trials, remains mostly unknown. ITPC is thought to reflect the ability of the neural response to temporally synchronize with relevant events, thus optimizing information processing. In the current study we investigated the effects of sleep deprivation on information processing by evaluating the phase consistency of steady-state visual evoked potentials (ssVEPs) as well as amplitude-based measures of ssVEPs, obtained from a group of 18 healthy individuals following 24 h of total sleep deprivation and after a night of habitual sleep. An ssVEP task was utilized, which included the presentation of dots flickering at 7.5 Hz, along with a cognitive-emotional task. Our results show that ITPC is significantly reduced under sleep deprivation relative to habitual sleep. Interestingly, decreased ITPC under sleep deprivation was associated with decreased behavioral performance in the psychomotor vigilance task (PVT), a validated measure of reduced vigilance following a lack of sleep. The results suggest that the capability of the brain to synchronize with rhythmic stimuli is disrupted without sleep. Thus, decreased ITPC may represent an objective and mechanistic measure of sleep loss, allowing future work to study the relation between brain-world synchrony and the specific functional impairments associated with sleep deprivation.
Collapse
Affiliation(s)
- M Eidelman-Rothman
- Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya, Israel.
| | - E Ben-Simon
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - D Freche
- Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya, Israel; Physics of Complex Systems, Weizmann Institute of Science, Israel
| | - A Keil
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida
| | - T Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel Aviv Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Israel; School of Psychological Sciences, Tel Aviv University, Israel
| | - N Levit-Binnun
- Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya, Israel
| |
Collapse
|
53
|
Montani V, Chanoine V, Grainger J, Ziegler JC. Frequency-tagged visual evoked responses track syllable effects in visual word recognition. Cortex 2019; 121:60-77. [PMID: 31550616 DOI: 10.1016/j.cortex.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Abstract
The processing of syllables in visual word recognition was investigated using a novel paradigm based on steady-state visual evoked potentials (SSVEPs). French words were presented to proficient readers in a delayed naming task. Words were split into two segments, the first of which was flickered at 18.75 Hz and the second at 25 Hz. The first segment either matched (congruent condition) or did not match (incongruent condition) the first syllable. The SSVEP responses in the congruent condition showed increased power compared to the responses in the incongruent condition, providing new evidence that syllables are important sublexical units in visual word recognition and reading aloud. With respect to the neural correlates of the effect, syllables elicited an early activation of a right hemisphere network. This network is typically associated with the programming of complex motor sequences, cognitive control and timing. Subsequently, responses were obtained in left hemisphere areas related to phonological processing.
Collapse
Affiliation(s)
- Veronica Montani
- Aix-Marseille University and CNRS, Brain and Language Research Institute, Marseille Cedex 3, France.
| | - Valérie Chanoine
- Aix-Marseille University, Institute of Language, Communication and the Brain, Brain and Language Research Institute, Aix-en-Provence, France
| | | | | |
Collapse
|
54
|
Bailey NW, Freedman G, Raj K, Sullivan CM, Rogasch NC, Chung SW, Hoy KE, Chambers R, Hassed C, Van Dam NT, Koenig T, Fitzgerald PB. Mindfulness meditators show altered distributions of early and late neural activity markers of attention in a response inhibition task. PLoS One 2019; 14:e0203096. [PMID: 31386663 PMCID: PMC6684080 DOI: 10.1371/journal.pone.0203096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
Attention is vital for optimal behavioural performance in every-day life. Mindfulness meditation has been shown to enhance attention. However, the components of attention altered by meditation and the related neural activities are underexplored. In particular, the contributions of inhibitory processes and sustained attention are not well understood. To address these points, 34 meditators were compared to 28 age and gender matched controls during electroencephalography (EEG) recordings of neural activity during a Go/Nogo response inhibition task. This task generates a P3 event related potential, which is related to response inhibition processes in Nogo trials, and attention processes across both trial types. Compared with controls, meditators were more accurate at responding to Go and Nogo trials. Meditators showed a more frontally distributed P3 to both Go and Nogo trials, suggesting more frontal involvement in sustained attention rather than activity specific to response inhibition. Unexpectedly, meditators also showed increased positivity over the right parietal cortex prior to visual information reaching the occipital cortex (during the pre-C1 window). Both results were positively related to increased accuracy across both groups. The results suggest that meditators show altered engagement of neural regions related to attention, including both higher order processes generated by frontal regions, and sensory anticipation processes generated by poster regions. This activity may reflect an increased capacity to modulate a range of neural processes in order to meet task requirements. This increased capacity may underlie the improved attentional function observed in mindfulness meditators.
Collapse
Affiliation(s)
- Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Healthcare, The Epworth Clinic, Camberwell, Victoria, Australia
| | - Gabrielle Freedman
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Kavya Raj
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia.,Brain and Mental Health Research Hub, School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Research Hub, School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Sung W Chung
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Richard Chambers
- Campus Community Division, Monash University, Melbourne, Victoria, Australia
| | - Craig Hassed
- Department of General Practice, Monash University, Melbourne, Victoria, Australia
| | - Nicholas T Van Dam
- School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Healthcare, The Epworth Clinic, Camberwell, Victoria, Australia
| |
Collapse
|
55
|
van der Weel FR(R, Agyei SB, van der Meer ALH. Infants’ Brain Responses to Looming Danger: Degeneracy of Neural Connectivity Patterns. ECOLOGICAL PSYCHOLOGY 2019. [DOI: 10.1080/10407413.2019.1615210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- F. R. (Ruud) van der Weel
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science & Technology (NTNU)
| | - Seth B. Agyei
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science & Technology (NTNU)
| | - Audrey L. H. van der Meer
- Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science & Technology (NTNU)
| |
Collapse
|
56
|
Ehlers CL, Phillips E, Kim C, Wills DN, Karriker-Jaffe KJ, Gilder DA. CR-19-0950: Event-related responses to alcohol-related stimuli in Mexican-American young adults: Relation to age, gender, comorbidity and "dark side" symptoms. Drug Alcohol Depend 2019; 202:76-86. [PMID: 31323376 PMCID: PMC6685752 DOI: 10.1016/j.drugalcdep.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Electrophysiological variables may represent sensitive biomarkers of vulnerability to or endophenotypes for alcohol use disorders (AUD). METHODS Young adults (age 18-30 yrs, n = 580) of Mexican American heritage were assessed with the Semi-Structured Assessment for the Genetics of Alcoholism and event-related oscillations (EROs) generated in response to a task that used pictures of objects, food, and alcohol-related and non-alcohol-related drinks as stimuli. RESULTS Decreases in energy in the alpha and beta frequencies and higher phase synchrony within cortical brain areas were seen in response to the alcohol-related as compared to the non-alcohol-related stimuli. Differences in ERO energy and synchrony responses to alcohol-related stimuli were also found as a function of age, sex, AUD status and comorbidity. Age-related decreases in energy and increases in synchrony were found. Females had significantly higher energy and lower synchrony values than males. Participants with AUD had higher synchrony values specifically in the beta frequencies, whereas those with a lifetime diagnosis of conduct disorder and/or antisocial personality disorder had lower alpha power and synchrony, and those with any affective disorder had lower ERO energy in the beta frequencies. Those with substance-associated affective "dark-side" symptoms had slower reaction times to the task, lower energy in the beta frequencies, lower local synchrony in the theta frequencies, and higher long-range synchrony in the delta and beta frequencies. CONCLUSIONS These findings suggest that EROs recorded to alcohol-related stimuli may be biomarkers of comorbid risk factors, symptoms and disorders associated with AUD that also can differentiate those with "dark-side symptoms".
