51
|
Chau KH, Tang KPM, Kan CW. Subjective wet perception assessment of fabrics with different drying time. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180798. [PMID: 30225071 PMCID: PMC6124134 DOI: 10.1098/rsos.180798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 05/17/2023]
Abstract
Wet perception involves a complex neurobiological mechanism and it is a crucial factor affecting the wear comfort in daily life. A subjective wet perception assessment was conducted against wetted fabrics. The assessment method was set to demonstrate the sensation felt by the wearer in recovery period after light activities, and assumes that there is no further sweat secretion. Twenty participants participated in the assessment. Participants were presented with fabrics dried with different duration for simulating garments dry during recovery period. A new fabric driver was built to simulate body movements during wear. The driver drove specimens and reference fabrics on participants' forearms. The two-arm configuration of the fabric driver helps to enhance the reliability of assessment results. The participants were asked to give wetness rating on each sample in ratio scale. We conclude that log10 of subjective wetness rating has linear relationship with drying time of fabric (DToF) and amount of water in fabric. A novel wetness factor (WF) is developed to quantify the effects of wet perception and exposure time induced by a drying fabric. WF is the area under curve of wetness rating against DToF. A smaller WF indicates that a user suffers less from wet sensation.
Collapse
Affiliation(s)
| | | | - Chi-Wai Kan
- Author for correspondence: Chi-Wai Kan e-mail:
| |
Collapse
|
52
|
Hartwigsen G, Neef NE, Camilleri JA, Margulies DS, Eickhoff SB. Functional Segregation of the Right Inferior Frontal Gyrus: Evidence From Coactivation-Based Parcellation. Cereb Cortex 2018; 29:1532-1546. [DOI: 10.1093/cercor/bhy049] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia A Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
53
|
Kryshtopava M, Van Lierde K, Defrancq C, De Moor M, Thijs Z, D'Haeseleer E, Meerschman I, Vandemaele P, Vingerhoets G, Claeys S. Brain activity during phonation in healthy female singers with supraglottic compression: an fMRI pilot study. LOGOP PHONIATR VOCO 2017; 44:95-104. [PMID: 29219633 DOI: 10.1080/14015439.2017.1408853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This pilot study evaluated the usability of functional magnetic resonance imaging (fMRI) to detect brain activation during phonation in healthy female singers with supraglottic compression. Four healthy female classical singers (mean age: 26 years) participated in the study. All subjects had normal vocal folds and vocal characteristics and showed supraglottic compression. The fMRI experiment was carried out using a block design paradigm. Brain activation during phonation and exhalation was analyzed using Brain Voyager software (Brain Innovation B.V., Maastricht, The Netherlands). An fMRI data analysis showed a significant effect of phonation control in the bilateral pre/postcentral gyrus, and in the frontal, cingulate, superior and middle temporal gyrus, as well as in the parietal lobe, insula, lingual gyrus, cerebellum, thalamus and brainstem. These activation areas are consistent with previous reports using other fMRI protocols. In addition, a significant effect of phonation compared to exhalation control was found in the bilateral superior temporal gyrus, and the pre/postcentral gyrus. This fMRI pilot study allowed to detect a normal pattern of brain activity during phonation in healthy female singers with supraglottic compression using the proposed protocol. However, the pilot study detected problems with the experimental material/procedures that would necessitate refining the fMRI protocol. The phonation tasks were not capable to show brain activation difference between high-pitched and comfortable phonation. Further fMRI studies manipulating vocal parameters during phonation of the vowels /a/ and /i/ may elicit more distinctive hemodynamic response (HDR) activity patterns relative to voice modulation.
Collapse
Affiliation(s)
- Maryna Kryshtopava
- a Department of Otorhinolaryngology , University Hospital Ghent , Ghent , Belgium
| | - Kristiane Van Lierde
- b Department of Speech , Language and Hearing Sciences, University Ghent , Ghent , Belgium
| | - Charlotte Defrancq
- a Department of Otorhinolaryngology , University Hospital Ghent , Ghent , Belgium
| | - Michiel De Moor
- a Department of Otorhinolaryngology , University Hospital Ghent , Ghent , Belgium
| | - Zoë Thijs
- a Department of Otorhinolaryngology , University Hospital Ghent , Ghent , Belgium
| | - Evelien D'Haeseleer
- b Department of Speech , Language and Hearing Sciences, University Ghent , Ghent , Belgium
| | - Iris Meerschman
- b Department of Speech , Language and Hearing Sciences, University Ghent , Ghent , Belgium
| | - Pieter Vandemaele
- c Department of Radiology and Nuclear Medicine , University Hospital Ghent , Ghent , Belgium
| | - Guy Vingerhoets
- d Department of Experimental Psychology , Faculty of Psychology and Educational Sciences, Ghent University , Ghent , Belgium.,e Ghent Institute for functional and Metabolic Imaging (GIfMI) , University Hospital Ghent , Ghent , Belgium
| | - Sofie Claeys
- a Department of Otorhinolaryngology , University Hospital Ghent , Ghent , Belgium
| |
Collapse
|
54
|
Kryshtopava M, Van Lierde K, Meerschman I, D'Haeseleer E, Vandemaele P, Vingerhoets G, Claeys S. Brain Activity During Phonation in Women With Muscle Tension Dysphonia: An fMRI Study. J Voice 2017; 31:675-690. [DOI: 10.1016/j.jvoice.2017.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
55
|
Tang X, Chen N, Zhang S, Jones JA, Zhang B, Li J, Liu P, Liu H. Predicting auditory feedback control of speech production from subregional shape of subcortical structures. Hum Brain Mapp 2017; 39:459-471. [PMID: 29058356 DOI: 10.1002/hbm.23855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Although a growing body of research has focused on the cortical sensorimotor mechanisms that support auditory feedback control of speech production, much less is known about the subcortical contributions to this control process. This study examined whether subregional anatomy of subcortical structures assessed by statistical shape analysis is associated with vocal compensations and cortical event-related potentials in response to pitch feedback errors. The results revealed significant negative correlations between the magnitudes of vocal compensations and subregional shape of the right thalamus, between the latencies of vocal compensations and subregional shape of the left caudate and pallidum, and between the latencies of cortical N1 responses and subregional shape of the left putamen. These associations indicate that smaller local volumes of the basal ganglia and thalamus are predictive of slower and larger neurobehavioral responses to vocal pitch errors. Furthermore, increased local volumes of the left hippocampus and right amygdala were predictive of larger vocal compensations, suggesting that there is an interplay between the memory-related subcortical structures and auditory-vocal integration. These results, for the first time, provide evidence for differential associations of subregional morphology of the basal ganglia, thalamus, hippocampus, and amygdala with neurobehavioral processing of vocal pitch errors, suggesting that subregional shape measures of subcortical structures can predict behavioral outcome of auditory-vocal integration and associated neural features. Hum Brain Mapp 39:459-471, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoying Tang
- Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Shunde International Joint Research Institute, Shunde, 528300, China.,School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15213, Pennsylvania
| | - Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Baofeng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyuan Li
- Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15213, Pennsylvania
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
56
|
Behroozmand R, Phillip L, Johari K, Bonilha L, Rorden C, Hickok G, Fridriksson J. Sensorimotor impairment of speech auditory feedback processing in aphasia. Neuroimage 2017; 165:102-111. [PMID: 29024793 DOI: 10.1016/j.neuroimage.2017.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022] Open
Abstract
We investigated the brain network involved in speech sensorimotor processing by studying patients with post-stroke aphasia using an altered auditory feedback (AAF) paradigm. We combined lesion-symptom-mapping analysis and behavioral testing to examine the pervasiveness of speech sensorimotor deficits and their relationship with cortical damage. Sixteen participants with aphasia and sixteen neurologically intact individuals completed a speech task under AAF. The task involved producing speech vowel sounds under the real-time pitch-shifted auditory feedback alteration. This task provided an objective measure for each individual's ability to compensate for mismatch (error) in speech auditory feedback. Results indicated that compensatory speech responses to AAF were significantly diminished in participants with aphasia compared with control. We observed that within the aphasic group, subjects with lower scores on the speech repetition task exhibited greater degree of diminished responses. Lesion-symptom-mapping analysis revealed that the onset phase (50-150 ms) of diminished AAF responses were predicted by damage to auditory cortical regions within the superior and middle temporal gyrus, whereas the rising phase (150-250 ms) and the peak (250-350 ms) of diminished AAF responses were predicted with damage to the inferior frontal gyrus and supramarginal gyrus areas, respectively. These findings suggest that damage to the auditory, motor, and auditory-motor integration networks are associated with impaired sensorimotor function for speech error processing. We suggest that a sensorimotor integration network, as revealed by brain regions related to temporal specific components of AAF responses, is related to speech processing and specific aspects of speech impairment, notably repetition deficits, in individuals with aphasia.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA.
| | - Lorelei Phillip
- The Aphasia Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene St., Columbia, SC 29208, USA
| | - Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine CA 92697, USA
| | - Julius Fridriksson
- The Aphasia Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene St., Columbia, SC 29208, USA
| |
Collapse
|
57
|
Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory. J Neurosci 2017; 37:10323-10333. [PMID: 28951450 DOI: 10.1523/jneurosci.1329-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes.SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory.
Collapse
|
58
|
Ghai S, Ghai I, Effenberg AO. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis. Clin Interv Aging 2017; 12:557-577. [PMID: 28356727 PMCID: PMC5367902 DOI: 10.2147/cia.s125201] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University, Hannover, Germany; Department of Sports Science, University of Waikato, Hamilton, New Zealand
| | - Ishan Ghai
- School of Engineering & Life Sciences, Jacobs University, Bremen, Germany
| | | |
Collapse
|
59
|
Functional Magnetic Resonance Imaging Study of Brain Activity Associated With Pitch Adaptation During Phonation in Healthy Women Without Voice Disorders. J Voice 2017; 31:118.e21-118.e28. [DOI: 10.1016/j.jvoice.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022]
|
60
|
Zhu X, Niu Y, Li W, Zhang Z, Liu P, Chen X, Liu H. Menstrual Cycle Phase Modulates Auditory-Motor Integration for Vocal Pitch Regulation. Front Neurosci 2016; 10:600. [PMID: 28082863 PMCID: PMC5187373 DOI: 10.3389/fnins.2016.00600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023] Open
Abstract
In adult females, previous work has demonstrated that changes in auditory function and vocal motor behaviors may accompany changes in gonadal steroids. Less is known, however, about the influence of gonadal steroids on auditory-motor integration for voice control in humans. The present event-related potential (ERP) study sought to examine the interaction between gonadal steroids and auditory feedback-based vocal pitch regulation across the menstrual cycle. Participants produced sustained vowels while hearing their voice unexpectedly pitch-shifted during the menstrual, follicular, and luteal phases of the menstrual cycle. Measurement of vocal and cortical responses to pitch feedback perturbations and assessment of estradiol and progesterone levels were performed in all three phases. The behavioral results showed that the menstrual phase (when estradiol levels are low) as associated with larger magnitudes of vocal responses than the follicular and luteal phases (when estradiol levels are high). Furthermore, there was a significant negative correlation between the magnitudes of vocal responses and estradiol levels. At the cortical level, ERP P2 responses were smaller during the luteal phase (when progesterone levels were high) than the menstrual and follicular phases (when progesterone levels were low). These findings show neurobehavioral evidence for the modulation of auditory-motor integration for vocal pitch regulation across the menstrual cycle, and provide important insights into the neural mechanisms and functional outcomes of gonadal steroids' influence on speech motor control in adult women.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Yang Niu
- Department of Rehabilitation Medicine, Anhui No. 2 Province People's Hospital Hefei, China
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Zhou Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
61
|
Kleber B, Friberg A, Zeitouni A, Zatorre R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage 2016; 147:97-110. [PMID: 27916664 DOI: 10.1016/j.neuroimage.2016.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies on vocal motor production in singing suggest that the right anterior insula (AI) plays a role in experience-dependent modulation of feedback integration. Specifically, when somatosensory input was reduced via anesthesia of the vocal fold mucosa, right AI activity was down regulated in trained singers. In the current fMRI study, we examined how masking of auditory feedback affects pitch-matching accuracy and corresponding brain activity in the same participants. We found that pitch-matching accuracy was unaffected by masking in trained singers yet declined in nonsingers. The corresponding brain region with the most differential and interesting activation pattern was the right AI, which was up regulated during masking in singers but down regulated in nonsingers. Likewise, its functional connectivity with inferior parietal, frontal, and voice-relevant sensorimotor areas was increased in singers yet decreased in nonsingers. These results indicate that singers relied more on somatosensory feedback, whereas nonsingers depended more critically on auditory feedback. When comparing auditory vs somatosensory feedback involvement, the right anterior insula emerged as the only region for correcting intended vocal output by modulating what is heard or felt as a function of singing experience. We propose the right anterior insula as a key node in the brain's singing network for the integration of signals of salience across multiple sensory and cognitive domains to guide vocal behavior.
