51
|
Longitudinal changes in DTI parameters of specific spinal white matter tracts correlate with behavior following spinal cord injury in monkeys. Sci Rep 2020; 10:17316. [PMID: 33057016 PMCID: PMC7560889 DOI: 10.1038/s41598-020-74234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
This study aims to evaluate how parameters derived from diffusion tensor imaging reflect axonal disruption and demyelination in specific white matter tracts within the spinal cord of squirrel monkeys following traumatic injuries, and their relationships to function and behavior. After a unilateral section of the dorsal white matter tract of the cervical spinal cord, we found that both lesioned dorsal and intact lateral tracts on the lesion side exhibited prominent disruptions in fiber orientation, integrity and myelination. The degrees of pathological changes were significantly more severe in segments below the lesion than above. The lateral tract on the opposite (non-injured) side was minimally affected by the injury. Over time, RD, FA, and AD values of the dorsal and lateral tracts on the injured side closely tracked measurements of the behavioral recovery. This unilateral section of the dorsal spinal tract provides a realistic model in which axonal disruption and demyelination occur together in the cord. Our data show that specific tract and segmental FA and RD values are sensitive to the effects of injury and reflect specific behavioral changes, indicating their potential as relevant indicators of recovery or for assessing treatment outcomes. These observations have translational value for guiding future studies of human subjects with spinal cord injuries.
Collapse
|
52
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
53
|
Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells 2020; 9:cells9102187. [PMID: 32998402 PMCID: PMC7601078 DOI: 10.3390/cells9102187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) is required for a normal rate of water exchange across the blood–brain interface. Following the discovery that AQP4 is a possible autoantigen in neuromyelitis optica, the function of AQP4 in health and disease has become a research focus. While several studies have addressed the expression and function of AQP4 during inflammatory demyelination, relatively little is known about its expression during non-autoimmune-mediated myelin damage. In this study, we used the toxin-induced demyelination model cuprizone as well as a combination of metabolic and autoimmune myelin injury (i.e., Cup/EAE) to investigate AQP4 pathology. We show that during toxin-induced demyelination, diffuse AQP4 expression increases, while polarized AQP4 expression at the astrocyte endfeet decreases. The diffuse increased expression of AQP4 was verified in chronic-active multiple sclerosis lesions. Around inflammatory brain lesions, AQP4 expression dramatically decreased, especially at sites where peripheral immune cells penetrate the brain parenchyma. Humoral immune responses appear not to be involved in this process since no anti-AQP4 antibodies were detected in the serum of the experimental mice. We provide strong evidence that the diffuse increase in anti-AQP4 staining intensity is due to a metabolic injury to the brain, whereas the focal, perivascular loss of anti-AQP4 immunoreactivity is mediated by peripheral immune cells.
Collapse
|
54
|
Epigallocatechin-3-Gallate and PEDF 335 Peptide, 67LR Activators, Attenuate Vasogenic Edema, and Astroglial Degeneration Following Status Epilepticus. Antioxidants (Basel) 2020; 9:antiox9090854. [PMID: 32933011 PMCID: PMC7555521 DOI: 10.3390/antiox9090854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Non-integrin 67-kDa laminin receptor (67LR) is involved in cell adherence to the basement membrane, and it regulates the interactions between laminin and other receptors. The dysfunction of 67LR leads to serum extravasation via blood-brain barrier (BBB) disruption. Polyphenol (–)-epigallocatechin-3-O-gallate (EGCG) and pigment epithelium-derived factor (PEDF) bind to 67LR and inhibit neovascularization. Therefore, in the present study, we investigated the effects of EGCG and NU335, a PEDF-derive peptide, on BBB integrity and their possible underlying mechanisms against vasogenic edema formation induced by status epilepticus (SE, a prolonged seizure activity). Following SE, both EGCG and NU335 attenuated serum extravasation and astroglial degeneration in the rat piriform cortex (PC). Both EGCG and NU335 reversely regulated phosphatidylinositol 3 kinase (PI3K)/AKT–eNOS (endothelial nitric oxide synthase) mediated BBB permeability and aquaporin 4 (AQP4) expression in endothelial cells and astrocytes through the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways, respectively. Furthermore, EGCG and NU335 decreased p47Phox (a nicotinamide adenine dinucleotide phosphate oxidase subunit) expression in astrocytes under physiological and post-SE conditions. Therefore, we suggest that EGCG and PEDF derivatives may activate 67LR and its downstream effectors, and they may be considerable anti-vasogenic edema agents.
Collapse
|
55
|
Ye Z, Price RL, Liu X, Lin J, Yang Q, Sun P, Wu AT, Wang L, Han RH, Song C, Yang R, Gary SE, Mao DD, Wallendorf M, Campian JL, Li JS, Dahiya S, Kim AH, Song SK. Diffusion Histology Imaging Combining Diffusion Basis Spectrum Imaging (DBSI) and Machine Learning Improves Detection and Classification of Glioblastoma Pathology. Clin Cancer Res 2020; 26:5388-5399. [PMID: 32694155 DOI: 10.1158/1078-0432.ccr-20-0736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Glioblastoma (GBM) is one of the deadliest cancers with no cure. While conventional MRI has been widely adopted to examine GBM clinically, accurate neuroimaging assessment of tumor histopathology for improved diagnosis, surgical planning, and treatment evaluation remains an unmet need in the clinical management of GBMs. EXPERIMENTAL DESIGN We employ a novel diffusion histology imaging (DHI) approach, combining diffusion basis spectrum imaging (DBSI) and machine learning, to detect, differentiate, and quantify areas of high cellularity, tumor necrosis, and tumor infiltration in GBM. RESULTS Gadolinium-enhanced T1-weighted or hyperintense fluid-attenuated inversion recovery failed to reflect the morphologic complexity underlying tumor in patients with GBM. Contrary to the conventional wisdom that apparent diffusion coefficient (ADC) negatively correlates with increased tumor cellularity, we demonstrate disagreement between ADC and histologically confirmed tumor cellularity in GBM specimens, whereas DBSI-derived restricted isotropic diffusion fraction positively correlated with tumor cellularity in the same specimens. By incorporating DBSI metrics as classifiers for a supervised machine learning algorithm, we accurately predicted high tumor cellularity, tumor necrosis, and tumor infiltration with 87.5%, 89.0%, and 93.4% accuracy, respectively. CONCLUSIONS Our results suggest that DHI could serve as a favorable alternative to current neuroimaging techniques in guiding biopsy or surgery as well as monitoring therapeutic response in the treatment of GBM.
Collapse
Affiliation(s)
- Zezhong Ye
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Price
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Xiran Liu
- Department of Electrical & System Engineering, Washington University, St. Louis, Missouri
| | - Joshua Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Qingsong Yang
- Department of Radiology, Changhai Hospital, Yangpu District, Shanghai, China
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Anthony T Wu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Liang Wang
- Department of Electrical & System Engineering, Washington University, St. Louis, Missouri
| | - Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Sam E Gary
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Diane D Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Wallendorf
- Department of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Jian L Campian
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jr-Shin Li
- Department of Electrical & System Engineering, Washington University, St. Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
56
|
Ye Z, George A, Wu AT, Niu X, Lin J, Adusumilli G, Naismith RT, Cross AH, Sun P, Song S. Deep learning with diffusion basis spectrum imaging for classification of multiple sclerosis lesions. Ann Clin Transl Neurol 2020; 7:695-706. [PMID: 32304291 PMCID: PMC7261762 DOI: 10.1002/acn3.51037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) lesions are heterogeneous with regard to inflammation, demyelination, axonal injury, and neuronal loss. We previously developed a diffusion basis spectrum imaging (DBSI) technique to better address MS lesion heterogeneity. We hypothesized that the profiles of multiple DBSI metrics can identify lesion-defining patterns. Here we test this hypothesis by combining a deep learning algorithm using deep neural network (DNN) with DBSI and other imaging methods. METHODS Thirty-eight MS patients were scanned with diffusion-weighted imaging, magnetization transfer imaging, and standard conventional MRI sequences (cMRI). A total of 499 regions of interest were identified on standard MRI and labeled as persistent black holes (PBH), persistent gray holes (PGH), acute black holes (ABH), acute gray holes (AGH), nonblack or gray holes (NBH), and normal appearing white matter (NAWM). DBSI, diffusion tensor imaging (DTI), and magnetization transfer ratio (MTR) were applied to the 43,261 imaging voxels extracted from these ROIs. The optimized DNN with 10 fully connected hidden layers was trained using the imaging metrics of the lesion subtypes and NAWM. RESULTS Concordance, sensitivity, specificity, and accuracy were determined for the different imaging methods. DBSI-DNN derived lesion classification achieved 93.4% overall concordance with predetermined lesion types, compared with 80.2% for DTI-DNN model, 78.3% for MTR-DNN model, and 74.2% for cMRI-DNN model. DBSI-DNN also produced the highest specificity, sensitivity, and accuracy. CONCLUSIONS DBSI-DNN improves the classification of different MS lesion subtypes, which could aid clinical decision making. The efficacy and efficiency of DBSI-DNN shows great promise for clinical applications in automatic MS lesion detection and classification.
Collapse
Affiliation(s)
- Zezhong Ye
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Ajit George
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Anthony T. Wu
- Department of Biomedical EngineeringWashington UniversitySt. LouisMissouri63130
| | - Xuan Niu
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Joshua Lin
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia90033
| | - Gautam Adusumilli
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110
| | - Robert T. Naismith
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110
| | - Anne H. Cross
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110
| | - Peng Sun
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Sheng‐Kwei Song
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| |
Collapse
|
57
|
Zaninovich OA, Avila MJ, Kay M, Becker JL, Hurlbert RJ, Martirosyan NL. The role of diffusion tensor imaging in the diagnosis, prognosis, and assessment of recovery and treatment of spinal cord injury: a systematic review. Neurosurg Focus 2020; 46:E7. [PMID: 30835681 DOI: 10.3171/2019.1.focus18591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVEDiffusion tensor imaging (DTI) is an MRI tool that provides an objective, noninvasive, in vivo assessment of spinal cord injury (SCI). DTI is significantly better at visualizing microstructures than standard MRI sequences. In this imaging modality, the direction and amplitude of the diffusion of water molecules inside tissues is measured, and this diffusion can be measured using a variety of parameters. As a result, the potential clinical application of DTI has been studied in several spinal cord pathologies, including SCI. The aim of this study was to describe the current state of the potential clinical utility of DTI in patients with SCI and the challenges to its use as a tool in clinical practice.METHODSA search in the PubMed database was conducted for articles relating to the use of DTI in SCI. The citations of relevant articles were also searched for additional articles.RESULTSAmong the most common DTI metrics are fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. Changes in these metrics reflect changes in tissue integrity. Several DTI metrics and combinations thereof have demonstrated significant correlations with clinical function both in model species and in humans. Its applications encompass the full spectrum of the clinical assessment of SCI including diagnosis, prognosis, recovery, and efficacy of treatments in both the spinal cord and potentially the brain.CONCLUSIONSDTI and its metrics have great potential to become a powerful clinical tool in SCI. However, the current limitations of DTI preclude its use beyond research and into clinical practice. Further studies are needed to significantly improve and resolve these limitations as well as to determine reliable time-specific changes in multiple DTI metrics for this tool to be used accurately and reliably in the clinical setting.
