51
|
Wang S, Zhao M, Li T, Zhang C, Zhou J, Wang M, Wang X, Ma K, Luan G, Guan Y. Long-term efficacy and cognitive effects of bilateral hippocampal deep brain stimulation in patients with drug-resistant temporal lobe epilepsy. Neurol Sci 2021; 42:225-233. [PMID: 32632633 DOI: 10.1007/s10072-020-04554-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Temporal lobe epilepsy patients treated with hippocampal deep brain stimulation (Hip-DBS) have rarely been reported before. Preoperative and postoperative cognitive function is seldom analyzed. METHODS Seven patients with drug-resistant temporal lobe epilepsy were included in this study. Bilateral Hip-DBS was performed in these patients. The stimulator was activated 1 month after the implantation. Then, the patients returned for further adjustments 4 months after the surgery and reprogramming every year. The seizure frequency, Wechsler Adult Intelligence Scale-IV, and Wechsler memory scale-IV were assessed blindly as the outcomes at each follow-up. RESULTS After a mean 48-month follow-up, the mean seizure frequency significantly decreased (p = 0.011, paired t test; decrease of 78.1%). One patient (14.3%) was seizure-free by the last follow-up; six of seven (85.7%) patients had reductions in seizure frequency of at least 50%; one patient (14.3%) who did not comply with the antiepileptic drug instructions had a less than 50% reduction in seizure frequency. In addition, there were no significant decreases in intelligence or verbal and visual memory from baseline to the last follow-up (p = 0.736, paired t test; p = 0.380, paired t test, respectively). CONCLUSION Hip-DBS could provide acceptable long-term efficacy and safety. For patients with drug-resistant temporal lobe epilepsy who are not suitable for resective surgery, Hip-DBS could become a potential therapeutic option.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Meng Zhao
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China
| | - Chunsheng Zhang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyang Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Kaiqiang Ma
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
52
|
A Review of Accelerated Long-Term Forgetting in Epilepsy. Brain Sci 2020; 10:brainsci10120945. [PMID: 33297371 PMCID: PMC7762289 DOI: 10.3390/brainsci10120945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Accelerated long-term forgetting (ALF) is a memory disorder that manifests by a distinct pattern of normal memory for up to an hour after learning, but an increased rate of forgetting during the subsequent hours and days. The topic of ALF has gained much attention in group studies with epilepsy patients and the phenomenon has been shown to have contradictory associations with seizures, epileptiform activity, imaging data, sleep, and antiepileptic medication. The aim of this review was to explore how clinical and imaging data could help determine the topographic and physiological substrate of ALF, and what is the possible use of this information in the clinical setting. We have reviewed 51 group studies in English to provide a synthesis of the existing findings concerning ALF in epilepsy. Analysis of recently reported data among patients with temporal lobe epilepsy, transient epileptic amnesia, and generalized and extratemporal epilepsies provided further indication that ALF is likely a disorder of late memory consolidation. The spatial substrate of ALF might be located along the parts of the hippocampal-neocortical network and novel studies reveal the increasingly possible importance of damage in extrahippocampal sites. Further research is needed to explore the mechanisms of cellular impairment in ALF and to develop effective methods of care for patients with the disorder.
Collapse
|
53
|
Lin Q, Chen J, Zheng X, Zhang Y, Tao X, Ye J. Circular RNA Circ_ANKMY2 Regulates Temporal Lobe Epilepsy Progression via the miR-106b-5p/FOXP1 Axis. Neurochem Res 2020; 45:3034-3044. [PMID: 33095438 DOI: 10.1007/s11064-020-03151-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
Temporal lobe epilepsy (TLE) is common intractable epilepsy that affects the patient's lives. The circular RNA circ_ANKMY2 (circ_ANKMY2) has been reported to be abnormally expressed in TLE. Nevertheless, the role and mechanism of circ_ANKMY2 in TLE are unclear. A human neuroblastoma cell line (SK-N-AS) was used for a series of studies. Expression levels of circ_ANKMY2, miR-106b-5p, and Forkhead Box Protein 1 (FOXP1) mRNA in TLE tissues were assessed through quantitative real-time polymerase chain reaction (qRT-PCR). Cell colony formation, proliferation, and apoptosis were determined by cell colony formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), or flow cytometry assays. The levels of FOXP1 protein, Ki67, B cell lymphoma (Bcl-2), Bcl-2 Associated X (Bax), and Cleaved caspase-3 were evaluated by western blot analysis. The relationship between circ_ANKMY2 or FOXP1 and miR-106b-5p was verified with dual-luciferase reporter assay. We observed that circ_ANKMY2 and FOXP1 expression were reduced while miR-106b-5p expression was increased in TLE tissues. Overexpression of circ_ANKMY2 decreased spontaneous recurrent seizures (SRSs) in rat TLE model and blocked cell colony formation, proliferation, and induced cell apoptosis in SK-N-AS cells. Importantly, circ_ANKMY2 was verified as a sponge for miR-106b-5p. In addition, miR-106b-5p mimics abolished circ_ANKMY2 elevation-mediated effects on colony formation, proliferation, and apoptosis of SK-N-AS cells. Also, FOXP1 served as a target for miR-106b-5p. And FOXP1 silencing overturned the effects of miR-106b-5p inhibitors on the colony formation, proliferation, and apoptosis of SK-N-AS cells. In sum, circ_ANKMY2 modulated TLE advancement via regulation of FOXP1 expression through sponging miR-106b-5p, and circ_ANKMY2 might be an underlying target for the improvement of TLE.