Collapse
Affiliation(s)
- Boris Kleber
- McGill University - Montreal Neurological Institute, Neuropsychology and Cognitive Neuroscience, Montreal, QC, Canada; International Laboratory for Brain, Music and Sound research (BRAMS), Montreal, QC, Canada; Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anders Friberg
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, MUHC-Royal Victoria Hospital, McGill University, Montreal, QC, Canada
| | - Robert Zatorre
- McGill University - Montreal Neurological Institute, Neuropsychology and Cognitive Neuroscience, Montreal, QC, Canada; International Laboratory for Brain, Music and Sound research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
62
|
Guo Z, Huang X, Wang M, Jones JA, Dai Z, Li W, Liu P, Liu H. Regional homogeneity of intrinsic brain activity correlates with auditory-motor processing of vocal pitch errors. Neuroimage 2016; 142:565-575. [DOI: 10.1016/j.neuroimage.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
|
63
|
Bloch Y, Aviram S, Neeman R, Braw Y, Nitzan U, Maoz H, Mimouni-Bloch A. Methylphenidate mediated change in prosody is specific to the performance of a cognitive task in female adult ADHD patients. World J Biol Psychiatry 2016; 16:635-9. [PMID: 25945954 DOI: 10.3109/15622975.2015.1036115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Prosody production is highly personalized, related to both the emotional and cognitive state of the speaker and to the task being performed. Fundamental frequency (F main) is a central measurable feature of prosody, associated with having an attention deficit hyperactive disorder (ADHD). Since methylphenidate is an effective therapy for ADHD, we hypothesized that it will affect the fundamental frequency of ADHD patients. METHODS The answers of 32 adult ADHD patients were recorded while performing two computerized tasks (cognitive and emotional). Evaluations were performed at baseline and an hour after patients received methylphenidate. RESULTS A significant effect of methylphenidate was observed on the fundamental frequency, as opposed to other parameters, of prosody. This change was evident while patients performed a cognitive, as opposed to an emotional, task. This change was seen in the 14 female ADHD patients but not in the 18 male ADHD patients. The fundamental frequency while performing a cognitive task without methylphenidate was not different in the female ADHD group, from 22 female controls. CONCLUSIONS This pilot study supports prosodic changes as possible objective and accessible dynamic biological marker of treatment responses specifically in female ADHD.
Collapse
Affiliation(s)
- Yuval Bloch
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,b Child and Adolescent Outpatient Clinic, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Shai Aviram
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,d Department of Psychology , Haifa University , Haifa , Israel
| | - Ronnie Neeman
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,d Department of Psychology , Haifa University , Haifa , Israel
| | - Yoram Braw
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,e Department of Behavioral Sciences , Ariel University Center of Samaria , Ariel , Israel
| | - Uriel Nitzan
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Hagai Maoz
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,b Child and Adolescent Outpatient Clinic, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Aviva Mimouni-Bloch
- a The Emotion-Cognition Research Center, Shalvata Mental Health Care Center , Hod-Hasharon , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel.,f The Pediatric Neurology and Developmental Unit, Loewenstein Rehabilitation Hospital , Raanana , Israel
| |
Collapse
|
64
|
Huang X, Chen X, Yan N, Jones JA, Wang EQ, Chen L, Guo Z, Li W, Liu P, Liu H. The impact of parkinson's disease on the cortical mechanisms that support auditory-motor integration for voice control. Hum Brain Mapp 2016; 37:4248-4261. [PMID: 27400999 DOI: 10.1002/hbm.23306] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/09/2022] Open
Abstract
Several studies have shown sensorimotor deficits in speech processing in individuals with idiopathic Parkinson's disease (PD). The underlying neural mechanisms, however, remain poorly understood. In the present event-related potential (ERP) study, 18 individuals with PD and 18 healthy controls were exposed to frequency-altered feedback (FAF) while producing a sustained vowel and listening to the playback of their own voice. Behavioral results revealed that individuals with PD produced significantly larger vocal compensation for pitch feedback errors than healthy controls, and exhibited a significant positive correlation between the magnitude of their vocal responses and the variability of their unaltered vocal pitch. At the cortical level, larger P2 responses were observed for individuals with PD compared with healthy controls during active vocalization due to left-lateralized enhanced activity in the superior and inferior frontal gyrus, premotor cortex, inferior parietal lobule, and superior temporal gyrus. These two groups did not differ, however, when they passively listened to the playback of their own voice. Individuals with PD also exhibited larger P2 responses during active vocalization when compared with passive listening due to enhanced activity in the inferior frontal gyrus, precental gyrus, postcentral gyrus, and middle temporal gyrus. This enhancement effect, however, was not observed for healthy controls. These findings provide neural evidence for the abnormal auditory-vocal integration for voice control in individuals with PD, which may be caused by their deficits in the detection and correction of errors in voice auditory feedback. Hum Brain Mapp 37:4248-4261, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiyan Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, N2L 3C5, Waterloo, Ontario, Canada
| | - Emily Q Wang
- Department of Communication Disorders and Sciences, RUSH University Medical Center, 1653 West Congress Parkway, 203 SENN, Chicago, Illinois, 60612
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiqiang Guo
- Department of Biomedical Engineering School of Engineering, Sun Yat-Sen University, Guangzhou, China, 510006
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China, 510080
| |
Collapse
|
65
|
Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control. Sci Rep 2016; 6:28909. [PMID: 27356768 PMCID: PMC4928116 DOI: 10.1038/srep28909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls.