Collapse
Affiliation(s)
| | | | - Matthew Kay
- 3Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Jennifer L Becker
- 3Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | | | | |
Collapse
|
58
|
Samara A, Murphy T, Strain J, Rutlin J, Sun P, Neyman O, Sreevalsan N, Shimony JS, Ances BM, Song SK, Hershey T, Eisenstein SA. Neuroinflammation and White Matter Alterations in Obesity Assessed by Diffusion Basis Spectrum Imaging. Front Hum Neurosci 2020; 13:464. [PMID: 31992978 PMCID: PMC6971102 DOI: 10.3389/fnhum.2019.00464] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023] Open
Abstract
Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-obese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all corrected p < 0.05). Moreover, using region of interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were significantly greater and lower, respectively, in obese relative to non-obese individuals (Cohort 1: p = 0.045; Cohort 2: p = 0.008). Hippocampal DBSI-FF and DBSI-RF and amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion, these findings suggest that greater neuroinflammation-related cellularity and lower apparent axonal density are associated with human obesity and cognitive performance. Future studies are warranted to determine a potential role for neuroinflammation in obesity-related cognitive impairment.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Tatianna Murphy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeremy Strain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Olga Neyman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Nitya Sreevalsan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
59
|
Waters AB, Sawyer KS, Gansler DA. White matter connectometry among individuals with self-reported family history of drug and alcohol use disorders. Drug Alcohol Depend 2020; 206:107710. [PMID: 31734033 DOI: 10.1016/j.drugalcdep.2019.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 01/23/2023]
Abstract
Heredity is an important risk factor for alcoholism. Several studies have been conducted on small groups of alcohol naïve adolescents which show lowered fractional anisotropy of frontal white matter in individuals with a family history of alcohol and substance use disorder (FH+). We compare large adult FH+ and FH- groups using white matter connectometry, different from the previously used global tractography method, as it is more sensitive to regional variability. Imaging and behavioral data from the Human Connectome Project (WU-MINN HCP 1200) was analyzed. Groups of participants were positive (n = 109) and negative (n = 109) for self-reported alcohol and substance use disorders in at least one parent, and stringently matched. Connectometry was performed on diffusion MRI in DSI-Studio using q-space diffeomorphic reconstruction, and multiple regression was completed with 5000 permutations. Analyses showed decreased major tract (>40 mm) connectivity in the FH+ group in left inferior longitudinal fasciculus, bilateral cortico-striatal pathway, left cortico-thalamic pathway, and corpus callosum, compared to the FH- group. For cognitive tasks related to reward processing, inhibition, and monitoring, there were a number of interactions, such that the relationship between identified tracts and behavior differed significantly between groups. Self-reported family history was associated with decreased connectivity in reward signaling pathways, controlling for alcohol consumption and alcohol use disorder. This is the first connectometry study of FH+, and extends the neural basis of the hereditary diathesis of alcoholism beyond that demonstrated with global tractography. Regions associated with FH+ are similar to those associated with alcohol use disorder.
Collapse
Affiliation(s)
| | - Kayle S Sawyer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Sawyer Scientific, LLC, Boston, MA, USA.
| | - David A Gansler
- Department of Psychology, Suffolk University, Boston, MA, USA.
| |
Collapse
|
60
|
Sun P, George A, Perantie DC, Trinkaus K, Ye Z, Naismith RT, Song SK, Cross AH. Diffusion basis spectrum imaging provides insights into MS pathology. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/2/e655. [PMID: 31871296 PMCID: PMC7011117 DOI: 10.1212/nxi.0000000000000655] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
Abstract
Objective To use diffusion basis spectrum imaging (DBSI) to assess how damage to normal-appearing white matter (NAWM) in the corpus callosum (CC) influences neurologic impairment in people with MS (pwMS). Methods Using standard MRI, the primary pathologies in MS of axonal injury/loss, demyelination, and inflammation are not differentiated well. DBSI has been shown in animal models, phantoms, and in biopsied and autopsied human CNS tissues to distinguish these pathologies. Fifty-five pwMS (22 relapsing-remitting, 17 primary progressive, and 16 secondary progressive) and 13 healthy subjects underwent DBSI analyses of NAWM of the CC, the main WM tract connecting the cerebral hemispheres. Tract-based spatial statistics were used to minimize misalignment. Results were correlated with scores from a battery of clinical tests focused on deficits typical of MS. Results Normal-appearing CC in pwMS showed reduced fiber fraction and increased nonrestricted isotropic fraction, with the most extensive abnormalities in secondary progressive MS (SPMS). Reduced DBSI-derived fiber fraction and increased DBSI-derived nonrestricted isotropic fraction of the CC correlated with worse cognitive scores in pwMS. Increased nonrestricted isotropic fraction in the body of the CC correlated with impaired hand function in the SPMS cohort. Conclusions DBSI fiber fraction and nonrestricted isotropic fraction were the most useful markers of injury in the NAWM CC. These 2 DBSI measures reflect axon loss in animal models. Because of its ability to reveal axonal loss, as well as demyelination, DBSI may be a useful outcome measure for trials of CNS reparative treatments.
Collapse
Affiliation(s)
- Peng Sun
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Ajit George
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Dana C Perantie
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Kathryn Trinkaus
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Zezhong Ye
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Robert T Naismith
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Sheng-Kwei Song
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Anne H Cross
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
61
|
Schaier M, Wolf RC, Kubera K, Nagel S, Bartsch A, Zeier M, Bendszus M, Herweh C. Vasogenic Brain Edema During Maintenance Hemodialysis : Preliminary Results from Tract-based Spatial Statistics and Voxel-based Morphometry. Clin Neuroradiol 2019; 31:217-224. [PMID: 31848644 DOI: 10.1007/s00062-019-00865-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hemodialysis (HD), especially when first initiated, can cause neurological deterioration. Presumably this is due to transient cerebral edema, which has been observed using diffusion weighted magnetic resonance imaging (MRI) in experimental and human studies; however, this has not been investigated under maintenance hemodialysis (mHD). Moreover, there are no studies to date investigating regional effects of mHD on grey and white matter volumes. METHODS In this study eight patients with end stage renal disease (ESRD) were examined immediately before and after mHD sessions with multimodal MRI, including diffusion tensor imaging (DTI) and high-resolution structural imaging. Additionally, eight healthy, age-matched and sex-matched controls were examined for comparison. Data were analyzed using tract-based spatial statistics and voxel-based morphometry. RESULTS At baseline, ESRD patients had significantly reduced values of fractional anisotropy (FA) and axial diffusivity as well as bilaterally reduced grey matter volume in the insula, compared with controls. After the mHD session, FA further decreased while axial, radial, and mean diffusivity significantly increased ubiquitously throughout the white matter. Voxel-based morphometry revealed a corresponding significant increase in white matter volume in the central right hemisphere and splenium, as well as in cortical grey matter in the anterior medial frontal and cingulate cortex. None of the patients showed neurological deterioration. CONCLUSION In this study ESRD patients showed white matter changes indicative of chronic microstructural damage when compared with healthy controls, as previously reported. In addition, patients showed signs of a transient extracellular cerebral edema, which has not yet been observed in the absence of neurological symptoms.
Collapse
Affiliation(s)
- M Schaier
- Department of Medicine I (Nephrology), University Hospital Heidelberg, Heidelberg, Germany
| | - R C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - K Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - S Nagel
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - A Bartsch
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - M Zeier
- Department of Medicine I (Nephrology), University Hospital Heidelberg, Heidelberg, Germany
| | - M Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - C Herweh
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
62
|
Wang Q, Pérez-Carrillo GJG, Ponisio MR, LaMontagne P, Dahiya S, Marcus DS, Milchenko M, Shimony J, Liu J, Chen G, Salter A, Massoumzadeh P, Miller-Thomas MM, Rich KM, McConathy J, Benzinger TLS, Wang Y. Heterogeneity Diffusion Imaging of gliomas: Initial experience and validation. PLoS One 2019; 14:e0225093. [PMID: 31725772 PMCID: PMC6855653 DOI: 10.1371/journal.pone.0225093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/29/2019] [Indexed: 12/05/2022] Open
Abstract
Objectives Primary brain tumors are composed of tumor cells, neural/glial tissues, edema, and vasculature tissue. Conventional MRI has a limited ability to evaluate heterogeneous tumor pathologies. We developed a novel diffusion MRI-based method—Heterogeneity Diffusion Imaging (HDI)—to simultaneously detect and characterize multiple tumor pathologies and capillary blood perfusion using a single diffusion MRI scan. Methods Seven adult patients with primary brain tumors underwent standard-of-care MRI protocols and HDI protocol before planned surgical resection and/or stereotactic biopsy. Twelve tumor sampling sites were identified using a neuronavigational system and recorded for imaging data quantification. Metrics from both protocols were compared between World Health Organization (WHO) II and III tumor groups. Cerebral blood volume (CBV) derived from dynamic susceptibility contrast (DSC) perfusion imaging was also compared with the HDI-derived perfusion fraction. Results The conventional apparent diffusion coefficient did not identify differences between WHO II and III tumor groups. HDI-derived slow hindered diffusion fraction was significantly elevated in the WHO III group as compared with the WHO II group. There was a non-significantly increasing trend of HDI-derived tumor cellularity fraction in the WHO III group, and both HDI-derived perfusion fraction and DSC-derived CBV were found to be significantly higher in the WHO III group. Both HDI-derived perfusion fraction and slow hindered diffusion fraction strongly correlated with DSC-derived CBV. Neither HDI-derived cellularity fraction nor HDI-derived fast hindered diffusion fraction correlated with DSC-derived CBV. Conclusions Conventional apparent diffusion coefficient, which measures averaged pathology properties of brain tumors, has compromised accuracy and specificity. HDI holds great promise to accurately separate and quantify the tumor cell fraction, the tumor cell packing density, edema, and capillary blood perfusion, thereby leading to an improved microenvironment characterization of primary brain tumors. Larger studies will further establish HDI’s clinical value and use for facilitating biopsy planning, treatment evaluation, and noninvasive tumor grading.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | | | - Maria Rosana Ponisio
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Pamela LaMontagne
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Daniel S. Marcus
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Mikhail Milchenko
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Joshua Shimony
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jingxia Liu
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gengsheng Chen
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Amber Salter
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Parinaz Massoumzadeh
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michelle M. Miller-Thomas
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Keith M. Rich
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan McConathy
- Department of Radiology, Division of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yong Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
63
|
Feasibility of Diffusion Tensor and Morphologic Imaging of Peripheral Nerves at Ultra-High Field Strength. Invest Radiol 2019; 53:705-713. [PMID: 29979328 PMCID: PMC6221405 DOI: 10.1097/rli.0000000000000492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental digital content is available in the text. Objectives The aim of this study was to describe the development of morphologic and diffusion tensor imaging sequences of peripheral nerves at 7 T, using carpal tunnel syndrome (CTS) as a model system of focal nerve injury. Materials and Methods Morphologic images were acquired at 7 T using a balanced steady-state free precession sequence. Diffusion tensor imaging was performed using single-shot echo-planar imaging and readout-segmented echo-planar imaging sequences. Different acquisition and postprocessing methods were compared to describe the optimal analysis pipeline. Magnetic resonance imaging parameters including cross-sectional areas, signal intensity, fractional anisotropy (FA), as well as mean, axial, and radial diffusivity were compared between patients with CTS (n = 8) and healthy controls (n = 6) using analyses of covariance corrected for age (significance set at P < 0.05). Pearson correlations with Bonferroni correction were used to determine association of magnetic resonance imaging parameters with clinical measures (significance set at P < 0.01). Results The 7 T acquisitions with high in-plane resolution (0.2 × 0.2mm) afforded detailed morphologic resolution of peripheral nerve fascicles. For diffusion tensor imaging, single-shot echo-planar imaging was more efficient than readout-segmented echo-planar imaging in terms of signal-to-noise ratio per unit scan time. Distortion artifacts were pronounced, but could be corrected during postprocessing. Registration of FA maps to the morphologic images was successful. The developed imaging and analysis pipeline identified lower median nerve FA (pisiform bone, 0.37 [SD 0.10]) and higher radial diffusivity (1.08 [0.20]) in patients with CTS compared with healthy controls (0.53 [0.06] and 0.78 [0.11], respectively, P < 0.047). Fractional anisotropy and radial diffusivity strongly correlated with patients' symptoms (r = −0.866 and 0.866, respectively, P = 0.005). Conclusions Our data demonstrate the feasibility of morphologic and diffusion peripheral nerve imaging at 7 T. Fractional anisotropy and radial diffusivity were found to be correlates of symptom severity.