Collapse
Affiliation(s)
- Cindy L. Ehlers
- Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA,Corresponding author: Dr. Cindy L. Ehlers, TSRI, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA, Telephone: (858) 784-7058; Fax: (858) 784-7409;
| | - Evelyn Phillips
- Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corinne Kim
- Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Derek N. Wills
- Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - David A. Gilder
- Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
57
|
Seco GB, Gerhardt GJ, Biazotti AA, Molan AL, Schönwald SV, Rybarczyk-Filho JL. EEG alpha rhythm detection on a portable device. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
58
|
Montani V, Chanoine V, Stoianov IP, Grainger J, Ziegler JC. Steady state visual evoked potentials in reading aloud: Effects of lexicality, frequency and orthographic familiarity. BRAIN AND LANGUAGE 2019; 192:1-14. [PMID: 30826643 DOI: 10.1016/j.bandl.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/16/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The present study explored the possibility to use Steady-State Visual Evoked Potentials (SSVEPs) as a tool to investigate the core mechanisms in visual word recognition. In particular, we investigated three benchmark effects of reading aloud: lexicality (words vs. pseudowords), frequency (high-frequency vs. low-frequency words), and orthographic familiarity ('familiar' versus 'unfamiliar' pseudowords). We found that words and pseudowords elicited robust SSVEPs. Words showed larger SSVEPs than pseudowords and high-frequency words showed larger SSVEPs than low-frequency words. SSVEPs were not sensitive to orthographic familiarity. We further localized the neural generators of the SSVEP effects. The lexicality effect was located in areas associated with early level of visual processing, i.e. in the right occipital lobe and in the right precuneus. Pseudowords produced more activation than words in left sensorimotor areas, rolandic operculum, insula, supramarginal gyrus and in the right temporal gyrus. These areas are devoted to speech processing and/or spelling-to-sound conversion. The frequency effect involved the left temporal pole and orbitofrontal cortex, areas previously implicated in semantic processing and stimulus-response associations respectively, and the right postcentral and parietal inferior gyri, possibly indicating the involvement of the right attentional network.
Collapse
Affiliation(s)
- Veronica Montani
- Aix-Marseille University and CNRS, Brain and Language Research Institute, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | - Valerie Chanoine
- Aix-Marseille University, Institute of Language, Communication and the Brain, Brain and Language Research Institute, 13100 Aix-en-Provence, France
| | - Ivilin Peev Stoianov
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France; Institute of Cognitive Sciences and Technologies, CNR, Via Martiri della Libertà 2, 35137 Padova, Italy
| | - Jonathan Grainger
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Johannes C Ziegler
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
59
|
Szalárdy O, Tóth B, Farkas D, György E, Winkler I. Neuronal Correlates of Informational and Energetic Masking in the Human Brain in a Multi-Talker Situation. Front Psychol 2019; 10:786. [PMID: 31024409 PMCID: PMC6465330 DOI: 10.3389/fpsyg.2019.00786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Human listeners can follow the voice of one speaker while several others are talking at the same time. This process requires segregating the speech streams from each other and continuously directing attention to the target stream. We investigated the functional brain networks underlying this ability. Two speech streams were presented simultaneously to participants, who followed one of them and detected targets within it (target stream). The loudness of the distractor speech stream varied on five levels: moderately softer, slightly softer, equal, slightly louder, or moderately louder than the attended. Performance measures showed that the most demanding task was the moderately softer distractors condition, which indicates that a softer distractor speech may receive more covert attention than louder distractors and, therefore, they require more cognitive resources. EEG-based measurement of functional connectivity between various brain regions revealed frequency-band specific networks: (1) energetic masking (comparing the louder distractor conditions with the equal loudness condition) was predominantly associated with stronger connectivity between the frontal and temporal regions at the lower alpha (8–10 Hz) and gamma (30–70 Hz) bands; (2) informational masking (comparing the softer distractor conditions with the equal loudness condition) was associated with a distributed network between parietal, frontal, and temporal regions at the theta (4–8 Hz) and beta (13–30 Hz) bands. These results suggest the presence of distinct cognitive and neural processes for solving the interference from energetic vs. informational masking.
Collapse
Affiliation(s)
- Orsolya Szalárdy
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Behavioural Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Farkas
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Erika György
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
60
|
Plass J, Ahn E, Towle VL, Stacey WC, Wasade VS, Tao J, Wu S, Issa NP, Brang D. Joint Encoding of Auditory Timing and Location in Visual Cortex. J Cogn Neurosci 2019; 31:1002-1017. [PMID: 30912728 DOI: 10.1162/jocn_a_01399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Co-occurring sounds can facilitate perception of spatially and temporally correspondent visual events. Separate lines of research have identified two putatively distinct neural mechanisms underlying two types of crossmodal facilitations: Whereas crossmodal phase resetting is thought to underlie enhancements based on temporal correspondences, lateralized occipital evoked potentials (ERPs) are thought to reflect enhancements based on spatial correspondences. Here, we sought to clarify the relationship between these two effects to assess whether they reflect two distinct mechanisms or, rather, two facets of the same underlying process. To identify the neural generators of each effect, we examined crossmodal responses to lateralized sounds in visually responsive cortex of 22 patients using electrocorticographic recordings. Auditory-driven phase reset and ERP responses in visual cortex displayed similar topography, revealing significant activity in pericalcarine, inferior occipital-temporal, and posterior parietal cortex, with maximal activity in lateral occipitotemporal cortex (potentially V5/hMT+). Laterality effects showed similar but less widespread topography. To test whether lateralized and nonlateralized components of crossmodal ERPs emerged from common or distinct neural generators, we compared responses throughout visual cortex. Visual electrodes responded to both contralateral and ipsilateral sounds with a contralateral bias, suggesting that previously observed laterality effects do not emerge from a distinct neural generator but rather reflect laterality-biased responses in the same neural populations that produce phase-resetting responses. These results suggest that crossmodal phase reset and ERP responses previously found to reflect spatial and temporal facilitation in visual cortex may reflect the same underlying mechanism. We propose a new unified model to account for these and previous results.
Collapse
|
61
|
Cantiani C, Ortiz-Mantilla S, Riva V, Piazza C, Bettoni R, Musacchia G, Molteni M, Marino C, Benasich AA. Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. NEUROIMAGE-CLINICAL 2019; 22:101778. [PMID: 30901712 PMCID: PMC6428938 DOI: 10.1016/j.nicl.2019.101778] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/02/2023]
Abstract
The ability to rapidly discriminate successive auditory stimuli within tens-of-milliseconds is crucial for speech and language development, particularly in the first year of life. This skill, called Rapid Auditory Processing (RAP), is altered in infants at familial risk for language and learning impairment (LLI) and is a robust predictor of later language outcomes. In the present study, we investigate the neural substrates of RAP, i.e., the underlying neural oscillatory patterns, in a group of Italian 6-month-old infants at risk for LLI (FH+, n = 24), compared to control infants with no known family history of LLI (FH−, n = 32). Brain responses to rapid changes in fundamental frequency and duration were recorded via high-density electroencephalogram during a non-speech double oddball paradigm. Sources of event-related potential generators were localized to right and left auditory regions in both FH+ and FH− groups. Time-frequency analyses showed variations in both theta (Ɵ) and gamma (ɣ) ranges across groups. Our results showed that overall RAP stimuli elicited a more left-lateralized pattern of oscillations in FH− infants, whereas FH+ infants demonstrated a more right-lateralized pattern, in both the theta and gamma frequency bands. Interestingly, FH+ infants showed reduced early left gamma power (starting at 50 ms after stimulus onset) during deviant discrimination. Perturbed oscillatory dynamics may well constitute a candidate neural mechanism to explain group differences in RAP. Additional group differences in source location suggest that anatomical variations may underlie differences in oscillatory activity. Regarding the predictive value of early oscillatory measures, we found that the amplitude of the source response and the magnitude of oscillatory power and phase synchrony were predictive of expressive vocabulary at 20 months of age. These results further our understanding of the interplay among neural mechanisms that support typical and atypical rapid auditory processing in infancy. Neural sources of RAP in infancy were identified at right/left auditory regions. FH− infants demonstrated a mature left-lateralized pattern of neural oscillations. FH+ infants demonstrated a more right-lateralized pattern of neural oscillations. FH+ infants showed reduced left gamma power during rapid auditory discrimination. Source and oscillatory measures are both associated with later language skills.