Collapse
|
66
|
Abstract
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and be more integrative. For voice production, a separation of the nonhuman vocalization system from the human learned voice production system has been posited based primarily on studies of nonhuman primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production have shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech involve a common integrative system. However, recent studies of nonhuman primates have provided evidence that some cortical activity vocalization and cortical changes occur with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and nonhuman primates.
Collapse
|
67
|
González-García N, González MA, Rendón PL. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals. Brain Res 2016; 1643:59-69. [PMID: 27134038 DOI: 10.1016/j.brainres.2016.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/10/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Relationships between musical pitches are described as either consonant, when associated with a pleasant and harmonious sensation, or dissonant, when associated with an inharmonious feeling. The accurate singing of musical intervals requires communication between auditory feedback processing and vocal motor control (i.e. audio-vocal integration) to ensure that each note is produced correctly. The objective of this study is to investigate the neural mechanisms through which trained musicians produce consonant and dissonant intervals. METHODOLOGY We utilized 4 musical intervals (specifically, an octave, a major seventh, a fifth, and a tritone) as the main stimuli for auditory discrimination testing, and we used the same interval tasks to assess vocal accuracy in a group of musicians (11 subjects, all female vocal students at conservatory level). The intervals were chosen so as to test for differences in recognition and production of consonant and dissonant intervals, as well as narrow and wide intervals. The subjects were studied using fMRI during performance of the interval tasks; the control condition consisted of passive listening. RESULTS Singing dissonant intervals as opposed to singing consonant intervals led to an increase in activation in several regions, most notably the primary auditory cortex, the primary somatosensory cortex, the amygdala, the left putamen, and the right insula. Singing wide intervals as opposed to singing narrow intervals resulted in the activation of the right anterior insula. Moreover, we also observed a correlation between singing in tune and brain activity in the premotor cortex, and a positive correlation between training and activation of primary somatosensory cortex, primary motor cortex, and premotor cortex during singing. When singing dissonant intervals, a higher degree of training correlated with the right thalamus and the left putamen. CONCLUSIONS/SIGNIFICANCE Our results indicate that singing dissonant intervals requires greater involvement of neural mechanisms associated with integrating external feedback from auditory and sensorimotor systems than singing consonant intervals, and it would then seem likely that dissonant intervals are intoned by adjusting the neural mechanisms used for the production of consonant intervals. Singing wide intervals requires a greater degree of control than singing narrow intervals, as it involves neural mechanisms which again involve the integration of internal and external feedback.
Collapse
Affiliation(s)
- Nadia González-García
- Hospital Infantil de México Federico Gómez, Dr. Márquez 162, México, D.F. 06720, Mexico
| | - Martha A González
- Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70-186, México, D.F. 04510, Mexico
| | - Pablo L Rendón
- Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70-186, México, D.F. 04510, Mexico.
| |
Collapse
|
68
|
Kort NS, Cuesta P, Houde JF, Nagarajan SS. Bihemispheric network dynamics coordinating vocal feedback control. Hum Brain Mapp 2016; 37:1474-85. [PMID: 26917046 DOI: 10.1002/hbm.23114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 11/08/2022] Open
Abstract
Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65-150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real-time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200-300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback-based control of vocal pitch.
Collapse
Affiliation(s)
- Naomi S Kort
- Department of Psychiatry, SFVAMC 116-D, Building 8, 4150 Clement St, San Francisco, California
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Campus Montegancedo, Pozuelo De Alarcón, Madrid, 28223, Spain
| | - John F Houde
- Department of Otolaryngology- Head and Neck Surgery, University of California, San Francisco, San Francisco, California
| | - Srikantan S Nagarajan
- Department of Otolaryngology- Head and Neck Surgery, University of California, San Francisco, San Francisco, California.,Department of Radiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
69
|
Behroozmand R, Sangtian S, Korzyukov O, Larson CR. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback. Brain Res 2016; 1636:1-12. [PMID: 26835556 DOI: 10.1016/j.brainres.2016.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
Abstract
The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, United States.
| | - Stacey Sangtian
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, United States
| | - Oleg Korzyukov
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, United States
| | - Charles R Larson
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, United States
| |
Collapse
|
70
|
Li W, Guo Z, Jones JA, Huang X, Chen X, Liu P, Chen S, Liu H. Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation. Sci Rep 2015; 5:16562. [PMID: 26553373 PMCID: PMC4639724 DOI: 10.1038/srep16562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022] Open
Abstract
Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Zhiqiang Guo
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China, 510006
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Xiyan Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Shaozhen Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.,Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China, 510006
| |
Collapse
|
71
|
The effects of stimulus complexity on the preattentive processing of self-generated and nonself voices: An ERP study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 16:106-23. [PMID: 26415897 DOI: 10.3758/s13415-015-0376-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to differentiate one's own voice from the voice of somebody else plays a critical role in successful verbal self-monitoring processes and in communication. However, most of the existing studies have only focused on the sensory correlates of self-generated voice processing, whereas the effects of attentional demands and stimulus complexity on self-generated voice processing remain largely unknown. In this study, we investigated the effects of stimulus complexity on the preattentive processing of self and nonself voice stimuli. Event-related potentials (ERPs) were recorded from 17 healthy males who watched a silent movie while ignoring prerecorded self-generated (SGV) and nonself (NSV) voice stimuli, consisting of a vocalization (vocalization category condition: VCC) or of a disyllabic word (word category condition: WCC). All voice stimuli were presented as standard and deviant events in four distinct oddball sequences. The mismatch negativity (MMN) ERP component peaked earlier for NSV than for SGV stimuli. Moreover, when compared with SGV stimuli, the P3a amplitude was increased for NSV stimuli in the VCC only, whereas in the WCC no significant differences were found between the two voice types. These findings suggest differences in the time course of automatic detection of a change in voice identity. In addition, they suggest that stimulus complexity modulates the magnitude of the orienting response to SGV and NSV stimuli, extending previous findings on self-voice processing.
