51
|
Finisguerra A, Borgatti R, Urgesi C. Non-invasive Brain Stimulation for the Rehabilitation of Children and Adolescents With Neurodevelopmental Disorders: A Systematic Review. Front Psychol 2019; 10:135. [PMID: 30787895 PMCID: PMC6373438 DOI: 10.3389/fpsyg.2019.00135] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
In the last years, there has been a growing interest in the application of different non-invasive brain stimulation techniques to induce neuroplasticity and to modulate cognition and behavior in adults. Very recently, different attempts have been made to induce functional plastic changes also in pediatric populations. Importantly, not only sensorimotor processing, but also higher-level functions have been addressed, with the aim to boost rehabilitation in different neurodevelopmental disorders. However, efficacy and safety of using these techniques in pediatric population is still debated. The current article aims to review the non-invasive brain stimulation studies conducted in pediatric populations using Transcranial Magnetic Stimulation or transcranial Direct Current Stimulation. Specifically, the available proofs concerning the efficacy and safety of these techniques on Autism Spectrum Disorder, Attention-deficit/hyperactivity disorder, Dyslexia, Tourette syndrome, and tic disorders are systematically reviewed and discussed. The article also aims to provide an overview about other possible applications of these and other stimulation techniques for rehabilitative purposes in children and adolescents.
Collapse
Affiliation(s)
| | - Renato Borgatti
- Child Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy.,Child Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy.,Laboratory of Cognitive Neuroscience, Department of Languages, Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| |
Collapse
|
52
|
Desideri D, Zrenner C, Gordon PC, Ziemann U, Belardinelli P. Nil effects of μ-rhythm phase-dependent burst-rTMS on cortical excitability in humans: A resting-state EEG and TMS-EEG study. PLoS One 2018; 13:e0208747. [PMID: 30532205 PMCID: PMC6286140 DOI: 10.1371/journal.pone.0208747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 11/24/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can induce excitability changes of a stimulated brain area through synaptic plasticity mechanisms. High-frequency (100 Hz) triplets of rTMS synchronized to the negative but not the positive peak of the ongoing sensorimotor μ-rhythm isolated with the concurrently acquired electroencephalography (EEG) resulted in a reproducible long-term potentiation like increase of motor evoked potential (MEP) amplitude, an index of corticospinal excitability (Zrenner et al. 2018, Brain Stimul 11:374–389). Here, we analyzed the EEG and TMS-EEG data from (Zrenner et al., 2018) to investigate the effects of μ-rhythm-phase-dependent burst-rTMS on EEG-based measures of cortical excitability. We used resting-state EEG to assess μ- and β-power in the motor cortex ipsi- and contralateral to the stimulation, and single-pulse TMS-evoked and induced EEG responses in the stimulated motor cortex. We found that μ-rhythm-phase-dependent burst-rTMS did not significantly change any of these EEG measures, despite the presence of a significant differential and reproducible effect on MEP amplitude. We conclude that EEG measures of cortical excitability do not reflect corticospinal excitability as measured by MEP amplitude. Most likely this is explained by the fact that rTMS induces complex changes at the molecular and synaptic level towards both excitation and inhibition that cannot be differentiated at the macroscopic level by EEG.
Collapse
Affiliation(s)
- Debora Desideri
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pedro Caldana Gordon
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Service of Interdisciplinary Neuromodulation, Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Paolo Belardinelli
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
53
|
Liu H, Li G, Ma C, Chen Y, Wang J, Yang Y. Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. Int J Mol Med 2018; 42:3631-3639. [PMID: 30320352 DOI: 10.3892/ijmm.2018.3922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/04/2018] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence shows that repetitive transcranial magnetic stimulation (rTMS) promotes neurogenesis and the expression of microRNA (miR)‑106b. The present study investigated whether rTMS promotes the proliferation of neural progenitor cells (NPCs) and whether the effect is associated with the expression of miR‑106b. NPCs were cultured from the rat hippocampus and exposed to rTMS daily, comprising 1,000 stimuli for 3 days at 10 Hz, with 1.75 T output. The proliferation ability of the NPCs was revealed by EdU staining, and the levels of miR‑106b and downstream gene p21 in the NPCs were measured by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. For analysis of the mechanism, the NPCs were transfected with Lenti‑miR‑106b or small interfering RNAs prior to rTMS. The results showed that: i) rTMS increased NPC proliferation, as revealed by the increased proportion of EdU‑positive cells; ii) rTMS was able to upregulate the expression of miR‑106b and downregulate the level of p21 in NPCs; iii) overexpression of miR‑106b further enhanced the effects of rTMS, whereas knockdown of miR‑106b had the opposite effects. Taken together, these data indicated that rTMS can promote NPC proliferation by upregulating the expression of miR‑106b and possibly inhibiting the expression of p21.