Collapse
Affiliation(s)
- Chiara Cantiani
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | | | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Caterina Piazza
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Roberta Bettoni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Gabriella Musacchia
- Department of Audiology, University of the Pacific, USA; Department of Otolaryngology - Head and Neck Surgery, Stanford University, USA
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Cecilia Marino
- Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, USA
| |
Collapse
|
62
|
Perera MPN, Bailey NW, Herring SE, Fitzgerald PB. Electrophysiology of obsessive compulsive disorder: A systematic review of the electroencephalographic literature. J Anxiety Disord 2019; 62:1-14. [PMID: 30469123 DOI: 10.1016/j.janxdis.2018.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/04/2018] [Accepted: 11/03/2018] [Indexed: 01/04/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic disease that causes significant decline in the quality of life of those affected. Due to our limited understanding of the underlying pathophysiology of OCD, successful treatment remains elusive. Although many have studied the pathophysiology of OCD through electroencephalography (EEG), limited attempts have been made to synthesize and interpret their findings. To bridge this gap, we conducted a comprehensive literature review using Medline/PubMed and considered the 65 most relevant studies published before June 2018. The findings are categorised into quantitative EEG, sleep related EEG and event related potentials (ERPs). Increased frontal asymmetry, frontal slowing and an enhancement in the ERP known as error related negativity (ERN) were consistent findings in OCD. However, sleep EEG and other ERP (P3 and N2) findings were inconsistent. Additionally, we analysed the usefulness of ERN as a potential candidate endophenotype. We hypothesize that dysfunctional frontal circuitry and overactive performance monitoring are the major underlying impairments in OCD. Additionally, we conceptualized that defective fronto-striato-thalamic circuitry causing poor cerebral functional connectivity gives rise to the OCD behavioural manifestations. Finally, we have discussed transcranial magnetic stimulation and EEG (TMS-EEG) applications in future research to further our knowledge of the underlying pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Level 4, 607, St. Kilda Road, Melbourne, Victoria 3004, Australia.
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Level 4, 607, St. Kilda Road, Melbourne, Victoria 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, 888 Toorak Rd, Camberwell, Victoria 3124, Australia.
| | - Sally E Herring
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, 888 Toorak Rd, Camberwell, Victoria 3124, Australia.
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Level 4, 607, St. Kilda Road, Melbourne, Victoria 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, 888 Toorak Rd, Camberwell, Victoria 3124, Australia.
| |
Collapse
|
63
|
Ciria LF, Luque-Casado A, Sanabria D, Holgado D, Ivanov PC, Perakakis P. Oscillatory brain activity during acute exercise: Tonic and transient neural response to an oddball task. Psychophysiology 2019; 56:e13326. [PMID: 30637763 DOI: 10.1111/psyp.13326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/13/2018] [Accepted: 11/23/2018] [Indexed: 12/01/2022]
Abstract
Intense physical exercise exerts measurable changes at various physiological levels that are well documented in the literature. However, despite the key role of the brain in processing inputs from internal organ systems and the external environment to coordinate and optimize behavior, little is known about brain dynamics during exercise. The present study investigates tonic and transient oscillatory brain activity in a group of participants performing an oddball task during a single bout of aerobic exercise. Twenty young males (19-32 years) were recruited for two experimental sessions on separate days. EEG activity was recorded during a session of cycling at 80% (moderate-to-high intensity) of VO2max (maximum rate of oxygen consumption) while participants responded to infrequent targets (red square and big blue circle) presented among frequent nontargets (small blue circle). This was compared to a (baseline) light intensity session (30% VO2max ) to control any potential effect of dual tasking (i.e., pedaling and performing the oddball task). A cluster-based nonparametric permutations test revealed an increase in power across the entire frequency spectrum during the moderate-to-high intensity exercise compared to light intensity. Furthermore, the more salient target (red square) elicited a lower increase in (stimulus-evoked) theta power in the 80% VO2max than in the light intensity condition. Alpha and lower beta power decreased less in the standard trials (small blue circle) during the moderate-to-high exercise condition than in the light exercise condition. The present study unveils, for the first time, a complex brain activity pattern during vigorous exercise while attending to task-relevant stimuli.
Collapse
Affiliation(s)
- Luis F Ciria
- Mind, Brain, & Behavior Research Center, University of Granada, Granada, Spain.,Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Antonio Luque-Casado
- Mind, Brain, & Behavior Research Center, University of Granada, Granada, Spain.,Centro de Estudios del Deporte, Universidad Rey Juan Carlos, Madrid, Spain
| | - Daniel Sanabria
- Mind, Brain, & Behavior Research Center, University of Granada, Granada, Spain.,Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Darías Holgado
- Mind, Brain, & Behavior Research Center, University of Granada, Granada, Spain.,Department of Physical Education & Sport, University of Granada, Granada, Spain
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts.,Harvard Medical School and Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Pandelis Perakakis
- Mind, Brain, & Behavior Research Center, University of Granada, Granada, Spain.,Universidad Loyola Andalucía, Departamento de Psicología, Sevilla, Spain
| |
Collapse
|
64
|
Karamacoska D, Barry RJ, Steiner GZ. Using principal components analysis to examine resting state EEG in relation to task performance. Psychophysiology 2019; 56:e13327. [DOI: 10.1111/psyp.13327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Diana Karamacoska
- Brain & Behaviour Research Institute and School of Psychology University of Wollongong Wollongong New South Wales Australia
| | - Robert J. Barry
- Brain & Behaviour Research Institute and School of Psychology University of Wollongong Wollongong New South Wales Australia
| | - Genevieve Z. Steiner
- Brain & Behaviour Research Institute and School of Psychology University of Wollongong Wollongong New South Wales Australia
- NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University Penrith New South Wales Australia
| |
Collapse
|
65
|
Clarke AR, Barry RJ, Karamacoska D, Johnstone SJ. The EEG Theta/Beta Ratio: A marker of Arousal or Cognitive Processing Capacity? Appl Psychophysiol Biofeedback 2019; 44:123-129. [DOI: 10.1007/s10484-018-09428-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Helfrich RF, Knight RT. Cognitive neurophysiology: Event-related potentials. HANDBOOK OF CLINICAL NEUROLOGY 2019; 160:543-558. [PMID: 31277875 DOI: 10.1016/b978-0-444-64032-1.00036-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Event-related potentials (ERPs) are one of the most commonly used tools to assess cognitive processing with a high temporal resolution. We provide an updated view of the cortical origins of evoked responses and discuss potential mechanisms contributing to ERP generation. In particular, we focus on the relationship between evoked and ongoing oscillatory activity and discuss the differences between ERPs and cortical activation as indexed by high-frequency activity in human intracranial electroencephalography (EEG). We highlight several possibilities for how ERPs can precisely index human perception and behavior in nontraditional approaches, such as neuronal entrainment through steady-state evoked potentials, multivariate decoding, and cross-frequency correlations. We argue that analyses of time-locked responses are beneficial to assess nonlinear and nonsinusoidal neuronal activity on a fine-grained temporal scale, since analyses in the time domain are less susceptible to artifacts than spectral decomposition techniques. Taken together, the current review provides a state-of-the-art overview of ERPs and their application in cognitive and clinical neurophysiology.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States.
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
67
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
68
|
Gifford AM, Sperling MR, Sharan A, Gorniak RJ, Williams RB, Davis K, Kahana MJ, Cohen YE. Neuronal phase consistency tracks dynamic changes in acoustic spectral regularity. Eur J Neurosci 2018; 49:1268-1287. [PMID: 30402926 DOI: 10.1111/ejn.14263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
The brain parses the auditory environment into distinct sounds by identifying those acoustic features in the environment that have common relationships (e.g., spectral regularities) with one another and then grouping together the neuronal representations of these features. Although there is a large literature that tests how the brain tracks spectral regularities that are predictable, it is not known how the auditory system tracks spectral regularities that are not predictable and that change dynamically over time. Furthermore, the contribution of brain regions downstream of the auditory cortex to the coding of spectral regularity is unknown. Here, we addressed these two issues by recording electrocorticographic activity, while human patients listened to tone-burst sequences with dynamically varying spectral regularities, and identified potential neuronal mechanisms of the analysis of spectral regularities throughout the brain. We found that the degree of oscillatory stimulus phase consistency (PC) in multiple neuronal-frequency bands tracked spectral regularity. In particular, PC in the delta-frequency band seemed to be the best indicator of spectral regularity. We also found that these regularity representations existed in multiple regions throughout cortex. This widespread reliable modulation in PC - both in neuronal-frequency space and in cortical space - suggests that phase-based modulations may be a general mechanism for tracking regularity in the auditory system specifically and other sensory systems more generally. Our findings also support a general role for the delta-frequency band in processing the regularity of auditory stimuli.