Collapse
|
72
|
Chen Z, Wong FCK, Jones JA, Li W, Liu P, Chen X, Liu H. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors. Sci Rep 2015; 5:13134. [PMID: 26278337 PMCID: PMC4538572 DOI: 10.1038/srep13134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/20/2015] [Indexed: 11/28/2022] Open
Abstract
Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.
Collapse
Affiliation(s)
- Zhaocong Chen
- 1] Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China [2] Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Francis C K Wong
- Division of Linguistics and Multilingual Studies, School of Humanities and Social Sciences, Nanyang Technological University, 14 Nanyang Drive, HSS-03-49, 637332, Singapore
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
73
|
Houde JF, Chang EF. The cortical computations underlying feedback control in vocal production. Curr Opin Neurobiol 2015; 33:174-81. [PMID: 25989242 DOI: 10.1016/j.conb.2015.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Abstract
Recent neurophysiological studies of speaking are beginning to elucidate the neural mechanisms underlying auditory feedback processing during vocalizations. Here we review how research findings impact our state feedback control (SFC) model of speech motor control. We will discuss the evidence for cortical computations that compare incoming feedback with predictions derived from motor efference copy. We will also review observations from auditory feedback perturbation studies that demonstrate clear evidence for a state estimate correction process, which drives compensatory motor behavioral responses. While there is compelling support for cortical computations in the SFC model, there are still several outstanding questions that await resolution by future neural investigations.
Collapse
Affiliation(s)
- John F Houde
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, United States.
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, United States.
| |
Collapse
|
74
|
New AB, Robin DA, Parkinson AL, Eickhoff CR, Reetz K, Hoffstaedter F, Mathys C, Sudmeyer M, Michely J, Caspers J, Grefkes C, Larson CR, Ramig LO, Fox PT, Eickhoff SB. The intrinsic resting state voice network in Parkinson's disease. Hum Brain Mapp 2015; 36:1951-62. [PMID: 25627959 PMCID: PMC4782783 DOI: 10.1002/hbm.22748] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 01/09/2023] Open
Abstract
Over 90 percent of patients with Parkinson's disease experience speech-motor impairment, namely, hypokinetic dysarthria characterized by reduced pitch and loudness. Resting-state functional connectivity analysis of blood oxygen level-dependent functional magnetic resonance imaging is a useful measure of intrinsic neural functioning. We utilized resting-state functional connectivity modeling to analyze the intrinsic connectivity in patients with Parkinson's disease within a vocalization network defined by a previous meta-analysis of speech (Brown et al., 2009). Functional connectivity of this network was assessed in 56 patients with Parkinson's disease and 56 gender-, age-, and movement-matched healthy controls. We also had item 5 and 18 of the UPDRS, and the PDQ-39 Communication subscale available for correlation with the voice network connectivity strength in patients. The within-group analyses of connectivity patterns demonstrated a lack of subcortical-cortical connectivity in patients with Parkinson's disease. At the cortical level, we found robust (homotopic) interhemispheric connectivity but only inconsistent evidence for many intrahemispheric connections. When directly contrasted to the control group, we found a significant reduction of connections between the left thalamus and putamen, and cortical motor areas, as well as reduced right superior temporal gyrus connectivity. Furthermore, most symptom measures correlated with right putamen, left cerebellum, left superior temporal gyrus, right premotor, and left Rolandic operculum connectivity in the voice network. The results reflect the importance of (right) subcortical nodes and the superior temporal gyrus in Parkinson's disease, enhancing our understanding of the neurobiological underpinnings of vocalization impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Anneliese B. New
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
| | - Donald A. Robin
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of NeurologySan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of RadiologySan AntonioTexas
- University of Texas Health Science Center at San Antonio and University of Texas at San Antonio, Joint Program in Biomedical EngineeringSan AntonioTexas
| | - Amy L. Parkinson
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
| | - Claudia R. Eickhoff
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- University Hospital Aachen, Department of Psychiatry, Psychotherapy and PsychosomaticsAachenGermany
| | - Kathrin Reetz
- Department of NeurologyUniversity of AachenAachenGermany
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐4)Department of NeurologyUniversity HospitalJulichGermany
- Julich Aachen Research AllianceTranslational Brain MedicineJulich and AachenGermany
| | - Felix Hoffstaedter
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- Department of Clinical Neuroscience and Medical PsychologyHeinrich Heine University–DüsseldorfDusseldorfGermany
| | - Christian Mathys
- Department of Diagnostic and Interventional RadiologyUniversity Dusseldorf, Medical FacultyDusseldorfGermany
| | - Martin Sudmeyer
- Department of NeurologyHeinrich Heine University – Dusseldorf, University HospitalDusseldorfGermany
| | - Jochen Michely
- Department of Neurology, Cologne UniversityCologneGermany
| | - Julian Caspers
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- Department of Diagnostic and Interventional RadiologyUniversity Dusseldorf, Medical FacultyDusseldorfGermany
| | - Christian Grefkes
- Department of Neurology, Cologne UniversityCologneGermany
- Max‐Planck‐Institute for Neurological ResearchNeuromodulation, and NeurorehabilitationCologneGermany
| | - Charles R. Larson
- Northwestern University, Communication Sciences and DisordersEvanstonIllinois
| | - Loraine O. Ramig
- Department of SpeechLanguage and Hearing Science, University of Colorado – BoulderColorado
- National Center for Voice and SpeechSalt Lake CityUtah
| | - Peter T. Fox
- University of Texas Health Science Center at San Antonio, Research Imaging InstituteSan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of NeurologySan AntonioTexas
- University of Texas Health Science Center at San Antonio, Department of RadiologySan AntonioTexas
- South Texas Veterans Health Care System, Department of NeurologySan AntonioTexas
| | - Simon B. Eickhoff
- Research Center JulichInstitute of Neuroscience and Medicine (INM‐1)Department of PsychiatryPsychotherapy and Psychosomatics, University HospitalJulichGermany
- Department of Clinical Neuroscience and Medical PsychologyHeinrich Heine University–DüsseldorfDusseldorfGermany