Collapse
Affiliation(s)
- Qing Lin
- Department of Neurology, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou, 318020, Zhejiang, China
| | - Jinying Chen
- Department of Neurology, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou, 318020, Zhejiang, China
| | - Xian Zheng
- Department of Neurology, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou, 318020, Zhejiang, China
| | - Yi Zhang
- Department of Neurology, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou, 318020, Zhejiang, China
| | - Xiaoxiao Tao
- Department of Neurology, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou, 318020, Zhejiang, China
| | - Jiamei Ye
- Department of Neurology, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou, 318020, Zhejiang, China.
| |
Collapse
|
54
|
Benevides RDDL, de-Lima SMV, Chagas CL, de Lima CF, Abadie-Guedes R, Guedes RCA. Lactation in large litters influences anxiety, memory, and spreading depression in adult male rats that were chronically subjected to a non-convulsive pilocarpine dose. Nutr Neurosci 2020; 25:846-856. [PMID: 32912080 DOI: 10.1080/1028415x.2020.1819103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: Unfavorable lactation influences brain excitability and behavioral reactions in adults. Administration early in life of the cholinergic agonist, pilocarpine, even at non-convulsive doses, alters the brain excitability-related phenomenon known as cortical spreading depression (CSD), and produce anxiogenic-like behavior. However, the influence of unfavorable lactation on the CSD- and memory-effects of pilocarpine administration late in life has not been investigated. Herein, we analyzed the ponderal, electrophysiological (CSD), and behavioral effects of chronic treatment with a non-convulsive dose of pilocarpine, in adult rats suckled under favorable and unfavorable conditions.Methods: Wistar rats were suckled in litters with 9 or 15 pups (groups L9 and L15, respectively). A very low dose of pilocarpine (45/mg/kg/day) was chronically administered in mature rats from postnatal day (PND) 69-90. Behavioral tests occurred at PND91 [elevated plus maze (EPM)], PND93 [open field (OF)], and PND94-95 [object recognition memory (ORM)]. CSD was recorded between PND96-120.Results: Pilocarpine-treated rats performed worse in the anxiety and memory tests, and displayed lower CSD propagation velocity when compared with saline-treated controls. In addition, L15 rats showed an increase in the distance traveled and a decrease in the immobility time in the EPM, impaired ORM, and accelerated CSD propagation when compared with L9 rats (p ≤ 0.05).Discussion: These data suggest that sub-convulsive pilocarpine treatment in adult rats can affect behavioral and excitability-related reactions. In addition, unfavorable lactation increases the ambulatory effects of pilocarpine. Further studies should investigate the possible cholinergic molecular mechanisms involved in these effects.
Collapse
Affiliation(s)
| | | | - Camila Lima Chagas
- Department of Nutrition, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Clara Farah de Lima
- Department of Nutrition, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
55
|
Roger E, Torlay L, Gardette J, Mosca C, Banjac S, Minotti L, Kahane P, Baciu M. A machine learning approach to explore cognitive signatures in patients with temporo-mesial epilepsy. Neuropsychologia 2020; 142:107455. [DOI: 10.1016/j.neuropsychologia.2020.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
|
56
|
Batouli SAH, Alemi R, Khoshkhouy Delshad H, Oghabian MA. The influence of mental fatigue on the face and word encoding activations. Clin Neurol Neurosurg 2020; 189:105626. [DOI: 10.1016/j.clineuro.2019.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
|
57
|
Höller Y, Höhn C, Schwimmbeck F, Plancher G, Trinka E. Effects of Antiepileptic Drug Tapering on Episodic Memory as Measured by Virtual Reality Tests. Front Neurol 2020; 11:93. [PMID: 32153492 PMCID: PMC7045343 DOI: 10.3389/fneur.2020.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Antiepileptic drugs impair episodic memory in patients with epilepsy, but this effect has so far only been examined with tests that do not provide first-person experience-an aspect that is crucial for episodic memory. Virtual reality techniques facilitate the development of ecologically valid tests. In the present study, we measure the effect of antiepileptic drug changes in a within-subject design using a virtual reality test in order to provide direct evidence for effects of antiepileptic drugs on episodic memory. Among 106 recruited patients, 97 participated in a virtual reality test up to six times during a 4-day hospitalization, and 78 patients underwent changes in drug load during this period. There were six parallel versions of a virtual town test, with immediate recall and delayed recall after about 12 h. The test requires recall of elements, details, sequence of experience, and egocentric and allocentric spatial memory. We determined drug load by defined daily dose, and compared test performance at lowest antiepileptic drug load to highest antiepileptic drug load. Across the six towns, performance was lower in delayed compared to immediate recall. There was an overall effect of medication when comparing patients taking vs. not taking antiepileptic drugs and/or psychoactive drugs (p = 0.005). Furthermore, there was a within-subject effect of antiepileptic drug load (p = 0.01), indicating lower test performance at higher drug load. There was no effect of gender, daytime, circadian type, depression, seizures, lesions, and epilepsy. For patients with temporal lobe epilepsy, there was no effect of lateralization. The present study provides direct evidence for episodic memory impairment due to antiepileptic drugs, suggesting that a small change in drug load can matter. This study can serve as a proof of principle for the methodology, but a larger sample is needed to examine the differential effects of individual antiepileptic drugs.