Collapse
Affiliation(s)
- Adam M Gifford
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael R Sperling
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ashwini Sharan
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard J Gorniak
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ryan B Williams
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Kahana
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yale E Cohen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Departments of Otorhinolaryngology, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
69
|
Rivera-Lillo G, Rojas-Líbano D, Burgos P, Egaña JI, Chennu S, Maldonado PE. Reduced delta-band modulation underlies the loss of P300 responses in disorders of consciousness. Clin Neurophysiol 2018; 129:2613-2622. [PMID: 30458356 DOI: 10.1016/j.clinph.2018.09.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The P300 component of a sensory event-related potential is one of the major electrophysiological markers used to explore remnants of cognitive function in patients with disorders of consciousness (DoC). However, measuring the P300 in patients is complicated by significant inter-trial variability commonly observed in levels of arousal and awareness. To overcome this limitation, we analyzed single-trial modulation of power in the delta and theta frequency bands, which underlie the P300. METHODS In a preliminary cross-sectional study using a 24-channel EEG and a passive own-name oddball paradigm, we analyzed event-related synchronization (ERS) across trials in the delta and theta bands in a sample of 10 control and 12 DoC subjects. RESULTS In comparison to controls, DoC subjects presented a low percentage of trials where delta ERS was observed. In particular, coordinated modulation between delta and theta in response to the stimulus was absent, with a high percentage of trials where only theta ERS was observed. Further, we found a positive correlation between the percentage of epochs with delta ERS and the strength of the P300. CONCLUSIONS Reduced modulation of spectral activity in the delta band in response to stimuli indicates a dissociation in the activity of the neural networks that oscillate in delta and theta ranges and contribute to the generation of the P300. SIGNIFICANCE The reduction in spectral modulation observed in DoC provides a deeper understanding of neurophysiological dysfunction and the means to develop a more fine-grained marker of residual cognitive function in individual patients.
Collapse
Affiliation(s)
- Gonzalo Rivera-Lillo
- Physical Therapy Department, Faculty of Medicine, Universidad de Chile, Chile; Neuroscience Department, Faculty of Medicine, Universidad de Chile, Chile; Center of Integrated Studies in Neurorehabilitation, Clínica Los Coihues, Santiago, Chile
| | - Daniel Rojas-Líbano
- Laboratorio de Neurociencia Cognitiva y Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Pablo Burgos
- Physical Therapy Department, Faculty of Medicine, Universidad de Chile, Chile; Neuroscience Department, Faculty of Medicine, Universidad de Chile, Chile; Research and Development, Universidad Tecnológica de Chile, Inacap, Chile
| | - Jose I Egaña
- Anesthesia Department, Faculty of Medicine, Universidad de Chile, Chile; Biomedical Neuroscience Institute, Universidad de Chile, Chile
| | - Srivas Chennu
- School of Computing, University of Kent, UK; Department of Clinical Neurosciences, University of Cambridge, UK
| | - Pedro E Maldonado
- Neuroscience Department, Faculty of Medicine, Universidad de Chile, Chile; Biomedical Neuroscience Institute, Universidad de Chile, Chile.
| |
Collapse
|
70
|
Mortezapouraghdam Z, Corona-Strauss FI, Takahashi K, Strauss DJ. Reducing the Effect of Spurious Phase Variations in Neural Oscillatory Signals. Front Comput Neurosci 2018; 12:82. [PMID: 30349470 PMCID: PMC6186847 DOI: 10.3389/fncom.2018.00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
The phase-reset model of oscillatory EEG activity has received a lot of attention in the last decades for decoding different cognitive processes. Based on this model, the ERPs are assumed to be generated as a result of phase reorganization in ongoing EEG. Alignment of the phase of neuronal activities can be observed within or between different assemblies of neurons across the brain. Phase synchronization has been used to explore and understand perception, attentional binding and considering it in the domain of neuronal correlates of consciousness. The importance of the topic and its vast exploration in different domains of the neuroscience presses the need for appropriate tools and methods for measuring the level of phase synchronization of neuronal activities. Measuring the level of instantaneous phase (IP) synchronization has been used extensively in numerous studies of ERPs as well as oscillatory activity for a better understanding of the underlying cognitive binding with regard to different set of stimulations such as auditory and visual. However, the reliability of results can be challenged as a result of noise artifact in IP. Phase distortion due to environmental noise artifacts as well as different pre-processing steps on signals can lead to generation of artificial phase jumps. One of such effects presented recently is the effect of low envelope on the IP of signal. It has been shown that as the instantaneous envelope of the analytic signal approaches zero, the variations in the phase increase, effectively leading to abrupt transitions in the phase. These abrupt transitions can distort the phase synchronization results as they are not related to any neurophysiological effect. These transitions are called spurious phase variation. In this study, we present a model to remove generated artificial phase variations due to the effect of low envelope. The proposed method is based on a simplified form of a Kalman smoother, that is able to model the IP behavior in narrow-bandpassed oscillatory signals. In this work we first explain the details of the proposed Kalman smoother for modeling the dynamics of the phase variations in narrow-bandpassed signals and then evaluate it on a set of synthetic signals. Finally, we apply the model on ongoing-EEG signals to assess the removal of spurious phase variations.
Collapse
Affiliation(s)
- Zeinab Mortezapouraghdam
- Systems Neuroscience & Neurotechnology Unit, Faculty of Medicine, Saarland University, Homburg, Germany.,School of Engineering, Saarland University of Applied Sciences, Saarbruecken, Germany
| | - Farah I Corona-Strauss
- Systems Neuroscience & Neurotechnology Unit, Faculty of Medicine, Saarland University, Homburg, Germany.,School of Engineering, Saarland University of Applied Sciences, Saarbruecken, Germany
| | - Kazutaka Takahashi
- Research Computing Center and Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Daniel J Strauss
- Systems Neuroscience & Neurotechnology Unit, Faculty of Medicine, Saarland University, Homburg, Germany.,School of Engineering, Saarland University of Applied Sciences, Saarbruecken, Germany.,Leibniz-Institute for New Materials, Saarbruecken, Germany
| |
Collapse
|
71
|
Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T. Atypical temporal-scale-specific fractal changes in Alzheimer's disease EEG and their relevance to cognitive decline. Cogn Neurodyn 2018; 13:1-11. [PMID: 30728867 PMCID: PMC6339858 DOI: 10.1007/s11571-018-9509-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/20/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nonlinear analytic methods for electroencephalography have clarified the reduced complexity of spatiotemporal dynamics in brain activity observed in Alzheimer’s disease (AD). However, there are far fewer studies exploring temporal scale dependent fractal properties in AD, despite the importance of studying the dynamics of brain activity within physiologically relevant frequency ranges. Higuchi’s fractal dimension is a widely used index for evaluating fractality in brain activity, but temporal-scale-specific characteristics are lost due to its requirement of averaging over the entire range of temporal scales. In this study, we adapted Higuchi’s fractal algorithm into a method for investigating temporal-scale-specific fractal properties. We then compared the values of the temporal-scale-specific fractal dimension between healthy control (HC) and AD patient groups. Our data indicate that relative to the HC group, the AD group demonstrated reduced fractality at both slow and fast temporal scales. Moreover, we confirmed that the fractality at fast temporal scales correlates with cognitive decline. These properties might serve as a basis for a useful approach to characterizing temporal neural dynamics in AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2–17–1 Tsudanuma, Narashino, Chiba 275–0016 Japan
| | - Teruya Yamanishi
- Department of Management Information Science, Fukui University of Technology, 3–6–1 Gakuen, Fukui, Fukui 910–8505 Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, 7–1–28 Chuo-ku, Kobe, Hyogo 650–8588 Japan
| | - Yuji Wada
- Department of Neuropsychiatry, University of Fukui, 23–3 Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, 910–1193 Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, 13–1 Takaramachi, Kanazawa, Ishikawa 920–8640 Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, University of Fukui, 23–3 Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, 910–1193 Japan
- Research Center for Child Mental Development, Kanazawa University, 13–1 Takaramachi, Kanazawa, Ishikawa 920–8640 Japan
| |
Collapse
|
72
|
Klimesch W. The frequency architecture of brain and brain body oscillations: an analysis. Eur J Neurosci 2018; 48:2431-2453. [PMID: 30281858 PMCID: PMC6668003 DOI: 10.1111/ejn.14192] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.