| |
Collapse
|
75
|
Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Front Neurosci 2015; 9:109. [PMID: 25873858 PMCID: PMC4379876 DOI: 10.3389/fnins.2015.00109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/15/2015] [Indexed: 01/01/2023] Open
Abstract
The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5–8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1–4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina Columbia, SC, USA
| | - Nadine Ibrahim
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Oleg Korzyukov
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Donald A Robin
- Departments of Neurology and Radiology, Research Imaging Institute, University of Texas Health Science Center San Antonio San Antonio, TX, USA
| | - Charles R Larson
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| |
Collapse
|
76
|
Behroozmand R, Shebek R, Hansen DR, Oya H, Robin DA, Howard MA, Greenlee JDW. Sensory-motor networks involved in speech production and motor control: an fMRI study. Neuroimage 2015; 109:418-28. [PMID: 25623499 DOI: 10.1016/j.neuroimage.2015.01.040] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022] Open
Abstract
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States; Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States.
| | - Rachel Shebek
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
| | - Daniel R Hansen
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
| | - Hiroyuki Oya
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
| | - Donald A Robin
- Research Imaging Institute, Departments of Neurology, Radiology and Biomedical Engineering, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States
| | - Matthew A Howard
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
| | - Jeremy D W Greenlee
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
77
|
Attention modulates cortical processing of pitch feedback errors in voice control. Sci Rep 2015; 5:7812. [PMID: 25589447 PMCID: PMC4295089 DOI: 10.1038/srep07812] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Considerable evidence has shown that unexpected alterations in auditory feedback elicit fast compensatory adjustments in vocal production. Although generally thought to be involuntary in nature, whether these adjustments can be influenced by attention remains unknown. The present event-related potential (ERP) study aimed to examine whether neurobehavioral processing of auditory-vocal integration can be affected by attention. While sustaining a vowel phonation and hearing pitch-shifted feedback, participants were required to either ignore the pitch perturbations, or attend to them with low (counting the number of perturbations) or high attentional load (counting the type of perturbations). Behavioral results revealed no systematic change of vocal response to pitch perturbations irrespective of whether they were attended or not. At the level of cortex, there was an enhancement of P2 response to attended pitch perturbations in the low-load condition as compared to when they were ignored. In the high-load condition, however, P2 response did not differ from that in the ignored condition. These findings provide the first neurophysiological evidence that auditory-motor integration in voice control can be modulated as a function of attention at the level of cortex. Furthermore, this modulatory effect does not lead to a general enhancement but is subject to attentional load.
Collapse
|
78
|
Tanaka Y, Fukushima H, Okanoya K, Myowa-Yamakoshi M. Mothers' multimodal information processing is modulated by multimodal interactions with their infants. Sci Rep 2014; 4:6623. [PMID: 25322936 PMCID: PMC4200416 DOI: 10.1038/srep06623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/02/2014] [Indexed: 11/08/2022] Open
Abstract
Social learning in infancy is known to be facilitated by multimodal (e.g., visual, tactile, and verbal) cues provided by caregivers. In parallel with infants' development, recent research has revealed that maternal neural activity is altered through interaction with infants, for instance, to be sensitive to infant-directed speech (IDS). The present study investigated the effect of mother- infant multimodal interaction on maternal neural activity. Event-related potentials (ERPs) of mothers were compared to non-mothers during perception of tactile-related words primed by tactile cues. Only mothers showed ERP modulation when tactile cues were incongruent with the subsequent words, and only when the words were delivered with IDS prosody. Furthermore, the frequency of mothers' use of those words was correlated with the magnitude of ERP differentiation between congruent and incongruent stimuli presentations. These results suggest that mother-infant daily interactions enhance multimodal integration of the maternal brain in parenting contexts.
Collapse
Affiliation(s)
- Yukari Tanaka
- Graduate school of Education, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Kazuo Okanoya
- Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Graduate School of Arts and Science, University of Tokyo, Meguro, Tokyo, Japan
| | - Masako Myowa-Yamakoshi
- Graduate school of Education, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
79
|
Patel S, Nishimura C, Lodhavia A, Korzyukov O, Parkinson A, Robin DA, Larson CR. Understanding the mechanisms underlying voluntary responses to pitch-shifted auditory feedback. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:3036-3044. [PMID: 24815283 PMCID: PMC4032396 DOI: 10.1121/1.4870490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/11/2014] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
Previous research has shown that vocal errors can be simulated using a pitch perturbation technique. Two types of responses are observed when subjects are asked to ignore changes in pitch during a steady vowel production, a compensatory response countering the direction of the perceived change in pitch and a following response in the same direction as the pitch perturbation. The present study investigated the nature of these responses by asking subjects to volitionally change their voice fundamental frequency either in the opposite direction ("opposing" group) or the same direction ("following" group) as the pitch shifts (±100 cents, 1000 ms) presented during the speaker's production of an /a/ vowel. Results showed that voluntary responses that followed the stimulus directions had significantly shorter latencies (150 ms) than opposing responses (360 ms). In addition, prior to the slower voluntary opposing responses, there were short latency involuntary responses that followed the stimulus direction. These following responses may involve mechanisms of imitation or vocal shadowing of acoustical stimuli when subjects are predisposed to respond to a change in frequency of a sound. The slower opposing responses may represent a control strategy that requires monitoring and correcting for errors between the feedback signal and the intended vocal goal.