Collapse
Affiliation(s)
- Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| | - Gaohua Li
- Graduate School, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| | - Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Jinju Wang
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
54
|
Moliadze V, Lyzhko E, Schmanke T, Andreas S, Freitag CM, Siniatchkin M. 1 mA cathodal tDCS shows excitatory effects in children and adolescents: Insights from TMS evoked N100 potential. Brain Res Bull 2018; 140:43-51. [PMID: 29625151 DOI: 10.1016/j.brainresbull.2018.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
In children and adolescents, 1 mA transcranial direct current stimulation (tDCS) may cause "paradoxical" effects compared with adults: both 1 mA anodal and cathodal tDCS increase amplitude of the motor evoked potential (MEP) as revealed by a single pulse transcranial magnetic stimulation (TMS) of the motor cortex. Here, EEG based evoked potentials induced by a single pulse TMS, particularly the N100 component as marker of motor cortex inhibition, were investigated in order to explain effects of tDCS on the developing brain. In nineteen children and adolescents (11-16 years old), 1 mA anodal, cathodal, or sham tDCS was applied over the left primary motor cortex for 10 min. The TMS-evoked N100 was measured by 64-channel EEG before and immediately after stimulation as well as every 10 min after tDCS for one hour. 1 mA Cathodal stimulation suppressed the N100 amplitude compared with sham stimulation. In contrast, anodal tDCS did not modify the N100 amplitude. It seems likely that the increase of the motor cortex activity under cathodal tDCS in children and adolescents as shown in previous studies can be attributed to a reduce inhibition. Based on TMS evoked N100, the study provides an insight into neuromodulatory effects of tDCS on the developing brain.
Collapse
Affiliation(s)
- Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany.
| | - Ekaterina Lyzhko
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany
| | - Till Schmanke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Saskia Andreas
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| |
Collapse
|
55
|
Association of the N100 TMS-evoked potential with attentional processes: A motor cortex TMS–EEG study. Brain Cogn 2018; 122:9-16. [DOI: 10.1016/j.bandc.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
|
56
|
Cocchi L, Zalesky A. Personalized Transcranial Magnetic Stimulation in Psychiatry. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:731-741. [PMID: 29571586 DOI: 10.1016/j.bpsc.2018.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/02/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that allows for modulating the activity of local neural populations and related neural networks. TMS is touted as a viable intervention to normalize brain activity and alleviate some psychiatric symptoms. However, TMS interventions are known to be only moderately reliable, and the efficacy of such therapies remains to be proven for psychiatric disorders other than depression. We review new opportunities to personalize TMS interventions using neuroimaging and computational modeling, aiming to optimize treatment to suit particular individuals and clinical subgroups. Specifically, we consider the prospect of improving the efficacy of existing TMS interventions by parsing broad diagnostic categories into biologically and clinically homogeneous biotypes. Biotypes can provide distinct treatment targets for optimized TMS interventions. We further discuss the utility of computational models in refining TMS personalization and efficiently establishing optimal cortical targets for distinct biotypes. Personalizing cortical stimulation targets, treatment frequencies, and intensities can improve the therapeutic efficacy of TMS and potentially establish noninvasive brain stimulation as a viable treatment for psychiatric symptoms.