Collapse
Affiliation(s)
- Wolfgang Klimesch
- Centre of Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
73
|
Meyer L, Gumbert M. Synchronization of Electrophysiological Responses with Speech Benefits Syntactic Information Processing. J Cogn Neurosci 2018; 30:1066-1074. [DOI: 10.1162/jocn_a_01236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In auditory neuroscience, electrophysiological synchronization to low-level acoustic and high-level linguistic features is well established—but its functional purpose for verbal information transmission is unclear. Based on prior evidence for a dependence of auditory task performance on delta-band oscillatory phase, we hypothesized that the synchronization of electrophysiological responses at delta-band frequency to the speech stimulus serves to implicitly align neural excitability with syntactic information. The experimental paradigm of our auditory EEG study uniformly distributed morphosyntactic violations across syntactic phrases of natural sentences, such that violations would occur at points differing in linguistic information content. In support of our hypothesis, we found behavioral responses to morphosyntactic violations to increase with decreasing syntactic information content—in significant correlation with delta-band phase, which had synchronized to our speech stimuli. Our findings indicate that rhythmic electrophysiological synchronization to the speech stream is a functional mechanism that may align neural excitability with linguistic information content, optimizing language comprehension.
Collapse
Affiliation(s)
- Lars Meyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Gumbert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- University of Trento
| |
Collapse
|
74
|
De Blasio FM, Barry RJ. Prestimulus delta and theta contributions to equiprobable Go/NoGo processing in healthy ageing. Int J Psychophysiol 2018; 130:40-52. [PMID: 29775640 DOI: 10.1016/j.ijpsycho.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/17/2018] [Accepted: 05/12/2018] [Indexed: 12/26/2022]
Abstract
Ongoing EEG activity contributes to ERP outcomes of stimulus processing, and each of these measures is known to undergo (sometimes significant) age-related change. Variation in their relationship across the life-span may thus elucidate mechanisms of normal and pathological ageing. This study assessed the relationships between low-frequency EEG prestimulus brain states, the ERP, and behavioural outcomes in a simple equiprobable auditory Go/NoGo paradigm, comparing these for 20 young (Mage = 20.4 years) and 20 healthy older (Mage = 68.2 years) adults. Prestimulus delta and theta amplitudes were separately assessed; these were each dominant across the midline region, and reduced in the older adults. For each band, (within-subjects) trials were sorted into ten increasing prestimulus EEG levels for which separate ERPs were derived. The set of ten ERPs for each band-sort was then quantified by PCA, independently for each group (young, older adults). Four components were primarily assessed (P1, N1-1, P2/N2b complex, and P3), with each showing age-related change. Mean RT was comparable, but intra-individual RT variability increased in older adults. Prestimulus delta and theta each generally modulated component positivity, indicating broad influence on task processing. Prestimulus delta was primarily associated with the early sensory processes, and theta more with the later stimulus-specific processes; prestimulus theta also inversely modulated intra-individual RT variability across the groups. These prestimulus EEG-ERP dynamics were consistent between the young and older adults in each band for all components except the P2/N2b, suggesting that across the lifespan, Go/NoGo categorisation is differentially affected by prestimulus delta and theta.
Collapse
Affiliation(s)
- Frances M De Blasio
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
75
|
Yu L, Wang S, Huang D, Wu X, Zhang Y. Role of inter-trial phase coherence in atypical auditory evoked potentials to speech and nonspeech stimuli in children with autism. Clin Neurophysiol 2018; 129:1374-1382. [PMID: 29729592 DOI: 10.1016/j.clinph.2018.04.599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This autism study investigated how inter-trial phase coherence (ITPC) drives abnormalities in auditory evoked potential (AEP) responses for speech and nonspeech stimuli. METHODS Auditory P1-N2 responses and ITPCs in the theta band (4-7 Hz) for pure tones and words were assessed with EEG data from 15 school-age children with autism and 16 age-matched typically developing (TD) controls. RESULTS The autism group showed enhanced P1 and reduced N2 for both speech and nonspeech stimuli in comparison with the TD group. Group differences were also found with enhanced theta ITPC for P1 followed by ITPC reduction for N2 in the autism group. The ITPC values were significant predictors of P1 and N2 amplitudes in both groups. CONCLUSIONS Abnormal trial-to-trial phase synchrony plays an important role in AEP atypicalities in children with autism. ITPC-driven enhancement as well as attenuation in different AEP components may coexist, depending on the stage of information processing. SIGNIFICANCE It is necessary to examine the time course of auditory evoked potentials and the corresponding inter-trial coherence of neural oscillatory activities to better understand hyper- and hypo- sensitive responses in autism, which has important implications for sensory based treatment.
Collapse
Affiliation(s)
- Luodi Yu
- School of Psychology, South China Normal University, Guangzhou 510631, China; Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suiping Wang
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Dan Huang
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou 510540, China
| | - Xueyuan Wu
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou 510540, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
76
|
Henz D, Schöllhorn WI, Poeggeler B. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields. Front Neurosci 2018; 12:190. [PMID: 29670503 PMCID: PMC5893900 DOI: 10.3389/fnins.2018.00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/08/2018] [Indexed: 11/16/2022] Open
Abstract
Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use.
Collapse
Affiliation(s)
- Diana Henz
- Institute of Sports Science, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
77
|
Karamacoska D, Barry RJ, Steiner GZ, Coleman EP, Wilson EJ. Intrinsic EEG and task-related changes in EEG affect Go/NoGo task performance. Int J Psychophysiol 2018; 125:17-28. [DOI: 10.1016/j.ijpsycho.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/23/2023]
|
78
|
Joucla C, Nicolier M, Giustiniani J, Brunotte G, Noiret N, Monnin J, Magnin E, Pazart L, Moulin T, Haffen E, Vandel P, Gabriel D. Evidence for a neural signature of musical preference during silence. Int J Psychophysiol 2018; 125:50-56. [PMID: 29474854 DOI: 10.1016/j.ijpsycho.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 11/18/2022]
Abstract
One of the most basic and person-specific affective responses to music is liking. The present investigation sought to determine whether liking was preserved during spontaneous auditory imagery. To this purpose, we inserted two-second silent intervals into liked and disliked songs, a method known to automatically recreate a mental image of these songs. Neural correlates of musical preference were measured by high-density electroencephalography in twenty subjects who had to listen to a set of five pre-selected unknown songs the same number of times for two weeks. Time frequency analysis of the two most liked and the two most disliked songs confirmed the presence of neural responses related to liking. At the beginning of silent intervals (400-900 ms and 1000-1300 ms), significant differences in theta activity were originating from the inferior frontal and superior temporal gyrus. These two brain structures are known to work together to process various aspects of music and are also activated when measuring liking while listening to music. At the end of silent intervals (1400-1900 ms), significant alpha activity differences originating from the insula were observed, whose exact role remains to be explored. Although exposure was controlled for liked and disliked songs, liked songs were rated as more familiar, underlying the strong relationship that exists between liking, exposure, and familiarity.
