51
|
Mc Mahon B, Andersen SB, Madsen MK, Hjordt LV, Hageman I, Dam H, Svarer C, da Cunha-Bang S, Baaré W, Madsen J, Hasholt L, Holst K, Frokjaer VG, Knudsen GM. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder. Brain 2016; 139:1605-14. [DOI: 10.1093/brain/aww043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/28/2016] [Indexed: 11/14/2022] Open
|
52
|
Meyer C, Muto V, Jaspar M, Kussé C, Lambot E, Chellappa SL, Degueldre C, Balteau E, Luxen A, Middleton B, Archer SN, Collette F, Dijk DJ, Phillips C, Maquet P, Vandewalle G. Seasonality in human cognitive brain responses. Proc Natl Acad Sci U S A 2016; 113:3066-71. [PMID: 26858432 PMCID: PMC4801294 DOI: 10.1073/pnas.1518129113] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations.
Collapse
Affiliation(s)
- Christelle Meyer
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Vincenzo Muto
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Psychology: Cognition and Behavior, University of Liège, 4000 Liège, Belgium
| | - Mathieu Jaspar
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Psychology: Cognition and Behavior, University of Liège, 4000 Liège, Belgium
| | - Caroline Kussé
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Erik Lambot
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Sarah L Chellappa
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Christian Degueldre
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Evelyne Balteau
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - André Luxen
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium
| | - Benita Middleton
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XP Guildford, United Kingdom
| | - Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XP Guildford, United Kingdom
| | - Fabienne Collette
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Psychology: Cognition and Behavior, University of Liège, 4000 Liège, Belgium
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XP Guildford, United Kingdom
| | - Christophe Phillips
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium
| | - Pierre Maquet
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium; Department of Neurology, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Research-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 4000 Liège, Belgium;
| |
Collapse
|