Collapse
|
64
|
Kim JW, Andersson JL, Seifert AC, Sun P, Song SK, Dula C, Naismith RT, Xu J. Incorporating non-linear alignment and multi-compartmental modeling for improved human optic nerve diffusion imaging. Neuroimage 2019; 196:102-113. [PMID: 30930313 DOI: 10.1016/j.neuroimage.2019.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
In vivo human optic nerve diffusion magnetic resonance imaging (dMRI) is technically challenging with two outstanding issues not yet well addressed: (i) non-linear optic nerve movement, independent of head motion, and (ii) effect from partial-volumed cerebrospinal fluid or interstitial fluid such as in edema. In this work, we developed a non-linear optic nerve registration algorithm for improved volume alignment in axial high resolution optic nerve dMRI. During eyes-closed dMRI data acquisition, optic nerve dMRI measurements by diffusion tensor imaging (DTI) with and without free water elimination (FWE), and by diffusion basis spectrum imaging (DBSI), as well as optic nerve motion, were characterized in healthy adults at various locations along the posterior-to-anterior dimension. Optic nerve DTI results showed consistent trends in microstructural parametric measurements along the posterior-to-anterior direction of the entire intraorbital optic nerve, while the anterior portion of the intraorbital optic nerve exhibited the largest spatial displacement. Multi-compartmental dMRI modeling, such as DTI with FWE or DBSI, was less subject to spatially dependent biases in diffusivity and anisotropy measurements in the optic nerve which corresponded to similar spatial distributions of the estimated fraction of isotropic diffusion components. DBSI results derived from our clinically feasible (∼10 min) optic nerve dMRI protocol in this study are consistent with those from small animal studies, which provides the basis for evaluating the utility of multi-compartmental dMRI modeling in characterizing coexisting pathophysiology in human optic neuropathies.
Collapse
Affiliation(s)
- Joo-Won Kim
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jesper Lr Andersson
- Wellcome Center for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Alan C Seifert
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Courtney Dula
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Junqian Xu
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
65
|
Myelin water imaging of moderate to severe diffuse traumatic brain injury. NEUROIMAGE-CLINICAL 2019; 22:101785. [PMID: 30927603 PMCID: PMC6444291 DOI: 10.1016/j.nicl.2019.101785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 03/08/2019] [Accepted: 03/16/2019] [Indexed: 11/24/2022]
Abstract
Traumatic axonal injury (TAI), a signature injury of traumatic brain injury (TBI), is increasingly known to involve myelin damage. The objective of this study was to demonstrate the clinical relevance of myelin water imaging (MWI) by first quantifying changes in myelin water after TAI and then correlating those changes with measures of injury severity and neurocognitive performance. Scanning was performed at 3 months post-injury in 22 adults with moderate to severe diffuse TBI and 30 demographically matched healthy controls using direct visualization of short transverse component (ViSTa) MWI. Fractional anisotropy (FA) and radial diffusivity (RD) were also obtained using diffusion tensor imaging. Duration of post-traumatic amnesia (PTA) and cognitive processing speed measured by the Processing Speed Index (PSI) from Wechsler Adult Intelligence Scale-IV, were assessed. A between-group comparison using Tract-Based Spatial Statistics revealed that there was a widespread reduction of apparent myelin water fraction (aMWF) in TBI, consistent with neuropathology involving TAI. The group difference map of aMWF yielded topography that was different from FA and RD. Importantly, aMWF demonstrated significant associations with PTA (r = −0.564, p = .006) and PSI (r = 0.452, p = .035). In conclusion, reduced myelin water, quantified by ViSTa MWI, is prevalent in moderate-to-severe diffuse TBI and could serve as a potential biomarker for injury severity and prediction of clinical outcomes. Apparent myelin water fraction (aMWF) was reduced after diffuse TBI. aMWF predicted processing speed in patients with diffuse TBI. Both aMWF and DTI metrics were significantly correlated with injury severity. aMWF showed only moderate correlations with DTI metrics.
Collapse
|
66
|
Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS, Ances BM, Cairns NJ, Fagan AM, Morris JC, Benzinger TLS. Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer's disease. Neuroimage Clin 2019; 22:101767. [PMID: 30901713 PMCID: PMC6428957 DOI: 10.1016/j.nicl.2019.101767] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/12/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Interest in understanding the roles of white matter (WM) inflammation and damage in the pathophysiology of Alzheimer disease (AD) has been growing significantly in recent years. However, in vivo magnetic resonance imaging (MRI) techniques for imaging inflammation are still lacking. An advanced diffusion-based MRI method, neuro-inflammation imaging (NII), has been developed to clinically image and quantify WM inflammation and damage in AD. Here, we employed NII measures in conjunction with cerebrospinal fluid (CSF) biomarker classification (for β-amyloid (Aβ) and neurodegeneration) to evaluate 200 participants in an ongoing study of memory and aging. Elevated NII-derived cellular diffusivity was observed in both preclinical and early symptomatic phases of AD, while disruption of WM integrity, as detected by decreased fractional anisotropy (FA) and increased radial diffusivity (RD), was only observed in the symptomatic phase of AD. This may suggest that WM inflammation occurs earlier than WM damage following abnormal Aβ accumulation in AD. The negative correlation between NII-derived cellular diffusivity and CSF Aβ42 level (a marker of amyloidosis) may indicate that WM inflammation is associated with increasing Aβ burden. NII-derived FA also negatively correlated with CSF t-tau level (a marker of neurodegeneration), suggesting that disruption of WM integrity is associated with increasing neurodegeneration. Our findings demonstrated the capability of NII to simultaneously image and quantify WM cellularity changes and damage in preclinical and early symptomatic AD. NII may serve as a clinically feasible imaging tool to study the individual and composite roles of WM inflammation and damage in AD.
Collapse
Affiliation(s)
- Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO 63015, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Jingxia Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney L Sutphen
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler Blazey
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| | - Charlie Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beau M Ances
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
67
|
Lin TH, Sun P, Hallman M, Hwang FC, Wallendorf M, Ray WZ, Spees WM, Song SK. Noninvasive Quantification of Axonal Loss in the Presence of Tissue Swelling in Traumatic Spinal Cord Injury Mice. J Neurotrauma 2019; 36:2308-2315. [PMID: 30501460 DOI: 10.1089/neu.2018.6016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neuroimaging plays an important role in assessing axonal pathology after traumatic spinal cord injury. However, coexisting inflammation confounds imaging assessment of the severity of axonal injury. Herein, we applied diffusion basis spectrum imaging (DBSI) to quantitatively differentiate and quantify underlying pathologies in traumatic spinal cord injury at 3 days post-injury. Results reveal that DBSI was capable of detecting and differentiating axonal injury, demyelination, and inflammation-associated edema and cell infiltration in contusion-injured spinal cords. DBSI was able to detect and quantify axonal loss in the presence of white matter tract swelling. The DBSI-defined apparent axonal volume correlated with the corresponding histological markers. DBSI-derived pathological metrics could serve as neuroimaging biomarkers to differentiate and quantify coexisting white matter pathologies in spinal cord injury, providing potential surrogate outcome measures to assess spinal cord injury progression and response to therapies.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Peng Sun
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Mitchell Hallman
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Fay C Hwang
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Michael Wallendorf
- 2Department of Biostatistics, Washington University, St. Louis, Missouri
| | - Wilson Z Ray
- 3Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri.,4Department of Neurosurgery, Washington University, St. Louis, Missouri.,5Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - William M Spees
- 1Department of Radiology, Washington University, St. Louis, Missouri.,3Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri
| | - Sheng-Kwei Song
- 1Department of Radiology, Washington University, St. Louis, Missouri.,3Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri.,5Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
68
|
Mustafi SM, Harezlak J, Kodiweera C, Randolph JS, Ford JC, Wishart HA, Wu YC. Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging. Neural Regen Res 2019; 14:114-123. [PMID: 30531085 PMCID: PMC6262996 DOI: 10.4103/1673-5374.243716] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Multiple sclerosis is a neurodegenerative and inflammatory disease, a hallmark of which is demyelinating lesions in the white matter. We hypothesized that alterations in white matter microstructures can be non-invasively characterized by advanced diffusion magnetic resonance imaging. Seven diffusion metrics were extracted from hybrid diffusion imaging acquisitions via classic diffusion tensor imaging, neurite orientation dispersion and density imaging, and q-space imaging. We investigated the sensitivity of the diffusion metrics in 36 sets of regions of interest in the brain white matter of six female patients (age 52.8 ± 4.3 years) with multiple sclerosis. Each region of interest set included a conventional T2-defined lesion, a matched perilesion area, and normal-appearing white matter. Six patients with multiple sclerosis (n = 5) or clinically isolated syndrome (n = 1) at a mild to moderate disability level were recruited. The patients exhibited microstructural alterations from normal-appearing white matter transitioning to perilesion areas and lesions, consistent with decreased tissue restriction, decreased axonal density, and increased classic diffusion tensor imaging diffusivity. The findings suggest that diffusion compartment modeling and q-space analysis appeared to be sensitive for detecting subtle microstructural alterations between perilesion areas and normal-appearing white matter.