Collapse
Affiliation(s)
- Coralie Joucla
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Magali Nicolier
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Julie Giustiniani
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Gaelle Brunotte
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France
| | - Nicolas Noiret
- Centre Mémoire de Ressource et de Recherche de Franche-Comté, CHRU Besançon, F-25000 Besançon, France; Laboratoire de psychologie EA 3188, Université de Franche-Comté, F-25000 Besançon, France
| | - Julie Monnin
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Eloi Magnin
- Centre Mémoire de Ressource et de Recherche de Franche-Comté, CHRU Besançon, F-25000 Besançon, France; Service de neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Lionel Pazart
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Thierry Moulin
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Emmanuel Haffen
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Pierre Vandel
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France; Centre Mémoire de Ressource et de Recherche de Franche-Comté, CHRU Besançon, F-25000 Besançon, France
| | - Damien Gabriel
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
79
|
Sanchez-Alavez M, Wills DN, Amodeo L, Ehlers CL. Effect of Gabapentin on Sleep and Event-Related Oscillations (EROs) in Rats Exposed to Chronic Intermittent Ethanol Vapor and Protracted Withdrawal. Alcohol Clin Exp Res 2018; 42:624-633. [PMID: 29286538 DOI: 10.1111/acer.13588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Disturbances in sleep architecture, especially reductions in slow-wave sleep (SWS), are symptoms commonly observed in individuals with alcohol use disorders. Recent clinical trials have demonstrated that the anticonvulsant and analgesic drug gabapentin may have therapeutic value in normalizing sleep quality in recovering alcoholics. However, the brain mechanisms underlying this improvement in sleep following gabapentin treatment remain unknown. METHODS In this study, adult Wistar rats were exposed to 8 weeks of chronic intermittent ethanol [EtOH] vapor (blood EtOH concentrations averaged 128.2 ± 17.4 mg/dl) or control conditions and then withdrawn. Sleep electroencephalograms [EEGs] and event-related oscillations (EROs) were evaluated at baseline prior to EtOH exposure and 24 hours following EtOH withdrawal. Four weeks following EtOH withdrawal the effects of saline and 2 doses of gabapentin (30, 120 mg/kg), on EROs and sleep EEGs, were evaluated. RESULTS As compared to baseline, 24 hours following alcohol withdrawal SWS became fragmented as indexed by a significant increase in the number and a decrease in the duration of SWS episodes. Compared to controls, the EtOH-exposed group had more ERO energy in the beta frequency band in the parietal cortex. Gabapentin induced a dose-dependent decrease in the latency to the first SWS episode, and a reduction in sleep fragmentation. Gabapentin also produced a dose-dependent increase in ERO energy in the control group that was significantly attenuated in the EtOH-exposed group in the theta, and beta frequency bands. CONCLUSIONS Taken together, these studies suggest that gabapentin can reverse some of the alcohol-induced sleep and EEG deficits but does not eliminate all of the enduring brain effects of EtOH exposure.
Collapse
Affiliation(s)
| | - Derek N Wills
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Leslie Amodeo
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
80
|
Abstract
With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum) as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC). This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.
Collapse
|
81
|
Age-related changes in oscillatory power affect motor action. PLoS One 2017; 12:e0187911. [PMID: 29176853 PMCID: PMC5703531 DOI: 10.1371/journal.pone.0187911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum) as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC). This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.
Collapse
|
82
|
Meyer L. The neural oscillations of speech processing and language comprehension: state of the art and emerging mechanisms. Eur J Neurosci 2017; 48:2609-2621. [PMID: 29055058 DOI: 10.1111/ejn.13748] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Neural oscillations subserve a broad range of functions in speech processing and language comprehension. On the one hand, speech contains-somewhat-repetitive trains of air pressure bursts that occur at three dominant amplitude modulation frequencies, physically marking the linguistically meaningful progressions of phonemes, syllables and intonational phrase boundaries. To these acoustic events, neural oscillations of isomorphous operating frequencies are thought to synchronise, presumably resulting in an implicit temporal alignment of periods of neural excitability to linguistically meaningful spectral information on the three low-level linguistic description levels. On the other hand, speech is a carrier signal that codes for high-level linguistic meaning, such as syntactic structure and semantic information-which cannot be read from stimulus acoustics, but must be acquired during language acquisition and decoded for language comprehension. Neural oscillations subserve the processing of both syntactic structure and semantic information. Here, I synthesise a mapping from each linguistic processing domain to a unique set of subserving oscillatory mechanisms-the mapping is plausible given the role ascribed to different oscillatory mechanisms in different subfunctions of cortical information processing and faithful to the underlying electrophysiology. In sum, the present article provides an accessible and extensive review of the functional mechanisms that neural oscillations subserve in speech processing and language comprehension.
Collapse
Affiliation(s)
- Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| |
Collapse
|
83
|
Mortezapouraghdam Z, Strauss DJ. Removal of spurious phase variations in oscillatory signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2209-2212. [PMID: 29060335 DOI: 10.1109/embc.2017.8037293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study of oscillatory electroencephalogram (EEG) data has been one of the main sources for the analysis of different brain functions and decoding a variety of cognitive processes. One of the interesting features that has been the focus of study in the last decades is the study of instantaneous phase information in EEG. Phase synchronization techniques are among the main analysis tools that measure the degree of phase re-organization in signals. In phase re-organization approach, the phase alignment in stimulus induced potentials has been shown to be informative for decoding cognitive processes. Despite the developments in this area, the precision of measures may vary based on the level of noise. Phase distortion due to artefacts and a variety of pre-processing steps that are applied on data, can introduce artificial phase alignment. These artificial phase variations (that is referred to spurious phase variations) are not correlated to any stimulus or event. In a new study, it has been showed that a low instantaneous envelope lead to abrupt changes in IP, which could distort the results of phase synchronization. In this work, we propose a method that is able to estimate the true phase based on the measurements and estimate a standard deviation for the computed phase. The method enables to remove the effect of artificial phase changes due to low envelope. In this approach the analytic signal is modeled by a Kalman smoother, and estimates a more reliable version of the IP from the measurements. At last, we evaluate the model on different synthetic data sets.
Collapse
|
84
|
Hudac CM, Cortesa CS, Ledwidge PS, Molfese DL. History of concussion impacts electrophysiological correlates of working memory. Int J Psychophysiol 2017; 132:135-144. [PMID: 29024682 DOI: 10.1016/j.ijpsycho.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/26/2023]
Abstract
Sports-related concussions occur in approximately 21% of college athletes with implications for long-term cognitive impairments in working memory. Working memory involves the capacity to maintain short-term information and integrate with higher-order cognitive processing for planning and behavior execution, critical skills for optimal cognitive and athletic performance. This study quantified working memory impairments in 36 American football college athletes (18-23years old) using event-related potentials (ERPs). Despite performing similarly in a standard 2-back working memory task, athletes with history of concussion exhibited larger P1 and P3 amplitudes compared to Controls. Concussion History group latencies were slower for the P1 and faster for the N2. Source estimation analyses indicated that previously concussed athletes engaged different brain regions compared to athletes with no concussion history. These findings suggest that ERPs may be a sensitive and objective measure to detect long-term cognitive consequences of concussion.
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychology, University of Nebraska-Lincoln, United States; Department of Psychiatry and Behavioral Sciences, University of Washington, United States.
| | - Cathryn S Cortesa
- Department of Psychology, University of Nebraska-Lincoln, United States; Department of Cognitive Science, Johns Hopkins University, United States.
| | - Patrick S Ledwidge
- Department of Psychology, University of Nebraska-Lincoln, United States; Center for Brain, Biology, & Behavior, University of Nebraska-Lincoln, United States; Department of Psychology, Baldwin Wallace University, United States
| | - Dennis L Molfese
- Department of Psychology, University of Nebraska-Lincoln, United States; Center for Brain, Biology, & Behavior, University of Nebraska-Lincoln, United States.
| |
Collapse
|
85
|
Anokhin AP, Golosheykin S. Neural Correlates of Response Inhibition in Adolescents Prospectively Predict Regular Tobacco Smoking. Dev Neuropsychol 2017; 41:22-37. [PMID: 27392089 DOI: 10.1080/87565641.2016.1195833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibitory deficits have been widely reported in addiction; however, it remains unclear whether such deficits represent a determinant or a consequence of substance use. Here we show, using a prospective longitudinal design, that developmental abnormalities in the neural correlates of response inhibition in adolescents increase the risk for subsequent cigarette smoking. Reduced No-Go P3 amplitude, delayed latency of Go P3 peak, and reduced synchrony of neuronal oscillations at age 14 prospectively predicted regular smoking at age 18. The present findings suggest that functional brain correlates of response inhibition represent a developmental marker of risk for future substance abuse.