Collapse
Affiliation(s)
- Sona Patel
- Northwestern University, Evanston, Illinois 60208
| | | | | | | | - Amy Parkinson
- University of Texas Health Sciences Center, San Antonio, Texas 78229
| | - Donald A Robin
- University of Texas Health Sciences Center, San Antonio, Texas 78229
| | | |
Collapse
|
80
|
Flagmeier SG, Ray KL, Parkinson AL, Li K, Vargas R, Price LR, Laird AR, Larson CR, Robin DA. The neural changes in connectivity of the voice network during voice pitch perturbation. BRAIN AND LANGUAGE 2014; 132:7-13. [PMID: 24681401 PMCID: PMC4526025 DOI: 10.1016/j.bandl.2014.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
Voice control is critical to communication. To date, studies have used behavioral, electrophysiological and functional data to investigate the neural correlates of voice control using perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of this study was to use structural equation modeling of functional neuroimaging data to examine network properties of voice with and without perturbation. Results showed that the presence of a pitch shift, which was processed as an error in vocalization, altered connections between right STG and left STG. Other regions that revealed differences in connectivity during error detection and correction included bilateral inferior frontal gyrus, and the primary and pre motor cortices. Results indicated that STG plays a critical role in voice control, specifically, during error detection and correction. Additionally, pitch perturbation elicits changes in the voice network that suggest the right hemisphere is critical to pitch modulation.
Collapse
Affiliation(s)
- Sabina G Flagmeier
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States
| | - Kimberly L Ray
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States
| | - Amy L Parkinson
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States
| | - Karl Li
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States
| | - Robert Vargas
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States
| | - Larry R Price
- Department of Mathematics and College of Education, Texas State University, San Marcos, TX, United States
| | - Angela R Laird
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States; Department of Physics, Florida International University, Miami, FL, United States
| | - Charles R Larson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, United States
| | - Donald A Robin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, United States; Neurology, University of Texas Health Science Center at San Antonio, United States; Biomedical Engineering, University of Texas Health Science Center at San Antonio, United States; Radiology, University of Texas Health Science Center at San Antonio, United States; Honor's College, University of Texas San Antonio, San Antonio, United States.
| |
Collapse
|
81
|
Parkinson AL, Behroozmand R, Ibrahim N, Korzyukov O, Larson CR, Robin DA. Effective connectivity associated with auditory error detection in musicians with absolute pitch. Front Neurosci 2014; 8:46. [PMID: 24634644 PMCID: PMC3942878 DOI: 10.3389/fnins.2014.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/19/2014] [Indexed: 11/29/2022] Open
Abstract
It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM) to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AP, and non-musician controls. We identified a network compromising left and right hemisphere superior temporal gyrus (STG), primary motor cortex (M1), and premotor cortex (PM). We specified nine models and compared two main factors examining various combinations of STG involvement in feedback pitch error detection/correction process. Our results suggest that modulation of left to right STG connections are important in the identification of self-voice error and sensory motor integration in AP musicians. We also identify reduced connectivity of left hemisphere PM to STG connections in AP and RP groups during the error detection and corrections process relative to non-musicians. We suggest that this suppression may allow for enhanced connectivity relating to pitch identification in the right hemisphere in those with more precise pitch matching abilities. Musicians with enhanced pitch identification abilities likely have an improved auditory error detection and correction system involving connectivity of STG regions. Our findings here also suggest that individuals with AP are more adept at using feedback related to pitch from the right hemisphere.
Collapse
Affiliation(s)
- Amy L Parkinson
- Research Imaging Institute, Department of Neurology, University of Texas Health Science Center San Antonio San Antonio, TX, USA
| | - Roozbeh Behroozmand
- Human Brain Research Lab, Department of Neurosurgery, The University of Iowa Iowa City, IA, USA
| | - Nadine Ibrahim
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Oleg Korzyukov
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Charles R Larson
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| | - Donald A Robin
- Research Imaging Institute, Department of Neurology, University of Texas Health Science Center San Antonio San Antonio, TX, USA
| |
Collapse
|
82
|
Behroozmand R, Ibrahim N, Korzyukov O, Robin DA, Larson CR. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch. Brain Cogn 2013; 84:97-108. [PMID: 24355545 DOI: 10.1016/j.bandc.2013.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 11/20/2013] [Indexed: 11/25/2022]
Abstract
The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| | - Nadine Ibrahim
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| | - Oleg Korzyukov
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| | - Donald A Robin
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, United States
| | - Charles R Larson
- Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States.
| |
Collapse
|
83
|
Voice-related modulation of mechanosensory detection thresholds in the human larynx. Exp Brain Res 2013; 232:13-20. [PMID: 24217976 DOI: 10.1007/s00221-013-3703-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
Rapidly adapting mechanoreceptors within the laryngeal mucosa provide the central nervous system with perceptual and proprioceptive afference for a variety of essential yet diverse human functions including voice sound production and airway protection. It is unknown why mechanosensory information that yields a defensive response when an individual breathes may go largely unnoticed when the individual voices. Therefore, a central question is whether there is voice-related modulation of laryngeal mechanosensory detection. Such modulation would be consistent with current models of afferent laryngeal control, and may be important to maintain fluent voice in the presence of potentially distracting sensory input. Therefore, we employed endoscopic assessment of laryngeal mechanosensory detection thresholds in ten healthy adults during tidal breathing and a voice task. We tested the hypothesis that laryngeal mechanosensory detection thresholds would be higher during the voice task. We found that thresholds were significantly higher for all participants during the voice task and that these changes were significantly more modest in women. Our findings suggest that the laryngeal sensorium may modulate mechanosensory afference to attenuate the potentially distracting influence of sensory input during voice. The finding that women maintain a greater sensitivity during the voice task than men (lower thresholds) may have important implications for the higher prevalence of sensorimotor voice disturbances in women. Our results are consistent with the presence of mechanosensory modulation in other motor systems and with observed sensory differences between women and men. Such modulation has important implications for understanding the underlying neural mechanisms of laryngeal control and how these mechanisms may operate in individuals with laryngeal disturbances.