Collapse
Affiliation(s)
- Sourajit M. Mustafi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Chandana Kodiweera
- Department of Psychological and Brain Sciences and Dartmouth Brain Imaging Center, Dartmouth College, Hanover, NH, USA
| | - Jennifer S. Randolph
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - James C. Ford
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Heather A. Wishart
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychological and Brain Sciences and Dartmouth Brain Imaging Center, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
69
|
Spees WM, Lin TH, Sun P, Song C, George A, Gary SE, Yang HC, Song SK. MRI-based assessment of function and dysfunction in myelinated axons. Proc Natl Acad Sci U S A 2018; 115:E10225-E10234. [PMID: 30297414 PMCID: PMC6205472 DOI: 10.1073/pnas.1801788115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Repetitive electrical activity produces microstructural alteration in myelinated axons, which may afford the opportunity to noninvasively monitor function of myelinated fibers in peripheral nervous system (PNS)/CNS pathways. Microstructural changes were assessed via two different magnetic-resonance-based approaches: diffusion fMRI and dynamic T2 spectroscopy in the ex vivo perfused bullfrog sciatic nerves. Using this robust, classical model as a platform for testing, we demonstrate that noninvasive diffusion fMRI, based on standard diffusion tensor imaging (DTI), can clearly localize the sites of axonal conduction blockage as might be encountered in neurotrauma or other lesion types. It is also shown that the diffusion fMRI response is graded in proportion to the total number of electrical impulses carried through a given locus. Dynamic T2 spectroscopy of the perfused frog nerves point to an electrical-activity-induced redistribution of tissue water and myelin structural changes. Diffusion basis spectrum imaging (DBSI) reveals a reversible shift of tissue water into a restricted isotropic diffusion signal component. Submyelinic vacuoles are observed in electron-microscopy images of tissue fixed during electrical stimulation. A slowing of the compound action potential conduction velocity accompanies repetitive electrical activity. Correlations between electrophysiology and MRI parameters during and immediately after stimulation are presented. Potential mechanisms and interpretations of these results are discussed.
Collapse
Affiliation(s)
- William M Spees
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110;
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
| | - Tsen-Hsuan Lin
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Peng Sun
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Ajit George
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sam E Gary
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hsin-Chieh Yang
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sheng-Kwei Song
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| |
Collapse
|
70
|
Sprooten E, O'Halloran R, Dinse J, Lee WH, Moser DA, Doucet GE, Goodman M, Krinsky H, Paulino A, Rasgon A, Leibu E, Balchandani P, Inglese M, Frangou S. Depth-dependent intracortical myelin organization in the living human brain determined by in vivo ultra-high field magnetic resonance imaging. Neuroimage 2018; 185:27-34. [PMID: 30312809 DOI: 10.1016/j.neuroimage.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of intracortical myelin in the human brain using ultra-high field MRI. METHODS Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and a T1-weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T1 values were extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T1 values were used to infer myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroanatomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same protocol as positive controls. RESULTS Intracortical T1 values decreased between the outer brain surface and the gray-white matter boundary following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions. Across all regions, there was a positive association between T1 values and non-linearity indices (P < 10-5). Both T1 values (P < 10-5) and non-linearity indices (P < 10-15) were associated with cortical thickness. Higher myelin concentration but only in the deepest cortical levels was associated with increased subcortical fractional anisotropy (P = 0.05). CONCLUSIONS We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent examination of intracortical myelin organization. The extracted metrics, T1 values and the non-linearity index, have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter microstructure.
Collapse
Affiliation(s)
- Emma Sprooten
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands
| | - Rafael O'Halloran
- Translational and Molecular Imaging Institute Translational and Molecular Imaging Institute and Brain Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juliane Dinse
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dominik Andreas Moser
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gaelle Eve Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan Goodman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Krinsky
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandro Paulino
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Rasgon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Leibu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priti Balchandani
- Translational and Molecular Imaging Institute Translational and Molecular Imaging Institute and Brain Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
71
|
Weber AM, Pukropski A, Kames C, Jarrett M, Dadachanji S, Taunton J, Li DKB, Rauscher A. Pathological Insights From Quantitative Susceptibility Mapping and Diffusion Tensor Imaging in Ice Hockey Players Pre and Post-concussion. Front Neurol 2018; 9:575. [PMID: 30131752 PMCID: PMC6091605 DOI: 10.3389/fneur.2018.00575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/26/2018] [Indexed: 01/27/2023] Open
Abstract
Myelin sensitive MRI techniques, such as diffusion tensor imaging and myelin water imaging, have previously been used to reveal changes in myelin after sports-related concussions. What is not clear from these studies, however, is how myelin is affected: whether it becomes degraded and possibly removed, or whether the myelin sheath loosens and becomes “decompacted”. Previously, our team revealed myelin specific changes in ice hockey players 2 weeks post-concussion using myelin water imaging. In that study, 45 subjects underwent a pre-season baseline scan, 11 of which sustained a concussion during play and received follow-up scans: eight were scanned within 3 days, 10 were scanned at 14 days, and nine were scanned at 60 days. In the current retrospective analysis, we used quantitative susceptibility mapping, along with the diffusion tensor imaging measures axial diffusivity and radial diffusivity, to investigate this myelin disruption. If sports-related concussive hits lead to myelin fragmentation in regions of lowered MWF, this should result in a measurable increase in magnetic susceptibility, due to the anisotropic myelin fragmenting into isotropic myelin debris, and the diamagnetic myelin tissue being removed, while no such changes should be expected if the myelin sheath simply loosens and becomes decompacted. An increase in radial diffusivity would likewise reveal myelin fragmentation, as myelin sheaths block water diffusion out of the axon, with little to no changes expected for myelin sheath loosening. Statistical analysis of the same voxels-of-interest that were found to have reduced myelin water fraction 2 weeks post-concussion, revealed no statistically significant changes in magnetic susceptibility, axial diffusivity, or radial diffusivity at any time-point post-concussion. This suggests that myelin water fraction changes are likely due to a loosening of the myelin sheath structure, as opposed to fragmentation and removal of myelin debris.
Collapse
Affiliation(s)
- Alexander M Weber
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Anna Pukropski
- Program of Cognitive Science, University of Osnabrueck, Osnabrueck, Germany
| | - Christian Kames
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Michael Jarrett
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Shiroy Dadachanji
- Division of Sports Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jack Taunton
- Division of Sports Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David K B Li
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada.,MS/MRI Research Group, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
72
|
Shirani A, Sun P, Schmidt RE, Trinkaus K, Naismith RT, Song SK, Cross AH. Histopathological correlation of diffusion basis spectrum imaging metrics of a biopsy-proven inflammatory demyelinating brain lesion: A brief report. Mult Scler 2018; 25:1937-1941. [PMID: 29992856 DOI: 10.1177/1352458518786072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diffusion basis spectrum imaging (DBSI) models diffusion-weighted magnetic resonance imaging (MRI) signals as a combination of discrete anisotropic diffusion tensors and a spectrum of isotropic diffusion tensors. Here, we report the histopathological correlates of DBSI in the biopsied brain tissue of a patient with an inflammatory demyelinating lesion typical of multiple sclerosis (MS). Increased radial diffusivity (marker of demyelination), decreased fiber fraction (apparent axonal density), elevated nonrestricted isotropic fraction (marker of vasogenic edema), but unchanged axial diffusivity (marker of integrity of residual axons) seen in the lesion appeared consistent with histopathological findings of inflammatory demyelination with relative axonal sparing. Our report supports the application of DBSI as a biomarker in human studies of MS.
Collapse
Affiliation(s)
- Afsaneh Shirani
- John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Peng Sun
- Department of Radiology, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Robert E Schmidt
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Kathryn Trinkaus
- Siteman Biostatistics Shared Resource, Siteman Cancer Center and School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Robert T Naismith
- John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Anne H Cross
- John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
73
|
Wu YC, Mustafi SM, Harezlak J, Kodiweera C, Flashman LA, McAllister TW. Hybrid Diffusion Imaging in Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:2377-2390. [PMID: 29786463 PMCID: PMC6196746 DOI: 10.1089/neu.2017.5566] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white matter alterations in 19 patients with mTBI and 23 other trauma control patients. Within 15 days (standard deviation = 10) of brain injury, all subjects underwent magnetic resonance HYDI and were assessed with a battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) was used for voxel-wise statistical analyses within the white matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between-group interaction effects. The advanced diffusion imaging techniques, including neurite orientation dispersion and density imaging (NODDI) and q-space analyses, appeared to be more sensitive then classic diffusion tensor imaging. Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5–9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests, including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between groups (R2 > 0.71 and pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients >0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white matter changes shortly after mTBI. These techniques hold promise as a neuroimaging biomarker for mTBI.
Collapse
Affiliation(s)
- Yu-Chien Wu
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sourajit M Mustafi
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jaroslaw Harezlak
- 2 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University , Bloomington, Indiana
| | - Chandana Kodiweera
- 3 Dartmouth Brain Imaging Center, Dartmouth College , Hanover, New Hampshire
| | - Laura A Flashman
- 4 Department of Psychiatry, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center , Lebanon, New Hampshire
| | - Thomas W McAllister
- 5 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
74
|
Diffusivity in the core of chronic multiple sclerosis lesions. PLoS One 2018; 13:e0194142. [PMID: 29694345 PMCID: PMC5918637 DOI: 10.1371/journal.pone.0194142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Diffusion tensor imaging (DTI) has been suggested as a potential biomarker of disease progression, neurodegeneration and de/remyelination in MS. However, the pathological substrates that underpin alterations in brain diffusivity are not yet fully delineated. We propose that in highly cohesive fiber tracts: 1) a relative increase in parallel (axial) diffusivity (AD) may serve as a measure of increased extra-cellular space (ESC) within the core of chronic MS lesions and, as a result, may provide an estimate of the degree of tissue destruction, and 2) the contribution of the increased extra-cellular water to perpendicular (radial) diffusivity (RD) can be eliminated to provide a more accurate assessment of membranal (myelin) loss. Objective The purpose of this study was to isolate the contribution of extra-cellular water and demyelination to observed DTI indices in the core of chronic MS lesions, using the OR as an anatomically cohesive tract. Method Pre- and post-gadolinium (Gd) enhanced T1, T2 and DTI images were acquired from 75 consecutive RRMS patients. In addition, 25 age and gender matched normal controls were imaged using an identical MRI protocol (excluding Gd). The optic radiation (OR) was identified in individual patients using probabilistic tractography. The T2 lesions were segmented and intersected with the OR. Average eigenvalues were calculated within the core of OR lesions mask. The proportion of extra-cellular space (ECS) within the lesional core was calculated based on relative increase of AD, which was then used to normalise the perpendicular eigenvalues to eliminate the effect of the expanded ECS. In addition, modelling was implemented to simulate potential effect of various factors on lesional anisotropy. Results Of 75 patients, 41 (55%) demonstrated sizable T2 lesion volume within the ORs. All lesional eigenvalues were significantly higher compared to NAWM and controls. There was a strong correlation between AD and RD within the core of OR lesions, which was, however, not seen in OR NAWM of MS patients or normal controls. In addition, lesional anisotropy (FA) was predominantly driven by the perpendicular diffusivity, while in NAWM and in OR of normal controls all eigenvectors contributed to variation in FA. Estimated volume of ECS component constituted significant proportion of OR lesional volume and correlated significantly with lesional T1 hypointensity. While perpendicular diffusivity dropped significantly following normalisation, it still remained higher compared with diffusivity in OR NAWM. The “residual” perpendicular diffusivity also showed a substantial reduction of inter-subject variability. Both observed and modelled diffusion data suggested anisotropic nature of water diffusion in ESC. In addition, the simulation procedure offered a possible explanation for the discrepancy in relationship between eigenvalues and anisotropy in lesional tissue and NAWM. Conclusion This paper presents a potential technique for more reliably quantifying the effects of neurodegeneration (tissue loss) versus demyelination in OR MS lesions. This may provide a simple and effective way for applying single tract diffusion analysis in MS clinical trials, with particular relevance to pro-remyelinating and neuroprotective therapeutics.
