51
|
Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int 2016; 2016:5728438. [PMID: 26977157 PMCID: PMC4764748 DOI: 10.1155/2016/5728438] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas are aggressive brain tumors with limited therapeutic options, possibly because of highly tumorigenic subpopulations of glioma stem cells. These cells require specific microenvironments to maintain their “stemness,” described as perivascular and hypoxic niches. Each of those niches induces particular signatures in glioma stem cells (e.g., activation of Notch signaling, secretion of VEGF, bFGF, SDF1 for the vascular niche, activation of HIF2α, and metabolic reprogramming for hypoxic niche). Recently, accumulated knowledge on tumor-associated macrophages, possibly delineating a third niche, has underlined the role of immune cells in glioma progression, via specific chemoattractant factors and cytokines, such as macrophage-colony stimulation factor (M-CSF). The local or myeloid origin of this new component of glioma stem cells niche is yet to be determined. Such niches are being increasingly recognized as key regulators involved in multiple stages of disease progression, therapy resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. This review focuses on the microenvironment impact on the glioma stem cell biology, emphasizing GSCs cross talk with hypoxic, perivascular, and immune niches and their potential use as targeted therapy.
Collapse
|
52
|
Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 2016; 35:23. [PMID: 26830677 PMCID: PMC4736617 DOI: 10.1186/s13046-016-0303-5] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 02/08/2023] Open
Abstract
Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, the efficacy of TMZ is often limited by the development of resistance. Recently, studies have found that TMZ treatment could induce autophagy, which contributes to therapy resistance in glioma. To enhance the benefit of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma cells to TMZ. In this regard, as autophagy could promote cell survival or autophagic cell death, modulating autophagy using a pharmacological inhibitor, such as chloroquine, or an inducer, such as rapamycin, has received considerably more attention. To understand the effectiveness of regulating autophagy in glioblastoma treatment, this review summarizes reports on glioblastoma treatments with TMZ and autophagic modulators from in vitro and in vivo studies, as well as clinical trials. Additionally, we discuss the possibility of using autophagy regulatory compounds that can sensitive TMZ treatment as a chemotherapy for glioma treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, 410008, China.
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| |
Collapse
|
53
|
Blahovcova E, Richterova R, Kolarovszki B, Dobrota D, Racay P, Hatok J. Apoptosis-related gene expression in tumor tissue samples obtained from patients diagnosed with glioblastoma multiforme. Int J Mol Med 2015; 36:1677-84. [PMID: 26459752 DOI: 10.3892/ijmm.2015.2369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 11/05/2022] Open
Abstract
Tumors of the brain are very diverse in their biological behavior and are therefore considered a major issue in modern medicine. The heterogeneity of gliomas, their clinical presentation and their responses to treatment makes this type of tumor a challenging area of research. Glioblastoma multiforme (GBM) is the most common, and biologically the most aggressive, primary brain tumor in adults. The standard treatment for patients with newly diagnosed GBM consists of surgical resection, radiotherapy and chemotherapy. However, resistance to chemotherapy is a major obstacle to successful treatment. The aim of this study was to examine the changes occurring in the expression levels of apoptosis-associated genes in tumor tissue biopsy samples from 7 patients diagnosed with GBM and compare our results with a human astrocyte cell line (used as a reference) cultured under basic conditions. For molecular analysis, we used a commercial pre-designed microfluidic array to quantify the expression of 93 apoptosis-associated human genes. Significant changes in the expression levels of genes were observed in the tumor tissue samples obtained from patients with GBM. We determined significant changes in gene expression (n=32) in all apoptotic signaling pathways (BCl-2, TNF, Caspases, NF-κB, IAP and CARD), while the most pronounced deregulation (>5-fold) were observed in 46.9% events. The results of this study underline the importance of apoptosis in heterogenous tumor tissue. The identification of the apoptotic gene panel in tissue biopsies from patients with GBM may help improve the effectiveness of treatments for GBM in clinical practice and may broaden our understanding of brain tumor cell metabolism. Recognizing the changes in the expression of pro-apoptotic and anti-apoptotic genes may aid in the development of novel treatment strategies founded on a molecular basis.
Collapse
Affiliation(s)
- Eva Blahovcova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Romana Richterova
- Clinic of Neurosurgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, SK-03601 Martin, Slovakia
| | - Branislav Kolarovszki
- Clinic of Neurosurgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital in Martin, SK-03601 Martin, Slovakia
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| |
Collapse
|
54
|
Kim JW, Kane JR, Young JS, Chang AL, Kanojia D, Morshed RA, Miska J, Ahmed AU, Balyasnikova IV, Han Y, Zhang L, Curiel DT, Lesniak MS. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Hum Gene Ther 2015; 26:635-46. [PMID: 26058317 DOI: 10.1089/hum.2015.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.