Collapse
Affiliation(s)
- Luca Cocchi
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
57
|
Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res 2018; 192:30-38. [PMID: 28478887 DOI: 10.1016/j.schres.2017.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
Characterizing the neurobiology of schizophrenia and other major psychiatric disorders is one of the main challenges of the current research in psychiatry. The availability of Transcranial Magnetic Stimulation (TMS) allows to directly probe virtually any cortical areas, thus providing a unique way to assess the neurophysiological properties of cortical neurons. This article presents a review of studies employing TMS in combination with Motor Evoked Potentials (TMS/MEPs) and high density Electroencephalogram (TMS/hd-EEG) in schizophrenia and other major psychiatric disorders. Studies were identified by conducting a PubMed search using the following search item: "transcranial magnetic stimulation and (Schizophrenia or OCD or MDD or ADHD)". Studies that utilized TMS/MEP and/or TMS/hd-EEG measures to characterize cortical excitability, inhibition, oscillatory activity, and/or connectivity in psychiatric patients were selected. Across disorders, patients displayed a pattern of reduced cortical inhibition, and to a lesser extent increased excitability, in the motor cortex, which was most consistently established in Schizophrenia. Furthermore, psychiatric patients showed abnormalities in a number of TMS-evoked EEG oscillations, which was most prominent in the prefrontal cortex of Schizophrenia relative to healthy comparison subjects. Overall, results from this review point to significant impairments in cortical excitability, inhibition, and oscillatory activity, especially in frontal areas, in several major psychiatric disorders. Building on these findings, future studies employing TMS-based experimental paradigms may help elucidating the neurobiology of these psychiatric disorders, and may assess the contribution of TMS-related measures in monitoring and possibly maximizing the effectiveness of treatment interventions in psychiatric populations.
Collapse
|
58
|
Gedankien T, Fried PJ, Pascual-Leone A, Shafi MM. Intermittent theta-burst stimulation induces correlated changes in cortical and corticospinal excitability in healthy older subjects. Clin Neurophysiol 2017; 128:2419-2427. [PMID: 29096215 PMCID: PMC5955003 DOI: 10.1016/j.clinph.2017.08.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We studied the correlation between motor evoked potentials (MEPs) and early TMS-evoked EEG potentials (TEPs) from single-pulse TMS before and after intermittent Theta Burst Stimulation (iTBS) to the left primary motor cortex (M1) in 17 healthy older participants. METHODS TMS was targeted to the hand region of M1 using a MRI-guided navigated brain stimulation system and a figure-of-eight biphasic coil. MEPs were recorded from the right first dorsal interosseous muscle using surface EMG. TEPs were extracted from a 61-channel EEG recording. Participants received 90 single TMS pulses at 120% of resting motor threshold before and after iTBS. RESULTS Across all participants, the change in N15-P30 TEP and MEP amplitudes were significantly correlated (r=0.69; p<0.01). Average TEP responses did not change significantly after iTBS, whereas MEP amplitudes showed a significant increase. CONCLUSIONS Changes in corticospinal reactivity and cortical reactivity induced by iTBS are related. However, the effect of iTBS on TEPs, unlike MEPs, is not straightforward. SIGNIFICANCE Our findings help elucidate the relationship between changes in cortical and corticospinal excitability in healthy older individuals. Going forward, TEPs may be used to evaluate the effects of theta-burst stimulation in non-motor brain regions.
Collapse
Affiliation(s)
- Tamara Gedankien
- Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, KS 158, Boston, MA 02215, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, KS 158, Boston, MA 02215, USA.
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, KS 158, Boston, MA 02215, USA; Institut Guttmann, Universitat Autonoma de Barcelona, Camino Can Ruti, 08916 Badalona, Barcelona, Spain.
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, KS 158, Boston, MA 02215, USA.
| |
Collapse
|
59
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
60
|
Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation: A near-infrared spectroscopy study. Neurosci Lett 2017; 653:78-83. [DOI: 10.1016/j.neulet.2017.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
|
61
|
Chung SW, Lewis BP, Rogasch NC, Saeki T, Thomson RH, Hoy KE, Bailey NW, Fitzgerald PB. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin Neurophysiol 2017; 128:1117-1126. [DOI: 10.1016/j.clinph.2017.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
|
62
|
Petrichella S, Johnson N, He B. The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study. PLoS One 2017; 12:e0174879. [PMID: 28384197 PMCID: PMC5383066 DOI: 10.1371/journal.pone.0174879] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/16/2017] [Indexed: 11/30/2022] Open
Abstract
Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) can be used to analyze cortical reactivity and connectivity. However, the effects of corticospinal and peripheral muscle activity on TMS-evoked potentials (TEPs) are not well understood. The aim of this paper is to evaluate the relationship between cortico-spinal activity, in the form of peripheral motor-evoked potentials (MEPs), and the TEPs from motor areas, along with the connectivity among activated brain areas. TMS was applied to left and right motor cortex (M1), separately, at motor threshold while multi-channel EEG responses were recorded in 17 healthy human subjects. Cortical excitability and source imaging analysis were performed for all trials at each stimulation location, as well as comparing trials resulting in MEPs to those without. Connectivity analysis was also performed comparing trials resulting in MEPs to those without. Cortical excitability results significantly differed between the MEP and no-MEP conditions for left M1 TMS at 60 ms (CP1, CP3, C1) and for right M1 TMS at 54 ms (CP6, C6). Connectivity analysis revealed higher outflow and inflow between M1 and somatosensory cortex bi-directionally for trials with MEPs than those without for both left M1 TMS (at 60, 100, 164 ms) and right M1 TMS (at 54, 100, and 164 ms). Both TEP amplitudes and connectivity measures related to motor and somatosensory areas ipsilateral to the stimulation were shown to correspond with peripheral MEP amplitudes. This suggests that cortico-spinal activation, along with the resulting somatosensory feedback, affects the cortical activity and dynamics within motor areas reflected in the TEPs. The findings suggest that TMS-EEG, along with adaptive connectivity estimators, can be used to evaluate the cortical dynamics associated with sensorimotor integration and proprioceptive manipulation along with the influence of peripheral muscle feedback.