Collapse
|
75
|
Manogaran P, Walker-Egger C, Samardzija M, Waschkies C, Grimm C, Rudin M, Schippling S. Exploring experimental autoimmune optic neuritis using multimodal imaging. Neuroimage 2018; 175:327-339. [PMID: 29627590 DOI: 10.1016/j.neuroimage.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. METHODS 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). RESULTS In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = -0.80, p = 0.02, optic tract: rho = -0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. CONCLUSION OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo.
Collapse
Affiliation(s)
- Praveena Manogaran
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Conny Waschkies
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Visceral and Transplant Surgery Research, University Hospital Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland; Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes-What Do We Know? Front Neurol 2018. [PMID: 29535676 PMCID: PMC5835085 DOI: 10.3389/fneur.2018.00092] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of the diffusion tensor imaging (DTI) is rapidly growing in the neuroimaging field. Nevertheless, rigorously performed quantitative validation of DTI pathologic metrics remains very limited owing to the difficulty in co-registering quantitative histology findings with magnetic resonance imaging. The aim of this review is to summarize the existing state-of-the-art knowledge with respect to axial (λ║) and radial (λ┴) diffusivity as DTI markers of axonal and myelin damage, respectively. First, we provide technical background for DTI and briefly discuss the specific organization of white matter in bundles of axonal fibers running in parallel; this is the natural target for imaging based on diffusion anisotropy. Second, we discuss the four seminal studies that paved the way for considering axial (λ║) and radial (λ┴) diffusivity as potential in vivo surrogate markers of axonal and myelin damage, respectively. Then, we present difficulties in interpreting axial (λ║) and radial (λ┴) diffusivity in clinical conditions associated with inflammation, edema, and white matter fiber crossing. Finally, future directions are highlighted. In summary, DTI can reveal strategic information with respect to white matter tracts, disconnection mechanisms, and related symptoms. Axial (λ║) and radial (λ┴) diffusivity seem to provide quite consistent information in healthy subjects, and in pathological conditions with limited edema and inflammatory changes. DTI remains one of the most promising non-invasive diagnostic tools in medicine.
Collapse
Affiliation(s)
- Pawel J Winklewski
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland.,Department of Clinical Anatomy and Physiology, Pomeranian University in Słupsk, Słupsk, Poland.,2-nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Sabisz
- 2-nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Edyta Szurowska
- 2-nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
77
|
Diffusion Basis Spectral Imaging Detects Ongoing Brain Inflammation in Virologically Well-Controlled HIV+ Patients. J Acquir Immune Defic Syndr 2018; 76:423-430. [PMID: 28796748 DOI: 10.1097/qai.0000000000001513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation occurs after HIV infection and persists, despite highly active antiretroviral therapy (HAART). Diffusion tensor imaging (DTI) measures HIV-associated white matter changes, but can be confounded by inflammation. Currently, the influence of inflammation on white matter integrity in well-controlled HIV+ patients remains unknown. We used diffusion basis spectral imaging (DBSI)-derived cellularity to isolate restricted water diffusion associated with inflammation separated from the anisotropic diffusion associated with axonal integrity. Ninety-two virologically suppressed HIV+ patients on HAART and 66 HIV uninfected (HIV-) controls underwent neuropsychological performance (NP) testing and neuroimaging. NP tests assessed multiple domains (memory, psychomotor speed, and executive functioning). DTI- and DBSI-derived fractional anisotropy (FA) maps were processed with tract-based spatial statistics for comparison between both groups. Cellularity was assessed regarding age, HIV status, and NP. Within the HIV+ cohort, cellularity was compared with clinical (HAART duration) and laboratory measures of disease (eg, CD4 cell current and nadir). NP was similar for both groups. DTI-derived FA was lower in HIV+ compared with HIV- individuals. By contrast, DBSI-derived FA was similar for both groups. Instead, diffuse increases in cellularity were present in HIV+ individuals. Observed changes in cellularity were significantly associated with age, but not NP, in HIV+ individuals. A trend level association was seen between cellularity and HAART duration. Elevated inflammation, measured by cellularity, persists in virologically well-controlled HIV+ individuals. Widespread cellularity changes occur in younger HIV+ individuals and diminish with aging and duration of HAART.
Collapse
|
78
|
Zhan J, Lin TH, Libbey JE, Sun P, Ye Z, Song C, Wallendorf M, Gong H, Fujinami RS, Song SK. Diffusion Basis Spectrum and Diffusion Tensor Imaging Detect Hippocampal Inflammation and Dendritic Injury in a Virus-Induced Mouse Model of Epilepsy. Front Neurosci 2018; 12:77. [PMID: 29497358 PMCID: PMC5818459 DOI: 10.3389/fnins.2018.00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Hippocampal CA1 inflammation and dendritic loss are common in epilepsy. Quantitative detection of coexisting brain inflammation and injury could be beneficial in monitoring disease progression and assessing therapeutic efficacy. In this work, we used conventional diffusion tensor imaging (DTI, known to detect axonal injury and demyelination) and a novel diffusion basis spectrum imaging (DBSI, known to detect axonal injury, demyelination, and inflammation) to detect hippocampal CA1 lesions resulting from neuronal dendritic injury/loss and concomitant inflammation in Theiler's murine encephalomyelitis virus (TMEV)-induced seizure mice. Following the cross-sectional ex vivo diffusion magnetic resonance imaging measurements, immunohistochemistry was performed to validate DTI and DBSI findings. Both DTI and DBSI detected immunohistochemistry-confirmed dendritic injury in the hippocampal CA1 region. Additionally, DBSI-derived restricted isotropic diffusion tensor fraction correlated with 4',6-diamidine-2'-phenylindole dihydrochloride (DAPI)-positive nucleus counts, and DBSI-derived fiber fraction correlated with dendrite density assessed by microtubule-associated protein 2 staining. DTI-derived fractional anisotropy (FA) correlated with dendrite density and negatively correlated with DAPI-positive nucleus counts. Although both DTI and DBSI detected hippocampal injury/inflammation, DTI-FA was less specific than DBSI-derived pathological metrics for hippocampal CA1 dendritic injury and inflammation in TMEV-induced seizure mice.
Collapse
Affiliation(s)
- Jie Zhan
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Jiangxi, China.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Peng Sun
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Zezhong Ye
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Michael Wallendorf
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| | - Honghan Gong
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Jiangxi, China
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Sheng-Kwei Song
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
79
|
Stangel M, Kuhlmann T, Matthews PM, Kilpatrick TJ. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat Rev Neurol 2017; 13:742-754. [PMID: 29146953 DOI: 10.1038/nrneurol.2017.139] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Remyelination in the CNS is the natural process of damage repair in demyelinating diseases such as multiple sclerosis (MS). However, remyelination becomes inadequate in many people with MS, which results in axonal degeneration and clinical disability. Enhancement of remyelination is a logical therapeutic goal; nevertheless, all currently licensed therapies for MS are immunomodulatory and do not support remyelination directly. Several molecular pathways have been identified as potential therapeutic targets to induce remyelination, and some of these have now been assessed in proof-of-concept clinical trials. However, trial design faces several obstacles: optimal clinical or paraclinical outcome measures to assess remyelination remain ill-defined, and identification of the ideal timing of therapy is also a crucial issue. In addition, realistic expectations are needed concerning the probable benefits of such therapies. Nevertheless, approaches that enhance remyelination are likely to be protective for axons and so could prevent long-term neurodegeneration. Future MS treatment paradigms, therefore, are likely to comprise a combinatorial approach that involves both immunomodulatory and regenerative treatments.
Collapse
Affiliation(s)
- Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, and UK Dementia Research Institute, Imperial College London, Burlington Danes, Hammersmith Hospital, DuCane Road, London W12 0NN, UK
| | - Trevor J Kilpatrick
- Department of Anatomy and Neuroscience and Melbourne Neuroscience Institute, University of Melbourne, 30 Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
80
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
81
|
By S, Xu J, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. Neuroimage Clin 2017; 15:333-342. [PMID: 28560158 PMCID: PMC5443965 DOI: 10.1016/j.nicl.2017.05.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/17/2017] [Indexed: 11/02/2022]
Abstract
INTRODUCTION There is a need to develop imaging methods sensitive to axonal injury in multiple sclerosis (MS), given the prominent impact of axonal pathology on disability and outcome. Advanced multi-compartmental diffusion models offer novel indices sensitive to white matter microstructure. One such model, neurite orientation dispersion and density imaging (NODDI), is sensitive to neurite morphology, providing indices of apparent volume fractions of axons (vin), isotropic water (viso) and the dispersion of fibers about a central axis (orientation dispersion index, ODI). NODDI has yet to be studied for its sensitivity to spinal cord pathology. Here, we investigate the feasibility and utility of NODDI in the cervical spinal cord of MS patients. METHODS NODDI was applied in the cervical spinal cord in a cohort of 8 controls and 6 MS patients. Statistical analyses were performed to test the sensitivity of NODDI-derived indices to pathology in MS (both lesion and normal appearing white matter NAWM). Diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) analysis were also performed to compare with NODDI. RESULTS A decrease in NODDI-derived vin was observed at the site of the lesion (p < 0.01), whereas a global increase in ODI was seen throughout white matter (p < 0.001). DKI-derived mean kurtosis (MK) and radial kurtosis (RK) and DTI-derived fractional anisotropy (FA) and radial diffusivity (RD) were all significantly different in MS patients (p < 0.02), however NODDI provided higher contrast between NAWM and lesion in all MS patients. CONCLUSION NODDI provides unique contrast that is not available with DKI or DTI, enabling improved characterization of the spinal cord in MS.