Collapse
|
84
|
Kort NS, Nagarajan SS, Houde JF. A bilateral cortical network responds to pitch perturbations in speech feedback. Neuroimage 2013; 86:525-35. [PMID: 24076223 DOI: 10.1016/j.neuroimage.2013.09.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/05/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022] Open
Abstract
Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors.
Collapse
Affiliation(s)
- Naomi S Kort
- Department of Radiology, University of California, San Francisco, and University of California, Berkeley USA; Joint Graduate Group in Bioengineering, University of California, San Francisco, USA.
| | - Srikantan S Nagarajan
- Department of Radiology, University of California, San Francisco, and University of California, Berkeley USA.
| | - John F Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, USA.
| |
Collapse
|
85
|
Experience-dependent modulation of feedback integration during singing: role of the right anterior insula. J Neurosci 2013; 33:6070-80. [PMID: 23554488 DOI: 10.1523/jneurosci.4418-12.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Somatosensation plays an important role in the motor control of vocal functions, yet its neural correlate and relation to vocal learning is not well understood. We used fMRI in 17 trained singers and 12 nonsingers to study the effects of vocal-fold anesthesia on the vocal-motor singing network as a function of singing expertise. Tasks required participants to sing musical target intervals under normal conditions and after anesthesia. At the behavioral level, anesthesia altered pitch accuracy in both groups, but singers were less affected than nonsingers, indicating an experience-dependent effect of the intervention. At the neural level, this difference was accompanied by distinct patterns of decreased activation in singers (cortical and subcortical sensory and motor areas) and nonsingers (subcortical motor areas only) respectively, suggesting that anesthesia affected the higher-level voluntary (explicit) motor and sensorimotor integration network more in experienced singers, and the lower-level (implicit) subcortical motor loops in nonsingers. The right anterior insular cortex (AIC) was identified as the principal area dissociating the effect of expertise as a function of anesthesia by three separate sources of evidence. First, it responded differently to anesthesia in singers (decreased activation) and nonsingers (increased activation). Second, functional connectivity between AIC and bilateral A1, M1, and S1 was reduced in singers but augmented in nonsingers. Third, increased BOLD activity in right AIC in singers was correlated with larger pitch deviation under anesthesia. We conclude that the right AIC and sensory-motor areas play a role in experience-dependent modulation of feedback integration for vocal motor control during singing.
Collapse
|
86
|
Parkinson AL, Korzyukov O, Larson CR, Litvak V, Robin DA. Modulation of effective connectivity during vocalization with perturbed auditory feedback. Neuropsychologia 2013; 51:1471-80. [PMID: 23665378 DOI: 10.1016/j.neuropsychologia.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/05/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
The integration of auditory feedback with vocal motor output is important for the control of voice fundamental frequency (F0). We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. We presented varying magnitudes of pitch shifted auditory feedback to subjects during vocalization and passive listening and measured event related potentials (ERPs) to the feedback shifts. Shifts were delivered at +100 and +400 cents (200 ms duration). The ERP data were modeled with dynamic causal modeling (DCM) techniques where the effective connectivity between the superior temporal gyrus (STG), inferior frontal gyrus and premotor areas were tested. We compared three main factors: the effect of intrinsic STG connectivity, STG modulation across hemispheres and the specific effect of hemisphere. A Bayesian model selection procedure was used to make inference about model families. Results suggest that both intrinsic STG and left to right STG connections are important in the identification of self-voice error and sensory motor integration. We identified differences in left-to-right STG connections between 100 cent and 400 cent shift conditions suggesting that self- and non-self-voice error are processed differently in the left and right hemisphere. These results also highlight the potential of DCM modeling of ERP responses to characterize specific network properties of forward models of voice control.
Collapse
Affiliation(s)
- Amy L Parkinson
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
87
|
Greenlee JDW, Behroozmand R, Larson CR, Jackson AW, Chen F, Hansen DR, Oya H, Kawasaki H, Howard MA. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex. PLoS One 2013; 8:e60783. [PMID: 23577157 PMCID: PMC3620048 DOI: 10.1371/journal.pone.0060783] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/02/2013] [Indexed: 11/29/2022] Open
Abstract
The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.
Collapse
Affiliation(s)
- Jeremy D W Greenlee
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
During speech production, auditory processing of self-generated speech is used to adjust subsequent articulations. The current study investigated how the proposed auditory-motor interactions are manifest at the neural level in native and non-native speakers of English who were overtly naming pictures of objects and reading their written names. Data were acquired with functional magnetic resonance imaging and analyzed with dynamic causal modeling. We found that (1) higher activity in articulatory regions caused activity in auditory regions to decrease (i.e., auditory suppression), and (2) higher activity in auditory regions caused activity in articulatory regions to increase (i.e., auditory feedback). In addition, we were able to demonstrate that (3) speaking in a non-native language involves more auditory feedback and less auditory suppression than speaking in a native language. The difference between native and non-native speakers was further supported by finding that, within non-native speakers, there was less auditory feedback for those with better verbal fluency. Consequently, the networks of more fluent non-native speakers looked more like those of native speakers. Together, these findings provide a foundation on which to explore auditory-motor interactions during speech production in other human populations, particularly those with speech difficulties.
Collapse
|