Collapse
Affiliation(s)
- Sara Petrichella
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Nessa Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
63
|
Kobayashi B, Cook IA, Hunter AM, Minzenberg MJ, Krantz DE, Leuchter AF. Can neurophysiologic measures serve as biomarkers for the efficacy of repetitive transcranial magnetic stimulation treatment of major depressive disorder? Int Rev Psychiatry 2017; 29:98-114. [PMID: 28362541 DOI: 10.1080/09540261.2017.1297697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). There are clinical data that support the efficacy of many different approaches to rTMS treatment, and it remains unclear what combination of stimulation parameters is optimal to relieve depressive symptoms. Because of the costs and complexity of studies that would be necessary to explore and compare the large number of combinations of rTMS treatment parameters, it would be useful to establish reliable surrogate biomarkers of treatment efficacy that could be used to compare different approaches to treatment. This study reviews the evidence that neurophysiologic measures of cortical excitability could be used as biomarkers for screening different rTMS treatment paradigms. It examines evidence that: (1) changes in excitability are related to the mechanism of action of rTMS; (2) rTMS has consistent effects on measures of excitability that could constitute reliable biomarkers; and (3) changes in excitability are related to the outcomes of rTMS treatment of MDD. An increasing body of evidence indicates that these neurophysiologic measures have the potential to serve as reliable biomarkers for screening different approaches to rTMS treatment of MDD.
Collapse
Affiliation(s)
- Brian Kobayashi
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Ian A Cook
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA.,d Department of Bioengineering , University of California Los Angeles , Los Angeles , CA , USA
| | - Aimee M Hunter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Michael J Minzenberg
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - David E Krantz
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Andrew F Leuchter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
64
|
Bai Y, Xia X, Kang J, Yang Y, He J, Li X. TDCS modulates cortical excitability in patients with disorders of consciousness. NEUROIMAGE-CLINICAL 2017; 15:702-709. [PMID: 28702347 PMCID: PMC5487253 DOI: 10.1016/j.nicl.2017.01.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Abstract
Transcranial direct current stimulation (tDCS)1 has been reported to be a promising technique for consciousness improvement for patients with disorders of consciousness (DOC).2 However, there has been no direct electrophysiological evidence to demonstrate the efficacy of tDCS on patients with DOC. Therefore, we aim to measure the cortical excitability changes induced by tDCS in patients with DOC, to find electrophysiological evidence supporting the therapeutic efficacy of tDCS on patients with DOC. In this study, we enrolled sixteen patients with DOC, including nine vegetative state (VS)3 and seven minimally conscious state (MCS)4 (six females and ten males). TMS-EEG was applied to assess cortical excitability changes after twenty minutes of anodal tDCS of the left dorsolateral prefrontal cortex. Global cerebral excitability were calculated to quantify cortical excitability in the temporal domain: four time intervals (0–100, 100–200, 200–300, 300-400 ms). Then local cerebral excitability in the significantly altered time windows were investigated (frontal, left/right hemispheres, central, and posterior). Compared to baseline and sham stimulation, we found that global cerebral excitability increased in early time windows (0–100 and 100-200 ms) for patients with MCS; for the patients with VS, global cerebral excitability increased in the 0-100 ms interval but decreased in the 300-400 ms interval. The local cerebral excitability was significantly different between MCS and VS. The results indicated that tDCS can effectively modulate the cortical excitability of patients with DOC; and the changes in excitability in temporal and spatial domains are different between patients with MCS and those with VS. TDCS was used to alter cerebral excitability in patients of DOC. TMS-EEG was used to evaluate cortical excitability changes in patients of DOC. TDCS could induce significant cortical excitability changes in patients of DOC. TDCS induced different temporal-spatial excitability changes between MCS and VS.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA Army General Hospital, Beijing 100700, China; Department of Biomedical Engineering, Medical school, Tsinghua University, China
| | - Jiannan Kang
- Institute of Electronic Information Engineering, Hebei University, Baoding 071002, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing 100700, China
| | - Jianghong He
- Department of Neurosurgery, PLA Army General Hospital, Beijing 100700, China.