Collapse
Affiliation(s)
- Samantha By
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Junzhong Xu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey A Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Francesca R Bagnato
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
82
|
Lin TH, Chiang CW, Perez-Torres CJ, Sun P, Wallendorf M, Schmidt RE, Cross AH, Song SK. Diffusion MRI quantifies early axonal loss in the presence of nerve swelling. J Neuroinflammation 2017; 14:78. [PMID: 28388913 PMCID: PMC5384143 DOI: 10.1186/s12974-017-0852-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Magnetic resonance imaging markers have been widely used to detect and quantify white matter pathologies in multiple sclerosis. We have recently developed a diffusion basis spectrum imaging (DBSI) to distinguish and quantify co-existing axonal injury, demyelination, and inflammation in multiple sclerosis patients and animal models. It could serve as a longitudinal marker for axonal loss, a primary cause of permanent neurological impairments and disease progression. Methods Eight 10-week-old female C57BL/6 mice underwent optic nerve DBSI, followed by a week-long recuperation prior to active immunization for experimental autoimmune encephalomyelitis (EAE). Visual acuity of all mice was assessed daily. Longitudinal DBSI was performed in mouse optic nerves at baseline (naïve, before immunization), before, during, and after the onset of optic neuritis. Tissues were perfusion fixed after final in vivo scans. The correlation between DBSI detected pathologies and corresponding immunohistochemistry markers was quantitatively assessed. Results In this cohort of EAE mice, monocular vision impairment occurred in all animals. In vivo DBSI detected, differentiated, and quantified optic nerve inflammation, demyelination, and axonal injury/loss, correlating nerve pathologies with visual acuity at different time points of acute optic neuritis. DBSI quantified, in the presence of optic nerve swelling, ~15% axonal loss at the onset of optic neuritis in EAE mice. Conclusions Our findings support the notion that axonal loss could occur early in EAE mice. DBSI detected pathologies in the posterior visual pathway unreachable by optical coherence tomography and without confounding inflammation induced optic nerve swelling. DBSI could thus decipher the interrelationship among various pathological components and the role each plays in disease progression. Quantification of the rate of axonal loss could potentially serve as the biomarker to predict treatment outcome and to determine when progressive disease starts.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Radiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Chia-Wen Chiang
- Radiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Current Address: Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Carlos J Perez-Torres
- Radiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Current Address: School of Health Sciences, Purdue University, 550 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - Peng Sun
- Radiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Michael Wallendorf
- Biostatistics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Robert E Schmidt
- Pathology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Anne H Cross
- Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Sheng-Kwei Song
- Radiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA. .,Biomedical Engineering, Washington University, 1 Brookings Dr, St. Louis, MO, 63130, USA. .,Biomedical MR Laboratory, Washington University School of Medicine, Campus Box 8227, Room 2313, 4525 Scott Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
83
|
Diffusion Assessment of Cortical Changes, Induced by Traumatic Spinal Cord Injury. Brain Sci 2017; 7:brainsci7020021. [PMID: 28218643 PMCID: PMC5332964 DOI: 10.3390/brainsci7020021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 01/21/2023] Open
Abstract
Promising treatments are being developed to promote functional recovery after spinal cord injury (SCI). Magnetic resonance imaging, specifically Diffusion Tensor Imaging (DTI) has been shown to non-invasively measure both axonal and myelin integrity following traumatic brain and SCI. A novel data-driven model-selection algorithm known as Diffusion Basis Spectrum Imaging (DBSI) has been proposed to more accurately delineate white matter injury. The objective of this study was to investigate whether DTI/DBSI changes that extend to level of the cerebral peduncle and internal capsule following a SCI could be correlated with clinical function. A prospective non-randomized cohort of 23 patients with chronic spinal cord injuries and 17 control subjects underwent cranial diffusion weighted imaging, followed by whole brain DTI and DBSI computations. Region-based analyses were performed on cerebral peduncle and internal capsule. Three subgroups of patients were included in the region-based analysis. Tract-Based Spatial Statistics (TBSS) was also applied to allow whole-brain white matter analysis between controls and all patients. Functional assessments were made using International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) as modified by the American Spinal Injury Association (ASIA) Scale. Whole brain white matter analysis using TBSS finds no statistical difference between controls and all patients. Only cervical ASIA A/B patients in cerebral peduncle showed differences from controls in DTI and DBSI results with region-based analysis. Cervical ASIA A/B SCI patients had higher levels of axonal injury and edema/tissue loss as measured by DBSI at the level of the cerebral peduncle. DTI Fractional Anisotropy (FA), Axial Diffusivity (AD) and Radial Diffusivity (RD) was able to detect differences in cervical ASIA A/B patients, but were non-specific to pathologies. Increased water fraction indicated by DBSI non-restricted isotropic diffusion fraction in the cerebral peduncle, explains the simultaneously increased DTI AD and DTI RD values. Our results further demonstrate the utility of DTI to detect disruption in axonal integrity in white matter, yet a clear shortcoming in differentiating true axonal injury from inflammation/tissue loss. Our results suggest a preservation of axonal integrity at the cortical level and has implications for future regenerative clinical trials.
Collapse
|
84
|
Weiss Lucas C, Tursunova I, Neuschmelting V, Nettekoven C, Oros-Peusquens AM, Stoffels G, Faymonville AM, Jon SN, Langen KJ, Lockau H, Goldbrunner R, Grefkes C. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. NEUROIMAGE-CLINICAL 2016; 13:297-309. [PMID: 28050345 PMCID: PMC5192048 DOI: 10.1016/j.nicl.2016.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND DTI-based tractography is an increasingly important tool for planning brain surgery in patients suffering from brain tumours. However, there is an ongoing debate which tracking approaches yield the most valid results. Especially the use of functional localizer data such as navigated transcranial magnetic stimulation (nTMS) or functional magnetic resonance imaging (fMRI) seem to improve fibre tracking data in conditions where anatomical landmarks are less informative due to tumour-induced distortions of the gyral anatomy. We here compared which of the two localizer techniques yields more plausible results with respect to mapping different functional portions of the corticospinal tract (CST) in brain tumour patients. METHODS The CSTs of 18 patients with intracranial tumours in the vicinity of the primary motor area (M1) were investigated by means of deterministic DTI. The core zone of the tumour-adjacent hand, foot and/or tongue M1 representation served as cortical regions of interest (ROIs). M1 core zones were defined by both the nTMS hot-spots and the fMRI local activation maxima. In addition, for all patients, a subcortical ROI at the level of the inferior anterior pons was implemented into the tracking algorithm in order to improve the anatomical specificity of CST reconstructions. As intra-individual control, we additionally tracked the CST of the hand motor region of the unaffected, i.e., non-lesional hemisphere, again comparing fMRI and nTMS M1 seeds. The plausibility of the fMRI-ROI- vs. nTMS-ROI-based fibre trajectories was assessed by a-priori defined anatomical criteria. Moreover, the anatomical relationship of different fibre courses was compared regarding their distribution in the anterior-posterior direction as well as their location within the posterior limb of the internal capsule (PLIC). RESULTS Overall, higher plausibility rates were observed for the use of nTMS- as compared to fMRI-defined cortical ROIs (p < 0.05) in tumour vicinity. On the non-lesional hemisphere, however, equally good plausibility rates (100%) were observed for both localizer techniques. fMRI-originated fibres generally followed a more posterior course relative to the nTMS-based tracts (p < 0.01) in both the lesional and non-lesional hemisphere. CONCLUSION NTMS achieved better tracking results than fMRI in conditions when the cortical tract origin (M1) was located in close vicinity to a brain tumour, probably influencing neurovascular coupling. Hence, especially in situations with altered BOLD signal physiology, nTMS seems to be the method of choice in order to identify seed regions for CST mapping in patients.
Collapse
Key Words
- APB, Abductor pollicis brevis muscle
- BOLD, Blood-oxygenation-level dependent
- CST
- CST, Corticospinal tract
- DCS, Direct cortical stimulation
- DTI, Diffusion tensor imaging
- Deterministic
- EF, Electric field
- EMG, Electromyography
- FA(T), Fractional anisotropy (threshold)
- FACT, Fibre assignment by continuous tracking
- FOV, Field-of-view
- FWE, Family-wise error
- KPS, Karnofsky performance scale
- LT, Lateral tongue muscle, anterior third
- M1, Primary motor cortex
- MEP, Motor-evoked potential
- MFL, Minimal fibre length
- MPRAGE, Magnetization prepared rapid acquisition gradient echo (T1 MR seq.)
- OR, Odd's ratio
- PLIC, Posterior limb of the internal capsule
- PM, Plantar muscle
- Pyramidal tract
- RMT, Resting motor threshold
- ROI
- ROI, Region-of-interest
- SD, Standard deviation
- SE, Standard error
- Somatotopic
- X-sq, X-squared (Pearson's chi-square test)
- dMRI, Diffusion magnetic resonance imaging (i.e., diffusion-weighted imaging, DWI)
- fMRI
- fMRI, Functional magnetic resonance imaging
- nTMS
- nTMS, Neuronavigated transcranial magnetic stimulation
- pxsq, p-value according to Pearson's chi-square test
Collapse
Affiliation(s)
| | - Irada Tursunova
- University of Cologne, Center of Neurosurgery, 50924 Cologne, Germany
| | | | | | | | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany
| | | | - Shah N Jon
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany; RWTH Aachen University, University Clinic Aachen, Departments of Nuclear Medicine and Neurology, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Karl Josef Langen
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany; RWTH Aachen University, University Clinic Aachen, Departments of Nuclear Medicine and Neurology, 52074 Aachen, Germany
| | - Hannah Lockau
- University of Cologne, Department of Radiology, 50937 Cologne, Germany
| | | | - Christian Grefkes
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany; University of Cologne, Department of Neurology, 50924 Cologne, Germany
| |
Collapse
|
85
|
Kancherla S, Kohler WJ, van der Merwe Y, Chan KC. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI. PLoS One 2016; 11:e0165169. [PMID: 27768755 PMCID: PMC5074510 DOI: 10.1371/journal.pone.0165169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.
Collapse
Affiliation(s)
- Swarupa Kancherla
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William J. Kohler
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kevin C. Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
86
|
Cross AH, Song SK. "A new imaging modality to non-invasively assess multiple sclerosis pathology". J Neuroimmunol 2016; 304:81-85. [PMID: 27773433 DOI: 10.1016/j.jneuroim.2016.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022]
Abstract
We describe a novel imaging method to assess central nervous system pathology called "Diffusion Basis Spectrum Imaging" (DBSI). Diffusion tensor imaging (DTI) has been widely used to estimate axonpathology and demyelination. However, in the settings of acute inflammation and chronic tissue loss asare common in multiple sclerosis, DTI signals can lead to false interpretations. DBSI is a computationallynovel method that separates isotropic from anisotropic components in imaging voxels. Isotropicdiffusion is believed to reflect inflammatory components (cells, edema), as well as intrinsic cells andextracellular space. DBSI enables the measurement of axial and radial diffusivities within the anisotropiccomponents of imaging voxels, which reflect the integrity of axon fibers and myelin, respectively.
Collapse
Affiliation(s)
- Anne H Cross
- Department of Neurology, Washington University School of Medicine, Campus Box 8111, 660 S. Euclid Avenue, St. Louis 63110, MO, USA.