Collapse
Affiliation(s)
- Andrey P Anokhin
- a School of Medicine , Washington University , St. Louis , Missouri
| | | |
Collapse
|
86
|
Zhang B, Lin Y, Gao Q, Zawisza M, Kang Q, Chen X. Effects of Aging Stereotype Threat on Working Self-Concepts: An Event-Related Potentials Approach. Front Aging Neurosci 2017; 9:223. [PMID: 28747885 PMCID: PMC5506089 DOI: 10.3389/fnagi.2017.00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Although the influence of stereotype threat (ST) on working self-concepts has been highlighted in recent years, its neural underpinnings are unclear. Notably, the aging ST, which largely influences older adults' cognitive ability, mental and physical health, did not receive much attention. In order to investigate these issues, electroencephalogram (EEG) data were obtained from older adults during a modified Stroop task using neutral words, positive and negative self-concept words in aging ST vs. neutral control conditions. Results showed longer reaction times (RTs) for identifying colors of words under the aging ST compared to the neutral condition. More importantly, the negative self-concept elicited more positive late P300 amplitudes and enhanced theta band activities compared to the positive self-concept or neutral words under the aging ST condition, whereas no difference was found between these self-concepts and neutral words in the control condition. Furthermore, the aging ST induced smaller theta band synchronization and enhanced alpha band synchronization compared to the control condition. Moreover, we also observed valence differences in self-concepts where the negative self-concept words reduced early P150/N170 complex relative to neutral words. These findings suggest that priming ST could activate negative self-concepts as current working self-concept, and that this influence occurred during a late neural time course.
Collapse
Affiliation(s)
- Baoshan Zhang
- School of Psychology, Shaanxi Normal UniversityXi’an, China
| | - Yao Lin
- School of Psychology, Shaanxi Normal UniversityXi’an, China
| | - Qianyun Gao
- School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China
| | - Magdalena Zawisza
- Department of Psychology, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Qian Kang
- School of Psychology, Shaanxi Normal UniversityXi’an, China
| | - Xuhai Chen
- School of Psychology, Shaanxi Normal UniversityXi’an, China
| |
Collapse
|
87
|
Koerner TK, Zhang Y, Nelson PB, Wang B, Zou H. Neural indices of phonemic discrimination and sentence-level speech intelligibility in quiet and noise: A P3 study. Hear Res 2017; 350:58-67. [DOI: 10.1016/j.heares.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|
88
|
Karamacoska D, Barry RJ, Steiner GZ. Resting state intrinsic EEG impacts on go stimulus‐response processes. Psychophysiology 2017; 54:894-903. [DOI: 10.1111/psyp.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Diana Karamacoska
- Brain & Behaviour Research Institute and School of PsychologyUniversity of WollongongWollongong Australia
| | - Robert J. Barry
- Brain & Behaviour Research Institute and School of PsychologyUniversity of WollongongWollongong Australia
| | - Genevieve Z. Steiner
- Brain & Behaviour Research Institute and School of PsychologyUniversity of WollongongWollongong Australia
- The National Institute of Complementary Medicine (NICM), Western Sydney UniversityPenrith Australia
| |
Collapse
|
89
|
Pellicciari MC, Veniero D, Miniussi C. Characterizing the Cortical Oscillatory Response to TMS Pulse. Front Cell Neurosci 2017; 11:38. [PMID: 28289376 PMCID: PMC5326778 DOI: 10.3389/fncel.2017.00038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgow, UK
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
- Center for Mind/Brain Sciences - CIMeC, University of TrentoRovereto, Italy
| |
Collapse
|
90
|
Wang X, Wang S, Fan Y, Huang D, Zhang Y. Speech-specific categorical perception deficit in autism: An Event-Related Potential study of lexical tone processing in Mandarin-speaking children. Sci Rep 2017; 7:43254. [PMID: 28225070 PMCID: PMC5320551 DOI: 10.1038/srep43254] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies reveal that tonal language speakers with autism have enhanced neural sensitivity to pitch changes in nonspeech stimuli but not to lexical tone contrasts in their native language. The present ERP study investigated whether the distinct pitch processing pattern for speech and nonspeech stimuli in autism was due to a speech-specific deficit in categorical perception of lexical tones. A passive oddball paradigm was adopted to examine two groups (16 in the autism group and 15 in the control group) of Chinese children’s Mismatch Responses (MMRs) to equivalent pitch deviations representing within-category and between-category differences in speech and nonspeech contexts. To further examine group-level differences in the MMRs to categorical perception of speech/nonspeech stimuli or lack thereof, neural oscillatory activities at the single trial level were further calculated with the inter-trial phase coherence (ITPC) measure for the theta and beta frequency bands. The MMR and ITPC data from the children with autism showed evidence for lack of categorical perception in the lexical tone condition. In view of the important role of lexical tones in acquiring a tonal language, the results point to the necessity of early intervention for the individuals with autism who show such a speech-specific categorical perception deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Suiping Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Center for Studies of Psychological Application, South China Normal University, 510631, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yuebo Fan
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Dan Huang
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Science, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
91
|
Garcia JO, Brooks J, Kerick S, Johnson T, Mullen TR, Vettel JM. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving. Neuroimage 2017; 150:239-249. [PMID: 28238938 DOI: 10.1016/j.neuroimage.2017.02.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band.
Collapse
Affiliation(s)
- Javier O Garcia
- US Army Research Laboratory, Aberdeen Proving Ground, MD, United States; Qusp Labs., San Diego, CA, United States; University of Pennsylvania, Philadelphia, PA, United States.
| | - Justin Brooks
- US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | - Scott Kerick
- US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | | | | | - Jean M Vettel
- US Army Research Laboratory, Aberdeen Proving Ground, MD, United States; University of California, Santa Barbara, CA, United States; University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
92
|
Bieler M, Sieben K, Schildt S, Röder B, Hanganu-Opatz IL. Visual-tactile processing in primary somatosensory cortex emerges before cross-modal experience. Synapse 2017; 71. [PMID: 28105686 DOI: 10.1002/syn.21958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
The presumptive unisensory neocortical areas process multisensory information by oscillatory entrainment of neuronal networks via direct cortico-cortical projections. While neonatal unimodal experience has been identified as necessary for setting up the neuronal networks of multisensory processing, it is still unclear whether early cross-modal experience equally controls the ontogeny of multisensory processing. Here, we assess the development of visual-somatosensory interactions and their anatomical substrate by performing extracellular recordings of network activity in primary sensory cortices in vivo and assessing the cortico-cortical connectivity in pigmented rats. Similar to adult animals, juvenile rats with minimal cross-modal experience display supra-additive augmentation of evoked responses, time-dependent modulation of power and phase reset of network oscillations in response to cross-modal light and whisker stimulation. Moreover, the neuronal discharge of individual neurons is stronger coupled to theta and alpha network oscillations after visual-tactile stimuli. The adult-like multisensory processing of juvenile rats relies on abundant direct visual-somatosensory connections and thalamocortical feedforward interactions. Thus, cellular and network interactions ensuring multisensory processing emerge before cross-modal experience and refine during juvenile development.
Collapse
Affiliation(s)
- Malte Bieler
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Kay Sieben
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Sandra Schildt
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University Hamburg, Hamburg, 20146, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| |
Collapse
|
93
|
Ventromedial prefrontal cortex generates pre-stimulus theta coherence desynchronization: A schema instantiation hypothesis. Cortex 2017; 87:16-30. [DOI: 10.1016/j.cortex.2016.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
|
94
|
Rothmaler K, Nigbur R, Ivanova G. New insights into insight: Neurophysiological correlates of the difference between the intrinsic “aha” and the extrinsic “oh yes” moment. Neuropsychologia 2017; 95:204-214. [DOI: 10.1016/j.neuropsychologia.2016.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
95
|
Van der Lubbe RHJ, Szumska I, Fajkowska M. Two Sides of the Same Coin: ERP and Wavelet Analyses of Visual Potentials Evoked and Induced by Task-Relevant Faces. Adv Cogn Psychol 2016; 12:154-168. [PMID: 28154612 PMCID: PMC5279858 DOI: 10.5709/acp-0195-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs.