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
65
|
Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. Neuroimage 2016; 143:204-213. [DOI: 10.1016/j.neuroimage.2016.08.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023] Open
|
66
|
Hannah R, Rocchi L, Tremblay S, Rothwell JC. Controllable Pulse Parameter TMS and TMS-EEG As Novel Approaches to Improve Neural Targeting with rTMS in Human Cerebral Cortex. Front Neural Circuits 2016; 10:97. [PMID: 27965543 PMCID: PMC5126103 DOI: 10.3389/fncir.2016.00097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/15/2016] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology London, UK
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology London, UK
| | - Sara Tremblay
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology London, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology London, UK
| |
Collapse
|
67
|
Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, Koch G. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep 2016; 6:36191. [PMID: 27796359 PMCID: PMC5086958 DOI: 10.1038/srep36191] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas. On the oscillatory domain, TBS induced specific changes over M1 natural frequencies of oscillation: TMS-evoked alpha activity was decreased by cTBS whereas beta activity was enhanced by iTBS. No effects were observed after sham stimulation. Our data provide novel evidence showing that the cerebellum exerts its control on the cortex likely by impinging on specific set of interneurons dependent on GABA-ergic activity. We show that cerebellar TBS modulates cortical excitability of distant interconnected cortical areas by acting through common temporal, spatial and frequency domains.
Collapse
Affiliation(s)
- Elias Paolo Casula
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Maria Concetta Pellicciari
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viviana Ponzo
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Domenica Veniero
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Tor Vergata Policlinic, Rome, Italy
| |
Collapse
|
68
|
Neuromodulatory effects of offline low-frequency repetitive transcranial magnetic stimulation of the motor cortex: A functional magnetic resonance imaging study. Sci Rep 2016; 6:36058. [PMID: 27786301 PMCID: PMC5081540 DOI: 10.1038/srep36058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/10/2016] [Indexed: 11/10/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) can modulate cortical excitability and is thought to influence activity in other brain areas. In this study, we investigated the anatomical and functional effects of rTMS of M1 and the time course of after-effects from a 1-Hz subthreshold rTMS to M1. Using an “offline” functional magnetic resonance imaging (fMRI)-rTMS paradigm, neural activation was mapped during simple finger movements after 1-Hz rTMS over the left M1 in a within-subjects repeated measurement design, including rTMS and sham stimulation. A significant decrease in the blood oxygen level dependent (BOLD) signal due to right hand motor activity during a simple finger-tapping task was observed in areas remote to the stimulated motor cortex after rTMS stimulation. This decrease in BOLD signal suggests that low frequency subthreshold rTMS may be sufficiently strong to elicit inhibitory modulation of remote brain regions. In addition, the time course patterns of BOLD activity showed this inhibitory modulation was maximal approximately 20 minutes after rTMS stimulation.