Collapse
Affiliation(s)
- Julius W Kim
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - J Robert Kane
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jacob S Young
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Alan L Chang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Deepak Kanojia
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Ramin A Morshed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jason Miska
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Atique U Ahmed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Irina V Balyasnikova
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Yu Han
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Lingjiao Zhang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - David T Curiel
- 2 Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Maciej S Lesniak
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| |
Collapse
|
55
|
Kim SS, Harford JB, Pirollo KF, Chang EH. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun 2015; 468:485-9. [PMID: 26116770 DOI: 10.1016/j.bbrc.2015.06.137] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/20/2015] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | - Kathleen F Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Esther H Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
56
|
Zhang X, Kiang KM, Zhang GP, Leung GK. Long Non-Coding RNAs Dysregulation and Function in Glioblastoma Stem Cells. Noncoding RNA 2015; 1:69-86. [PMID: 29861416 PMCID: PMC5932540 DOI: 10.3390/ncrna1010069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common form of primary brain tumor, is highly resistant to current treatment paradigms and has a high rate of recurrence. Recent advances in the field of tumor-initiating cells suggest that glioblastoma stem cells (GSCs) may be responsible for GBM's rapid progression, treatment resistance, tumor recurrence and ultimately poor clinical prognosis. Understanding the biologically significant pathways that mediate GSC-specific characteristics offers promises in the development of novel biomarkers and therapeutics. Long non-coding RNAs (lncRNAs) have been increasingly implicated in the regulation of cancer cell biological behavior through various mechanisms. Initial studies strongly suggested that lncRNA expressions are highly dysregulated in GSCs and may play important roles in determining malignant phenotypes in GBM. Here, we review available evidence on aberrantly expressed lncRNAs identified by high throughput microarray profiling studies in GSCs. We also explore the potential functional pathways by analyzing their interactive proteins and miRNAs, with a view to shed lights on how this novel class of molecular candidates may mediate GSC maintenance and differentiation.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Karrie Meiyee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Grace Pingde Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Gilberto Kakit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
57
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2015; 2:152-163. [PMID: 26137500 PMCID: PMC4484766 DOI: 10.1016/j.gendis.2015.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) or cancer initiating cells (CICs) maintain self-renewal and multilineage differentiation properties of various tumors, as well as the cellular heterogeneity consisting of several subpopulations within tumors. CSCs display the malignant phenotype, self-renewal ability, altered genomic stability, specific epigenetic signature, and most of the time can be phenotyped by cell surface markers (e.g., CD133, CD24, and CD44). Numerous studies support the concept that non-stem cancer cells (non-CSCs) are sensitive to cancer therapy while CSCs are relatively resistant to treatment. In glioblastoma stem cells (GSCs), there is clonal heterogeneity at the genetic level with distinct tumorigenic potential, and defined GSC marker expression resulting from clonal evolution which is likely to influence disease progression and response to treatment. Another level of complexity in glioblastoma multiforme (GBM) tumors is the dynamic equilibrium between GSCs and differentiated non-GSCs, and the potential for non-GSCs to revert (dedifferentiate) to GSCs due to epigenetic alteration which confers phenotypic plasticity to the tumor cell population. Moreover, exposure of the differentiated GBM cells to therapeutic doses of temozolomide (TMZ) or ionizing radiation (IR) increases the GSC pool both in vitro and in vivo. This review describes various subtypes of GBM, discusses the evolution of CSC models and epigenetic plasticity, as well as interconversion between GSCs and differentiated non-GSCs, and offers strategies to potentially eliminate GSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron A. Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
58
|
Bryukhovetskiy I, Bryukhovetsky A, Khotimchenko Y, Mischenko P, Tolok E, Khotimchenko R. Combination of the multipotent mesenchymal stromal cell transplantation with administration of temozolomide increases survival of rats with experimental glioblastoma. Mol Med Rep 2015; 12:2828-34. [PMID: 25955107 DOI: 10.3892/mmr.2015.3754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/26/2015] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GM) is an aggressive malignant tumor of the brain. The standard treatment of GM is surgical resection with consequent radio- and chemotherapy with temozolomide. The prognosis is unfavorable, with a survival time of 12-14 months. The phenomenon of targeted migration to the tumor in the brain opens novel possibilities for the treatment of GM. Multipotent mesenchymal stromal cells (MMSCs) are a cell type with anti-carcinogenic properties and can be used to optimize GM therapy. The aim of the present study was to investigate the effects of MMSC transplantation in the chemotherapy of a rat model of C6 glioma. A total of 130 animals were divided into a control group, a temozolomide group, MMSCs group and temozolomide + MMSCs group. The experiment was performed over 70 days, and a combination of molecular biology, surgical and neuroimaging techniques, as well as histological and physiological examinations was used. Tumor size was smallest in the temozolomide (115.76 ± 16.25 mm(3)) and in temozolomide + MMSCs (114.74 ± 5.54 mm(3)) groups, which was significantly smaller than the neoplastic node size in the control group (202.09 ± 39.72 mm(3)) (P<0.05). The animals in the temozolomide + MMSCs group showed significantly higher survival rates in comparison with those in the control and temozolomide groups. The MMSCs migrated from the site of implantation to the neoplastic focus and interacted with glioma cells; however, the mechanism requires further research. In conclusion, MMSC transplantation combined with temozolomide treatment significantly extended the survival of experimental animals in comparison with those treated with temozolomide only.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Andrei Bryukhovetsky