Collapse
Affiliation(s)
| | - Izabela Szumska
- Cognitive Psychology, University of Finance and Management, Warsaw,
Poland
| | | |
Collapse
|
96
|
What can time-frequency and phase coherence measures tell us about the genetic basis of P3 amplitude? Int J Psychophysiol 2016; 115:40-56. [PMID: 27871913 DOI: 10.1016/j.ijpsycho.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022]
Abstract
In a recent comprehensive investigation, we largely failed to identify significant genetic markers associated with P3 amplitude or to corroborate previous associations between P3 and specific single nucleotide polymorphisms (SNPs) or genes. In the present study we extended this line of investigation to examine time-frequency (TF) activity and intertrial phase coherence (ITPC) in the P3 time window, both of which are associated with P3 amplitude. Previous genome-wide research has reported associations between P3-related theta and delta activity and individual genetic variants. A large, population-based sample of 4211 subjects, comprising male and female adolescent twins and their parents, was genotyped for 527,828 single nucleotide polymorphisms (SNPs), from which over six million SNPs were accurately imputed. Heritability estimates were greater for TF energy than ITPC, whether based on biometric models or the combined influence of all measured SNPs (derived from genome-wide complex trait analysis). The magnitude of overlap in the specific SNPs associated with delta energy and ITPC and P3 amplitude was significant. A genome-wide analysis of all SNPs, accompanied by an analysis of approximately 17,600 genes, indicated a region of chromosome 2 around TEKT4 that was significantly associated with theta ITPC. Analysis of candidate SNPs and genes previously reported to be associated with P3 or related phenotypes yielded one association surviving correction for multiple tests: between theta energy and CRHR1. However, we did not obtain significant associations for SNPs implicated in previous genome-wide studies of TF measures. Identifying specific genetic variants associated with P3 amplitude remains a challenge.
Collapse
|
97
|
Oscillatory activity in auditory cortex reflects the perceptual level of audio-tactile integration. Sci Rep 2016; 6:33693. [PMID: 27647158 PMCID: PMC5028762 DOI: 10.1038/srep33693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/31/2016] [Indexed: 12/02/2022] Open
Abstract
Cross-modal interactions between sensory channels have been shown to depend on both the spatial disparity and the perceptual similarity between the presented stimuli. Here we investigate the behavioral and neural integration of auditory and tactile stimulus pairs at different levels of spatial disparity. Additionally, we modulated the amplitudes of both stimuli in either a coherent or non-coherent manner. We found that both auditory and tactile localization performance was biased towards the stimulus in the respective other modality. This bias linearly increases with stimulus disparity and is more pronounced for coherently modulated stimulus pairs. Analyses of electroencephalographic (EEG) activity at temporal–cortical sources revealed enhanced event-related potentials (ERPs) as well as decreased alpha and beta power during bimodal as compared to unimodal stimulation. However, while the observed ERP differences are similar for all stimulus combinations, the extent of oscillatory desynchronization varies with stimulus disparity. Moreover, when both stimuli were subjectively perceived as originating from the same direction, the reduction in alpha and beta power was significantly stronger. These observations suggest that in the EEG the level of perceptual integration is mainly reflected by changes in ongoing oscillatory activity.
Collapse
|
98
|
Frontoparietal EEG alpha-phase synchrony reflects differential attentional demands during word recall and oculomotor dual-tasks. Neuroreport 2016; 26:1161-7. [PMID: 26559729 DOI: 10.1097/wnr.0000000000000494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To study the relationship between the varying degrees of cognitive load and long-range synchronization among neural networks, we utilized a dual-task paradigm combining concurrent word recall working memory tasks and oculomotor tasks that differentially activate the common frontoparietal (FP) network. We hypothesized that each dual-task combination would generate differential neuronal activation patterns among long-range connection during word retention period. Given that the FP alpha-phase synchronization is involved in attentional top-down processes, one would expect that the long-range synchronization pattern is affected by the degrees of dual-task demand. We measured a single-trial phase locking value in the alpha frequency (8-12 Hz) with electroencephalography in healthy participants. Single-trial phase locking value characterized the synchronization between two brain signals. Our results revealed that different amounts of FP alpha-phase synchronization were produced by different dual-task combinations, particularly during the early phase of the word retention period. These differences were dependent on the individual's working memory capacity and memory load. Our study shows that during dual-task, each oculomotor task, which is subserved by distinct neural network, generates different modulation patterns on long-range neuronal activation and FP alpha-phase synchronization seems to reflect these differential cognitive loads.
Collapse
|
99
|
Kleen JK, Testorf ME, Roberts DW, Scott RC, Jobst BJ, Holmes GL, Lenck-Santini PP. Oscillation Phase Locking and Late ERP Components of Intracranial Hippocampal Recordings Correlate to Patient Performance in a Working Memory Task. Front Hum Neurosci 2016; 10:287. [PMID: 27378885 PMCID: PMC4910536 DOI: 10.3389/fnhum.2016.00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022] Open
Abstract
In working memory tasks, stimulus presentation induces a resetting of intracranial temporal lobe oscillations in multiple frequency bands. To further understand the functional relevance of this phenomenon, we investigated whether working memory performance depends on the phase precision of ongoing oscillations in the hippocampus. We recorded intra-hippocampal local field potentials in individuals performing a working memory task. Two types of trials were administered. For high memory trials presentation of a list of four letters (“List”) was followed by a single letter memory probe (“Test”). Low memory load trials, consisting of four identical letters (AAAA) followed by a probe with the same letter (A), were interspersed. Significant phase locking of ongoing oscillations across trials, estimated by the Pairwise Phase Consistency Index (PPCI) was observed in delta (0.5–4 Hz), theta (5–7 Hz), and alpha (8–12 Hz) bands during stimulus presentation and recall but was increased in low memory load trials. Across patients however, higher delta PPCIs during recall in the left hippocampus were associated with faster reaction times. Because phase locking could also be interpreted as a consequence of a stimulus evoked potential, we performed event related potential analysis (ERP) and examined the relationship of ERP components with performance. We found that both amplitude and latency of late ERP components correlated with both reaction time and accuracy. We propose that, in the Sternberg task, phase locking of oscillations, or alternatively its ERP correlate, synchronizes networks within the hippocampus and connected structures that are involved in working memory.
Collapse
Affiliation(s)
- Jonathan K Kleen
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Markus E Testorf
- Department of Neurology, Geisel School of Medicine at Dartmouth Hanover, NH, USA
| | - David W Roberts
- Department of Surgery, Geisel School of Medicine at Dartmouth Hanover, NH, USA
| | - Rod C Scott
- Department of Neurological Sciences, University of Vermont College of MedicineBurlington, VT, USA; Department of Neurology, University College London, Institute of Child HealthLondon, UK
| | - Barbara J Jobst
- Department of Neurology, Geisel School of Medicine at Dartmouth Hanover, NH, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine Burlington, VT, USA
| | - Pierre-Pascal Lenck-Santini
- Department of Neurological Sciences, University of Vermont College of MedicineBurlington, VT, USA; INMED Institut National de la Santé et de la Recherche Médicale U901Marseille, France; Aix Marseille Université, INMEDMarseille, France
| |
Collapse
|
100
|
Koerner TK, Zhang Y, Nelson PB, Wang B, Zou H. Neural indices of phonemic discrimination and sentence-level speech intelligibility in quiet and noise: A mismatch negativity study. Hear Res 2016; 339:40-9. [PMID: 27267705 DOI: 10.1016/j.heares.2016.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022]
Abstract
Successful speech communication requires the extraction of important acoustic cues from irrelevant background noise. In order to better understand this process, this study examined the effects of background noise on mismatch negativity (MMN) latency, amplitude, and spectral power measures as well as behavioral speech intelligibility tasks. Auditory event-related potentials (AERPs) were obtained from 15 normal-hearing participants to determine whether pre-attentive MMN measures recorded in response to a consonant (from /ba/ to /bu/) and vowel change (from /ba/ to /da/) in a double-oddball paradigm can predict sentence-level speech perception. The results showed that background noise increased MMN latencies and decreased MMN amplitudes with a reduction in the theta frequency band power. Differential noise-induced effects were observed for the pre-attentive processing of consonant and vowel changes due to different degrees of signal degradation by noise. Linear mixed-effects models further revealed significant correlations between the MMN measures and speech intelligibility scores across conditions and stimuli. These results confirm the utility of MMN as an objective neural marker for understanding noise-induced variations as well as individual differences in speech perception, which has important implications for potential clinical applications.
Collapse
Affiliation(s)
- Tess K Koerner
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA; Center for Applied Translational Sensory Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Peggy B Nelson
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Center for Applied Translational Sensory Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boxiang Wang
- School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hui Zou
- School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|