Collapse
|
69
|
Bai Y, Xia X, Kang J, Yin X, Yang Y, He J, Li X. Evaluating the Effect of Repetitive Transcranial Magnetic Stimulation on Disorders of Consciousness by Using TMS-EEG. Front Neurosci 2016; 10:473. [PMID: 27812319 PMCID: PMC5071327 DOI: 10.3389/fnins.2016.00473] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/04/2016] [Indexed: 01/28/2023] Open
Abstract
Background: The modulation efficacy of Transcranial magnetic stimulation (TMS) on consciousness improvement of patient with disorder of consciousness (DOC) has not been definitely confirmed. Objective: This study proposes TMS-EEG to assess effects of repetitive TMS (rTMS) on brain modulation of DOC. Methods: Twenty sessions of 10 Hz rTMS were applied over the dorsolateral prefrontal cortex for a patient with DOC. Measures of Coma Recovery Scale-Revised (CRS-R) score, TMS-evoked potential (TEP), perturbation complexity index (PCI), and global mean field power (GMFP) were used to evaluate the consciousness level of the patient at three intervals: before the rTMS protocol (T0), immediately after one session rTMS (T1), and immediately after 20 sessions (T2). Results: It was found that the patient was diagnosed of a minimally conscious state minus (MCS-) by means of CRS-R at the interval of T0, however the TEP and PCI indicated the patient was vegetative state (VS). At the interval of T1, there was not any clinical behavioral improvement in CRS-R, but we could find significant changes in TEP, PCI, and GMFP. At the interval of T2 there was a significant increase of consciousness level according by CRS-R score, PCI value, TEP, and GMFP after 20 sessions of 10 Hz rTMS on the patient with DOC. Conclusions: We demonstrated that TMS-EEG might be an efficient assessment tool for evaluating rTMS protocol therapeutic efficiency in DOC.
Collapse
Affiliation(s)
- Yang Bai
- Department of Automation, Institute of Electrical Engineering, Yanshan University Qinhuangdao, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA Army General HospitalBeijing, China; Department of Biomedical Engineering, Medical School, Tsinghua UniversityBeijing, China
| | - Jiannan Kang
- Department of Biomedical Engineering, Institute of Electronic Information Engineering, Hebei University Baoding, China
| | - Xiaoxiao Yin
- Department of Neurosurgery, PLA Army General Hospital Beijing, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital Beijing, China
| | - Jianghong He
- Department of Neurosurgery, PLA Army General Hospital Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| |
Collapse
|
70
|
Casula EP, Stampanoni Bassi M, Pellicciari MC, Ponzo V, Veniero D, Peppe A, Brusa L, Stanzione P, Caltagirone C, Stefani A, Koch G. Subthalamic stimulation and levodopa modulate cortical reactivity in Parkinson's patients. Parkinsonism Relat Disord 2016; 34:31-37. [PMID: 27771287 DOI: 10.1016/j.parkreldis.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/05/2016] [Accepted: 10/14/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The effects of deep brain stimulation of the subthalamic nucleus (DBS-STN) and L-dopa (LD) on cortical activity in Parkinson's disease (PD) are poorly understood. OBJECTIVES By combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) we explored the effects of STN-DBS, either alone or in combination with L-Dopa (LD), on TMS-evoked cortical activity in a sample of implanted PD patients. METHODS PD patients were tested in three clinical conditions: i) LD therapy with STN-DBS turned on (ON/ON condition); ii) without LD therapy with STN-DBS turned on (OFF/ON condition); iii) without LD therapy with STN-DBS turned off (OFF/OFF condition). TMS pulses were delivered over left M1 while simultaneously acquiring EEG. Eight age-matched healthy volunteers (HC) were tested as a control group. RESULTS STN-DBS enhanced early global TMS-evoked activity (∼45-80ms) and high-alpha TMS-evoked oscillations (11-13 Hz) as compared to OFF/OFF condition, independently from concomitant LD therapy. LD intake (ON/ON condition) produced a further increase of late TMS-evoked activity (∼80-130ms) and beta TMS-evoked oscillations (13-30 Hz), as compared to OFF/OFF and OFF/ON conditions, that normalized reactivity as compared to HC range of values. CONCLUSIONS Our data reveal that bilateral STN-DBS and LD therapy induce a modulation of specific cortical components and specific ranges of frequency. These findings demonstrate that STN-DBS and LD therapy may have synergistic effects on motor cortical activity.