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, Campus Box 8225, 660 S. Euclid Avenue, St. Louis 63110, MO, USA
| |
Collapse
|
87
|
Fan C, Zhao Y, Yu Q, Yin W, Liu H, Lin J, Yang T, Fan M, Gesang L, Zhang J. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure. Sci Rep 2016; 6:33596. [PMID: 27633944 PMCID: PMC5025655 DOI: 10.1038/srep33596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure.
Collapse
Affiliation(s)
- Cunxiu Fan
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Yuhua Zhao
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Qian Yu
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Luobu Gesang
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
88
|
Wang D, Li YH, Fu J, Wang H. Diffusion kurtosis imaging study on temporal lobe after nasopharyngeal carcinoma radiotherapy. Brain Res 2016; 1648:387-393. [PMID: 27514570 DOI: 10.1016/j.brainres.2016.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffusion kurtosis imaging (DKI) is a MRI technique which can measure alterations in the diffusion of water molecules to reflect tissue changes in both white and grey matter. This study evaluated the potential of DKI for the early diagnosis of radiation-induced temporal lobe changes in the grey and white matter of the temporal lobe in patients with nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Sixty patients with NPC who had normal MRI brain scans were enrolled and underwent DKI at 1 week (n=20), 6 months (n=20) or 1 year (n=20) after radiotherapy; 20 normal control individuals were also evaluated. Nonlinear fitting routines and equations were used to calculate mean diffusion (MD) and mean kurtosis (MK) and fractional anisotropy (FA). Analysis of variance was used to compare the MK/MD/FA values of white and grey matter between groups. RESULTS Compared to the normal control group, grey and white matter MK values were significantly higher at 1 week after radiotherapy and significantly lower at 6 months and 1 year after radiotherapy in patients with NPC, whereas the grey and white matter MD values were significantly lower at 1 week after radiotherapy and returned to normal by 6 months and 1 year after radiotherapy. CONCLUSION DKI can be used to detect radiotherapy-induced changes in both the white and grey matter of temporal lobe in patients with NPC. MK and MD values may represent reliable indicators for the early diagnosis of radiation-induced temporal lobe changes in NPC.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China.
| | - Jie Fu
- Department of Radiotherapy, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China
| | - He Wang
- Philips Research China, Philips Innovation Campus Shanghai, China
| |
Collapse
|
89
|
Harris NG, Verley DR, Gutman BA, Sutton RL. Bi-directional changes in fractional anisotropy after experiment TBI: Disorganization and reorganization? Neuroimage 2016; 133:129-143. [PMID: 26975556 PMCID: PMC4889542 DOI: 10.1016/j.neuroimage.2016.03.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/26/2022] Open
Abstract
The current dogma to explain the extent of injury-related changes following rodent controlled cortical impact (CCI) injury is a focal injury with limited axonal pathology. However, there is in fact good, published histologic evidence to suggest that axonal injury is far more widespread in this model than generally thought. One possibility that might help to explain this is the often-used region-of-interest data analysis approach taken by experimental traumatic brain injury (TBI) diffusion tensor imaging (DTI) or histologic studies that might miss more widespread damage, when compared to the whole brain, statistically robust method of tract-based analysis used more routinely in clinical research. To determine the extent of DTI changes in this model, we acquired in vivo DTI data before and at 1 and 4weeks after CCI injury in 17 adult male rats and analyzed parametric maps of fractional anisotropy (FA), axial, radial, and mean diffusivity (AD, RD, MD), tensor mode (MO), and fiber tract density (FTD) using tract-based spatial statistics. Contusion volume was used as a surrogate marker of injury severity and as a covariate for investigating severity dependence of the data. Mean fiber tract length was also computed from seeds in the cortical spinal tract regions. In parallel experiments (n=3-5/group), we investigated corpus callosum neurofilaments and demyelination using immunohistochemistry (IHC) at 3days and 6weeks, callosal tract patency using dual-label retrograde tract tracing at 5weeks, and the contribution of gliosis to DTI parameter maps using GFAP IHC at 4weeks post-injury. The data show widespread ipsilateral regions of significantly reduced FA at 1week post-injury, driven by temporally changing values of AD, RD, and MD that persist to 4weeks. Demyelination, retrograde label tract loss, and reductions in MO (tract degeneration) and FTD were shown to underpin these data. Significant FA increases occurred in subcortical and corticospinal tract regions that were spatially distinct from regions of FA decrease, grossly affected gliotic areas, and MO changes. However, there was good spatial correspondence between regions of increased FA and areas of increased FTD and mean fiber length. We discuss these widespread changes in DTI parameters in terms of axonal degeneration and potential reorganization, with reference to a resting state fMRI companion paper (Harris et al., 2016, Exp. Neurol. 227:124-138) that demonstrated altered functional connectivity data acquired from the same rats used in this study.
Collapse
Affiliation(s)
- N G Harris
- UCLA Brain injury Research Center, Department of Neurosurgery, University of California, Los Angeles, Los Angeles, USA.
| | - D R Verley
- UCLA Brain injury Research Center, Department of Neurosurgery, University of California, Los Angeles, Los Angeles, USA
| | - B A Gutman
- Department of Neurology, Imaging Genetics Center, Keck/USC School of Medicine, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - R L Sutton
- UCLA Brain injury Research Center, Department of Neurosurgery, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
90
|
Abstract
STUDY DESIGN A prospective cohort study. OBJECTIVE In this study, we employed diffusion basis spectrum imaging (DBSI) to quantitatively assess axon/myelin injury, cellular inflammation, and axonal loss of cervical spondylotic myelopathy (CSM) spinal cords. SUMMARY OF BACKGROUND DATA A major shortcoming in the management of CSM is the lack of an effective diagnostic approach to stratify treatments and to predict outcomes. No current clinical diagnostic imaging approach is capable of accurately reflecting underlying spinal cord pathologies. METHODS Seven patients with mild (mJOA ≥15), five patients with moderate (14≥mJOA ≥11), and two patients with severe (mJOA <11) CSM were prospectively enrolled. Given the low number of severe patients, moderate and severe patients were combined for comparison with seven age-matched controls and statistical analysis. We employed the newly developed DBSI to quantitatively measure axon and myelin injury, cellular inflammation, and axonal loss. RESULTS Median DBSI-inflammation volume is similar in control (266 μL) and mild CSM (171 μL) subjects, with a significant overlap of the middle 50% of observations (quartile 3 - quartile 1). This was in contrast to moderate CSM subjects that had higher DBSI-inflammation volumes (382 μL; P = 0.033). DBSI-axon volume shows a strong correlation with clinical measures (r = 0.79 and 0.87, P = 1.9 x 10-5 and 2 x 10-4 for mJOA and MDI, respectively). In addition to axon and myelin injury, our findings suggest that both inflammation and axon loss contribute to neurological impairment. Most strikingly, DBSI-derived axon volume declines as severity of impairment increases. CONCLUSION DBSI-quantified axonal loss may be an imaging biomarker to predict functional recovery following decompression in CSM. Our results demonstrate an increase of about 60% in the odds of impairment relative to the control for each decrease of 100 μL in axon volume. LEVEL OF EVIDENCE 3.
Collapse
|
91
|
Wu H, Wang X, Gao Y, Lin F, Song T, Zou Y, Xu L, Lei H. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging. Neuroscience 2016; 322:221-33. [DOI: 10.1016/j.neuroscience.2016.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
|
92
|
Giacosa C, Karpati FJ, Foster NEV, Penhune VB, Hyde KL. Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. Neuroimage 2016; 135:273-86. [PMID: 27114054 DOI: 10.1016/j.neuroimage.2016.04.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Chiara Giacosa
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128 Succ. Centre Ville, Montreal, QC H3C 3J7, Canada; Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Falisha J Karpati
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128 Succ. Centre Ville, Montreal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128 Succ. Centre Ville, Montreal, QC H3C 3J7, Canada; Department of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 avenue Vincent d'Indy, Montreal, Quebec H2V 2S9, Canada
| | - Virginia B Penhune
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128 Succ. Centre Ville, Montreal, QC H3C 3J7, Canada; Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128 Succ. Centre Ville, Montreal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada; Department of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 avenue Vincent d'Indy, Montreal, Quebec H2V 2S9, Canada
| |
Collapse
|
93
|
Huang SY, Tobyne SM, Nummenmaa A, Witzel T, Wald LL, McNab JA, Klawiter EC. Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. Radiology 2016; 280:244-51. [PMID: 26859256 DOI: 10.1148/radiol.2016151582] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate the ability of high-gradient-diffusion magnetic resonance (MR) imaging by using gradient strengths of up to 300 mT/m to depict axonal disease in lesions and normal-appearing white matter (NAWM) in patients with multiple sclerosis (MS) and to compare high-gradient-diffusion MR findings in these patients with those in healthy control subjects. Materials and Methods In this HIPAA-compliant institutional review board-approved prospective study in which all subjects provided written informed consent, six patients with relapsing-remitting MS and six healthy control subjects underwent diffusion-weighted imaging with a range of diffusion weightings performed with a 3-T human MR imager by using gradient strengths of up to 300 mT/m. A model of intra-axonal, extra-axonal, and free water diffusion was fitted to obtain estimates of axon diameter and density. Differences in axon diameter and density between lesions and NAWM in patients with MS were assessed by using the nonparametric Wilcoxon matched-pairs signed rank test, and differences between NAWM in subjects with MS and white matter in healthy control subjects were assessed by using the Mann-Whitney U test. Results MS lesions showed increased mean axon diameter (10.3 vs 7.9 μm in the genu, 10.4 vs 9.3 μm in the body, and 10.6 vs 8.2 μm in the splenium; P < .05) and decreased axon density ([0.48 vs 1.1] × 10(10)/m(2) in the genu, [0.40 vs 0.70] × 10(10)/m(2) in the body, and [0.35 vs 1.1] × 10(10)/m(2) in the splenium; P < .05) compared with adjacent NAWM. No significant difference in mean axon diameter or axon density was detected between NAWM in subjects with MS and white matter in healthy control subjects. Conclusion High-gradient-diffusion MR imaging using gradient strengths of up to 300 mT/m can be used to characterize axonal disease in patients with MS, with results that agree with known trends from neuropathologic data showing increased axon diameter and decreased axon density in MS lesions when compared with NAWM. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Susie Y Huang
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| | - Sean M Tobyne
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| | - Aapo Nummenmaa
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| | - Thomas Witzel
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| | - Lawrence L Wald
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| | - Jennifer A McNab
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| | - Eric C Klawiter
- From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129 (S.Y.H., A.N., T.W., L.L.W.); Department of Neurology, Massachusetts General Hospital, Boston, Mass (S.M.T., E.C.K.); and Richard M. Lucas Center for Imaging, Department of Radiology, Stanford University, Stanford, Calif (J.A.M.)
| |
Collapse
|
94
|
Talbott JF, Nout-Lomas YS, Wendland MF, Mukherjee P, Huie JR, Hess CP, Mabray MC, Bresnahan JC, Beattie MS. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats. J Neurotrauma 2016; 33:929-42. [PMID: 26483094 DOI: 10.1089/neu.2015.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in magnetic resonance imaging (MRI)-derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury.