- NeuroVita Clinic of Restorative Interventional Therapy and Neurology, Moscow 115478, Russian Federation
| | - Yuri Khotimchenko
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Polina Mischenko
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Elena Tolok
- Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Rodion Khotimchenko
- Laboratory of Pharmacology, A.V. Zhirmunski Institute of Marine Biology Far Eastern Branch Russian Academy of Science, Vladivostok 690041, Russian Federation
| |
Collapse
|
59
|
Hosokawa Y, Takahashi H, Inoue A, Kawabe Y, Funahashi Y, Kameda K, Sugimoto K, Yano H, Harada H, Kohno S, Ohue S, Ohnishi T, Tanaka J. Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2. Biochim Biophys Acta Gen Subj 2015; 1850:1197-205. [PMID: 25644290 DOI: 10.1016/j.bbagen.2015.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Drug resistance is a major obstacle for the efficacy of chemotherapeutic treatment of tumors. Oct-3/4, a self-renewal regulator in stem cells, is expressed in various kinds of solid tumors including glioblastoma. Although Oct-3/4 expression has been implicated in the malignancy and prognosis of glioblastomas, little is known of its involvement in drug resistances of glioblastoma. METHODS The involvement of Oct-3/4 in drug resistance of glioblastoma cells was assessed by lactate dehydrogenase assay, efflux assay of an anticancer drug, poly ADP-ribose polymerase cleavage, and in vivo xenograft experiments. Involvement of a drug efflux pump ATP binding cassette transporter G2 in Oct-3/4-induced drug resistance was evaluated by quantitative PCR analysis and knockdown by shRNA. RESULTS Oct-3/4 decreased the susceptibility to chemotherapeutic drugs by enhancing excretion of drugs through a drug efflux pump gene, ATP binding cassette transporter G2. Moreover, the expression of Oct-3/4 was well correlated to ATP binding cassette transporter G2 expression in clinical GB tissues. CONCLUSION Oct-3/4 elevated the ATP binding cassette transporter G2 expression, leading to acquisition of a drug-resistant phenotype by glioblastoma cells. GENERAL SIGNIFICANCE If the drug-resistance of glioblastoma cells could be suppressed, it should be a highly ameliorative treatment for glioblastoma patients. Therefore, signaling pathways from Oct-3/4 to ATP binding cassette transporter G2 should be intensively elucidated to develop new therapeutic interventions for better efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Yuki Hosokawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Akihiro Inoue
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Yuya Kawabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Yu Funahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kenji Kameda
- Integrated Center for Science, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kana Sugimoto
- Department of Legal Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Hironobu Harada
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| |
Collapse
|
60
|
Iacopino F, Angelucci C, Piacentini R, Biamonte F, Mangiola A, Maira G, Grassi C, Sica G. Isolation of cancer stem cells from three human glioblastoma cell lines: characterization of two selected clones. PLoS One 2014; 9:e105166. [PMID: 25121761 PMCID: PMC4133365 DOI: 10.1371/journal.pone.0105166] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/21/2014] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSC) were isolated via a non-adherent neurosphere assay from three glioma cell lines: LI, U87, and U373. Using a clonal assay, two clones (D2 and F11) were selected from spheres derived from LI cells and were characterized for the: expression of stem cell markers (CD133, Nestin, Musashi-1 and Sox2); proliferation; differentiation capability (determined by the expression of GalC, βIII-Tubulin and GFAP); Ca2+ signaling and tumorigenicity in nude mice. Both D2 and F11 clones expressed higher levels of all stem cell markers with respect to the parental cell line. Clones grew more slowly than LI cells with a two-fold increase in duplication time. Markers of differentiation (βIII-Tubulin and GFAP) were expressed at high levels in both LI cells and in neurospheres. The expression of Nestin, Sox2, and βIII-Tubulin was down-regulated in D2 and F11 when cultured in serum-containing medium, whereas Musashi-1 was increased. In this condition, duplication time of D2 and F11 increased without reaching that of LI cells. D2, F11 and parental cells did not express voltage-dependent Ca2+-channels but they exhibited increased intracellular Ca2+ levels in response to ATP. These Ca2+ signals were larger in LI cells and in spheres cultured in serum-containing medium, while they were smaller in serum-free medium. The ATP treatment did not affect cell proliferation. Both D2 and F11 induced the appearance of tumors when ortotopically injected in athymic nude mice at a density 50-fold lower than that of LI cells. All these data indicate that both clones have characteristics of CSC and share the same stemness properties. The findings regarding the expression of differentiation markers and Ca2+-channels show that both clones are unable to reach the terminal differentiation. Both D2 and F11 might represent a good model to improve the knowledge on CSC in glioblastoma and to identify new therapeutic approaches.
Collapse
Affiliation(s)
- Fortunata Iacopino
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
- * E-mail:
| | - Cristiana Angelucci
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Annunziato Mangiola
- Institute of Neurosurgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulio Maira
- Institute of Neurosurgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|