Collapse
Affiliation(s)
- Elias Paolo Casula
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Mario Stampanoni Bassi
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy; Department of System Medicine, Policlinico di Tor Vergata, Rome, Italy
| | - Maria Concetta Pellicciari
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Viviana Ponzo
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Domenica Veniero
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Antonella Peppe
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Livia Brusa
- Department of Neurology, Sant'Eugenio Hospital, Rome, Italy
| | - Paolo Stanzione
- Department of Neurology, Sant'Eugenio Hospital, Rome, Italy; Stroke Unit, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Caltagirone
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy; Department of System Medicine, Policlinico di Tor Vergata, Rome, Italy; Department of Neurology, Sant'Eugenio Hospital, Rome, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy; Department of System Medicine, Policlinico di Tor Vergata, Rome, Italy; Stroke Unit, Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
71
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
72
|
ter Braack EM, Koopman AWE, van Putten MJ. Early TMS evoked potentials in epilepsy: A pilot study. Clin Neurophysiol 2016; 127:3025-3032. [DOI: 10.1016/j.clinph.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
|
73
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions. Neurosci Biobehav Rev 2016; 64:175-84. [DOI: 10.1016/j.neubiorev.2016.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
|
74
|
Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carrette S, Zinger S, Bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijhuis AG, Boon P. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci Biobehav Rev 2016; 65:113-41. [PMID: 27021215 DOI: 10.1016/j.neubiorev.2016.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.
Collapse
Affiliation(s)
- D C W Klooster
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A J A de Louw
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - A P Aldenkamp
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R M H Besseling
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - R M C Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Zinger
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J W M Bergmans
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - W H Mess
- Departments of Clinical Neurophysiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - K Vonck
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - E Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - L E M Breuer
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands.
| | - A Bernas
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A G Tijhuis
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - P Boon
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
75
|
Romero Lauro LJ, Pisoni A, Rosanova M, Casarotto S, Mattavelli G, Bolognini N, Vallar G. Localizing the effects of anodal tDCS at the level of cortical sources: A Reply to Bailey et al., 2015. Cortex 2016; 74:323-8. [DOI: 10.1016/j.cortex.2015.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022]
|
76
|
Harrington A, Hammond-Tooke GD. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition. PLoS One 2015; 10:e0141284. [PMID: 26529225 PMCID: PMC4631469 DOI: 10.1371/journal.pone.0141284] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023] Open
Abstract
Theta burst stimulation (TBS) of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP), a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18–30 years; 13 right handed and 3 left handed) received 30Hz intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT), while the remainder received 90% of AMT. Motor evoked potentials (MEP) and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition.
Collapse
Affiliation(s)
| | - Graeme David Hammond-Tooke
- Department of Medicine, University of Otago, Dunedin, New Zealand
- Department of Neurology, Dunedin Hospital, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
77
|
Measuring Brain Stimulation Induced Changes in Cortical Properties Using TMS-EEG. Brain Stimul 2015; 8:1010-20. [DOI: 10.1016/j.brs.2015.07.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
|
78
|
Casanova MF, Sokhadze E, Opris I, Wang Y, Li X. Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatr 2015; 104:346-55. [PMID: 25626149 DOI: 10.1111/apa.12943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/09/2023]
Abstract
UNLABELLED Postmortem studies in autism spectrum disorder (ASD) individuals indicate the presence of abnormalities within the peripheral neuropil space (PNS) of cortical minicolumns. The geometrical orientation of inhibitory elements within the PNS suggests using repetitive transcranial magnetic stimulation (rTMS) to up-regulate their activity. Several rTMS trials in ASD have shown marked improvements in motor symptomatology, attention and perceptual binding. CONCLUSION rTMS is the first therapeutic attempt at ASD aimed at correcting some of its core pathology.
Collapse
Affiliation(s)
| | - Estate Sokhadze
- Department of Psychiatry; University of Louisville; Louisville KA USA
| | - Ioan Opris
- Department of Physiology and Pharmacology; Wake Forest University School of Medicine; Winston-Salem NA USA
| | - Yao Wang
- Department of Psychiatry; University of Louisville; Louisville KA USA
- State Key Laboratory of Cognitive Neuroscience and Learning; Beijing Normal University; Beijing China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning; Beijing Normal University; Beijing China
| |
Collapse
|
79
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1943] [Impact Index Per Article: 194.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
80
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 508] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
81
|
Herrold AA, Kletzel SL, Harton BC, Chambers RA, Jordan N, Pape TLB. Transcranial magnetic stimulation: potential treatment for co-occurring alcohol, traumatic brain injury and posttraumatic stress disorders. Neural Regen Res 2014; 9:1712-30. [PMID: 25422632 PMCID: PMC4238159 DOI: 10.4103/1673-5374.143408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD), mild traumatic brain injury (mTBI), and posttraumatic stress disorder (PTSD) commonly co-occur (AUD + mTBI + PTSD). These conditions have overlapping symptoms which are, in part, reflective of overlapping neuropathology. These conditions become problematic because their co-occurrence can exacerbate symptoms. Therefore, treatments must be developed that are inclusive to all three conditions. Repetitive transcranial magnetic stimulation (rTMS) is non-invasive and may be an ideal treatment for co-occurring AUD + mTBI + PTSD. There is accumulating evidence on rTMS as a treatment for people with AUD, mTBI, and PTSD each alone. However, there are no published studies to date on rTMS as a treatment for co-occurring AUD + mTBI + PTSD. This review article advances the knowledge base for rTMS as a treatment for AUD + mTBI + PTSD. This review provides background information about these co-occurring conditions as well as rTMS. The existing literature on rTMS as a treatment for people with AUD, TBI, and PTSD each alone is reviewed. Finally, neurobiological findings in support of a theoretical model are discussed to inform TMS as a treatment for co-occurring AUD + mTBI + PTSD. The peer-reviewed literature was identified by targeted literature searches using PubMed and supplemented by cross-referencing the bibliographies of relevant review articles. The existing evidence on rTMS as a treatment for these conditions in isolation, coupled with the overlapping neuropathology and symptomology of these conditions, suggests that rTMS may be well suited for the treatment of these conditions together.