Collapse
Affiliation(s)
- Jason F Talbott
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Yvette S Nout-Lomas
- 2 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Michael F Wendland
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - J Russell Huie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Christopher P Hess
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Marc C Mabray
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Jacqueline C Bresnahan
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Michael S Beattie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| |
Collapse
|
95
|
Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. Neuroimage 2015; 128:180-192. [PMID: 26724777 DOI: 10.1016/j.neuroimage.2015.12.033] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 02/04/2023] Open
Abstract
Microstructural changes in human brain white matter of young to middle-aged adults were studied using advanced diffusion Magnetic Resonance Imaging (dMRI). Multiple shell diffusion-weighted data were acquired using the Hybrid Diffusion Imaging (HYDI). The HYDI method is extremely versatile and data were analyzed using Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion and Density Imaging (NODDI), and q-space imaging approaches. Twenty-four females and 23 males between 18 and 55years of age were included in this study. The impact of age and sex on diffusion metrics were tested using least squares linear regressions in 48 white matter regions of interest (ROIs) across the whole brain and adjusted for multiple comparisons across ROIs. In this study, white matter projections to either the hippocampus or the cerebral cortices were the brain regions most sensitive to aging. Specifically, in this young to middle-aged cohort, aging effects were associated with more dispersion of white matter fibers while the tissue restriction and intra-axonal volume fraction remained relatively stable. The fiber dispersion index of NODDI exhibited the most pronounced sensitivity to aging. In addition, changes of the DTI indices in this aging cohort were correlated mostly with the fiber dispersion index rather than the intracellular volume fraction of NODDI or the q-space measurements. While men and women did not differ in the aging rate, men tend to have higher intra-axonal volume fraction than women. This study demonstrates that advanced dMRI using a HYDI acquisition and compartmental modeling of NODDI can elucidate microstructural alterations that are sensitive to age and sex. Finally, this study provides insight into the relationships between DTI diffusion metrics and advanced diffusion metrics of NODDI model and q-space imaging.
Collapse
|
96
|
Skinner NP, Kurpad SN, Schmit BD, Budde MD. Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis. NMR IN BIOMEDICINE 2015; 28:1489-1506. [PMID: 26411743 DOI: 10.1002/nbm.3405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
Diffusion-weighted imaging (DWI) is a powerful tool to investigate the microscopic structure of the central nervous system (CNS). Diffusion tensor imaging (DTI), a common model of the DWI signal, has a demonstrated sensitivity to detect microscopic changes as a result of injury or disease. However, DTI and other similar models have inherent limitations that reduce their specificity for certain pathological features, particularly in tissues with complex fiber arrangements. Methods such as double pulsed field gradient (dPFG) and q-vector magic angle spinning (qMAS) have been proposed to specifically probe the underlying microscopic anisotropy without interference from the macroscopic tissue organization. This is particularly important for the study of acute injury, where abrupt changes in the microscopic morphology of axons and dendrites manifest as focal enlargements known as beading. The purpose of this work was to assess the relative sensitivity of DWI measures to beading in the context of macroscopic fiber organization and edema. Computational simulations of DWI experiments in normal and beaded axons demonstrated that, although DWI models can be highly specific for the simulated pathologies of beading and volume fraction changes in coherent fiber pathways, their sensitivity to a single idealized pathology is considerably reduced in crossing and dispersed fibers. However, dPFG and qMAS have a high sensitivity for beading, even in complex fiber tracts. Moreover, in tissues with coherent arrangements, such as the spinal cord or nerve fibers in which tract orientation is known a priori, a specific dPFG sequence variant decreases the effects of edema and improves specificity for beading. Collectively, the simulation results demonstrate that advanced DWI methods, particularly those which sample diffusion along multiple directions within a single acquisition, have improved sensitivity to acute axonal injury over conventional DTI metrics and hold promise for more informative clinical diagnostic use in CNS injury evaluation.
Collapse
Affiliation(s)
- Nathan P Skinner
- Biophysics Graduate Program, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
97
|
Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study. J Cereb Blood Flow Metab 2015; 35:1358-67. [PMID: 25966942 PMCID: PMC4527994 DOI: 10.1038/jcbfm.2015.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/10/2015] [Indexed: 12/18/2022]
Abstract
Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.
Collapse
|
98
|
A multimodal MRI approach to identify and characterize microstructural brain changes in neuropsychiatric systemic lupus erythematosus. NEUROIMAGE-CLINICAL 2015; 8:337-44. [PMID: 26106559 PMCID: PMC4474280 DOI: 10.1016/j.nicl.2015.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with multi-organ involvement and results in neurological and psychiatric (NP) symptoms in up to 40% of the patients. To date, the diagnosis of neuropsychiatric systemic lupus erythematosus (NPSLE) poses a challenge due to the lack of neuroradiological gold standards. In this study, we aimed to better localize and characterize normal appearing white matter (NAWM) changes in NPSLE by combining data from two quantitative MRI techniques, diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI). 9 active NPSLE patients (37 ± 13 years, all females), 9 SLE patients without NP symptoms (44 ± 11 years, all females), and 14 healthy controls (HC) (40 ± 9 years, all females) were included in the study. MTI, DTI and fluid attenuated inversion recovery (FLAIR) images were collected from all subjects on a 3 T MRI scanner. Magnetization transfer ratio (MTR), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) maps and white matter lesion maps based on the FLAIR images were created for each subject. MTR and DTI data were then co-analyzed using tract-based spatial statistics and a cumulative lesion map to exclude lesions. Significantly lower MTR and FA and significantly higher AD, RD and MD were found in NPSLE compared to HC in NAWM regions. The differences in DTI measures and in MTR, however, were only moderately co-localized. Additionally, significant differences in DTI measures, but not in MTR, were found between NPSLE and SLE patients, suggesting that the underlying microstructural changes detected by MD are linked to the onset of NPSLE. The co-analysis of the anatomical distribution of MTI and DTI measures can potentially improve the diagnosis of NPSLE and contribute to the understanding of the underlying microstructural damage. NAWM is investigated in NPSLE and SLE using MTI and DTI. Differences in DTI and MTR between NPSLE and HC are widespread but only moderately co-localized. Significant differences in MD between SLE and NPSLE suggest link to onset of NPSLE.
Collapse
Key Words
- ACR, American College of Rheumatology
- AD, axial diffusivity
- DTI, diffusion tensor imaging
- Diffusion tensor imaging
- FA, fractional anisotropy
- FLAIR, fluid attenuated inversion recovery
- HC, healthy controls
- MD, mean diffusivity
- MTI, magnetization transfer imaging
- MTR, magnetization transfer ratio
- Magnetic resonance imaging
- Magnetization transfer imaging
- NAWM, normal appearing white matter
- NP, neurological and psychiatric
- NPSLE, neuropsychiatric systemic lupus erythematosus
- Neuropsychiatric systemic lupus erythematosus
- Normal appearing white matter
- RD, radial diffusivity
- SLE, systemic lupus erythematosus
- Systemic lupus erythematosus
- TBSS, tract based spatial statistics
- WM, white matter
- WMH, white matter hyperintensities
Collapse
|
99
|
van de Looij Y, Dean JM, Gunn AJ, Hüppi PS, Sizonenko SV. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int J Dev Neurosci 2015; 45:29-38. [PMID: 25818582 DOI: 10.1016/j.ijdevneu.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, favoring (1)H-MRS with quantification of up to 18 metabolites in the brain and short echo time (TE) MRI sequences including phase and susceptibility imaging. For longer TE techniques including diffusion imaging modalities, the benefits of higher B0 have not been clearly established. Nevertheless, progress has also been made in new advanced diffusion models that have been developed to enhance the accuracy and specificity of the derived diffusion parameters. In this review, we will describe the latest developments in MRS and MRI techniques, including high-field (1)H-MRS, phase and susceptibility imaging, and diffusion imaging, and discuss their application in the study of cerebral development and perinatal brain injury.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Petra S Hüppi
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
100
|
Wang Y, Sun P, Wang Q, Trinkaus K, Schmidt RE, Naismith RT, Cross AH, Song SK. Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain 2015; 138:1223-38. [PMID: 25724201 DOI: 10.1093/brain/awv046] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/29/2014] [Indexed: 12/29/2022] Open
Abstract
Axon injury/loss, demyelination and inflammation are the primary pathologies in multiple sclerosis lesions. Despite the prevailing notion that axon/neuron loss is the substrate of clinical progression of multiple sclerosis, the roles that these individual pathological processes play in multiple sclerosis progression remain to be defined. An imaging modality capable to effectively detect, differentiate and individually quantify axon injury/loss, demyelination and inflammation, would not only facilitate the understanding of the pathophysiology underlying multiple sclerosis progression, but also the assessment of treatments at the clinical trial and individual patient levels. In this report, the newly developed diffusion basis spectrum imaging was used to discriminate and quantify the underlying pathological components in multiple sclerosis white matter. Through the multiple-tensor modelling of diffusion weighted magnetic resonance imaging signals, diffusion basis spectrum imaging resolves inflammation-associated cellularity and vasogenic oedema in addition to accounting for partial volume effects resulting from cerebrospinal fluid contamination, and crossing fibres. Quantitative histological analysis of autopsied multiple sclerosis spinal cord specimens supported that diffusion basis spectrum imaging-determined cellularity, axon and myelin injury metrics closely correlated with those pathologies identified and quantified by conventional histological staining. We demonstrated in healthy control subjects that diffusion basis spectrum imaging rectified inaccurate assessments of diffusion properties of white matter tracts by diffusion tensor imaging in the presence of cerebrospinal fluid contamination and/or crossing fibres. In multiple sclerosis patients, we report that diffusion basis spectrum imaging quantitatively characterized the distinct pathologies underlying gadolinium-enhanced lesions, persistent black holes, non-enhanced lesions and non-black hole lesions, a task yet to be demonstrated by other neuroimaging approaches. Diffusion basis spectrum imaging-derived radial diffusivity (myelin integrity marker) and non-restricted isotropic diffusion fraction (oedema marker) correlated with magnetization transfer ratio, supporting previous reports that magnetization transfer ratio is sensitive not only to myelin integrity, but also to inflammation-associated oedema. Our results suggested that diffusion basis spectrum imaging-derived quantitative biomarkers are highly consistent with histology findings and hold promise to accurately characterize the heterogeneous white matter pathology in multiple sclerosis patients. Thus, diffusion basis spectrum imaging can potentially serve as a non-invasive outcome measure to assess treatment effects on the specific components of underlying pathology targeted by new multiple sclerosis therapies.
Collapse
Affiliation(s)
- Yong Wang
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Peng Sun
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Qing Wang
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Kathryn Trinkaus
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Robert E Schmidt
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Robert T Naismith
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Anne H Cross
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Sheng-Kwei Song
- 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA 1 Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| |
Collapse
|