Collapse
Affiliation(s)
- Amy A. Herrold
- Edward Hines Jr. VA Hospital, Research Service PO Box 5000 (M/C 151H), Hines, IL, USA
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 East Ontario, #7-200, Chicago, IL, USA
| | - Sandra L. Kletzel
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
| | - Brett C. Harton
- Chicago Association for Research and Education in Science, Hines, IL, USA
| | - R. Andrew Chambers
- Department of Psychiatry, Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Neuroscience Research Center, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN, USA
| | - Neil Jordan
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 East Ontario, #7-200, Chicago, IL, USA
| | - Theresa Louise-Bender Pape
- Edward Hines Jr. VA Hospital, Research Service PO Box 5000 (M/C 151H), Hines, IL, USA
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Office of Medical Educ. (1574), 345 E. Superior St., Chicago, IL, USA
| |
Collapse
|
82
|
Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, Müller-Dahlhaus F. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG. Neuroimage 2014; 103:152-162. [PMID: 25245814 DOI: 10.1016/j.neuroimage.2014.09.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022] Open
Abstract
GABAB-receptor (GABABR) mediated inhibition is important in regulating neuronal excitability. The paired-pulse transcranial magnetic stimulation (TMS) protocol of long-interval intracortical inhibition (LICI) likely reflects this GABABergic inhibition. However, this view is based on indirect evidence from electromyographic (EMG) studies. Here we combined paired-pulse TMS with simultaneous electroencephalography (paired-pulse TMS-EEG) and pharmacology to directly investigate mechanisms of LICI at the cortical level. We tested the effects of a conditioning stimulus (CS100) applied 100ms prior to a test stimulus (TS) over primary motor cortex on TS-evoked EEG-potentials (TEPs). Healthy subjects were given a single oral dose of baclofen, a GABABR agonist, or diazepam, a positive modulator at GABAARs, in a placebo-controlled, pseudo-randomized double-blinded crossover study. LICI was quantified as the difference between paired-pulse TEPs (corrected for long-lasting EEG responses by the conditioning pulse) minus single-pulse TEPs. LICI at baseline (i.e. pre-drug intake) was characterized by decreased P25, N45, N100 and P180 and increased P70 TEP components. Baclofen resulted in a trend towards the enhancement of LICI of the N45 and N100, and significantly enhanced LICI of the P180. In contrast, diazepam consistently suppressed LICI of late potentials (i.e. N100, P180), without having an effect on LICI of earlier (i.e. P25, N45 and P70) potentials. These findings demonstrate for the first time directly at the system level of the human cortex that GABABR-mediated cortical inhibition contributes to LICI, while GABAAR-mediated inhibition occludes LICI. Paired-pulse TMS-EEG allows investigating cortical GABABR-mediated inhibition more directly and specifically than hitherto possible, and may thus inform on network abnormalities caused by disordered inhibition, e.g. in patients with schizophrenia or epilepsy.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany; International Max Planck Research School, Tübingen, Germany
| | - Davide Rivolta
- School of Psychology, University of East London (UEL), London, UK
| | - Svenja Espenhahn
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany
| | - Nazareth Castellanos
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paolo Belardinelli
- Functional and Restorative Neurosurgery, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany.
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany
| |
Collapse
|