Collapse
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland.,Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Christopher Höhn
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Fabian Schwimmbeck
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Gaën Plancher
- Laboratoire EMC, Mémoire, Émotion et Action, Université Lumiére Lyon 2, Lyon, France
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
58
|
Role of c-Jun N-Terminal Kinases (JNKs) in Epilepsy and Metabolic Cognitive Impairment. Int J Mol Sci 2019; 21:ijms21010255. [PMID: 31905931 PMCID: PMC6981493 DOI: 10.3390/ijms21010255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Previous studies have reported that the regulatory function of the different c-Jun N-terminal kinases isoforms (JNK1, JNK2, and JNK3) play an essential role in neurological disorders, such as epilepsy and metabolic-cognitive alterations. Accordingly, JNKs have emerged as suitable therapeutic strategies. In fact, it has been demonstrated that some unspecific JNK inhibitors exert antidiabetic and neuroprotective effects, albeit they usually show high toxicity or lack therapeutic value. In this sense, natural specific JNK inhibitors, such as Licochalcone A, are promising candidates. Nonetheless, research on the understanding of the role of each of the JNKs remains mandatory in order to progress on the identification of new selective JNK isoform inhibitors. In the present review, a summary on the current gathered data on the role of JNKs in pathology is presented, as well as a discussion on their potential role in pathologies like epilepsy and metabolic-cognitive injury. Moreover, data on the effects of synthetic small molecule inhibitors that modulate JNK-dependent pathways in the brain and peripheral tissues is reviewed.
Collapse
|
59
|
Canzian J, Müller TE, Franscescon F, Michelotti P, Fontana BD, Costa FV, Rosemberg DB. Modeling psychiatric comorbid symptoms of epileptic seizures in zebrafish. J Psychiatr Res 2019; 119:14-22. [PMID: 31542703 DOI: 10.1016/j.jpsychires.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/31/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterized by recurrent unprovoked seizures. Anxiety, cognitive deficits, depressive-like symptoms, and social dysfunction are psychiatric comorbidities with high prevalence in epileptic patients. Due to the genetic and behavioral tractability, the zebrafish is a promising model organism to understand the neural bases involved in epilepsy-related comorbidities. Here, we aimed to characterize some behavioral phenotypes paralleling those observed in epilepsy-related comorbidities after a single pentylenetetrazole (PTZ) exposure in zebrafish. We also analyzed the influence of whole-body cortisol levels in the behavioral responses measured. Fish were exposed to 10 mM PTZ for 20 min to induce epileptic seizures. After 24 h recovery period, locomotion and anxiety-like responses (novel tank and light-dark tests), social interaction (shoaling behavior task), and memory retention (inhibitory avoidance protocol) were assessed. Basically, PTZ impaired habituation to novelty stress, evoked anxiogenic-like behaviors, disrupted shoaling, and caused memory consolidation deficits in zebrafish without changing whole-body cortisol levels. In conclusion, our novel findings further validate the use of zebrafish as a suitable tool for modeling epilepsy-related comorbidities in translational neuropsychiatric research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Paula Michelotti
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
60
|
Brennan EKW, Ahmed OJ. Ripple While You Walk, and You May Get Lost: Pathological High-Frequency Activity Can Alter Spatial Navigation Circuits. Epilepsy Curr 2019; 19:344-346. [PMID: 31476918 PMCID: PMC6864566 DOI: 10.1177/1535759719871275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Impact of Pathological High-frequency Oscillations on Hippocampal Network Activity in Rats With Chronic Epilepsy. Ewell LA, Fischer KB, Leibold C, Leutgeb S, Leutgeb JK. eLIFE. 2019;8:pii: e42148. doi:10.7554/eLife.42148. PMID: 30794155 In epilepsy, brain networks generate pathological high-frequency oscillations (pHFOs) during interictal periods. To understand how pHFOs differ from normal oscillations in overlapping frequency bands and potentially perturb hippocampal processing, we performed high-density single unit and local field potential recordings from hippocampi of behaving rats with and without chronic epilepsy. In epileptic animals, we observed 2 types of co-occurring fast oscillations that by comparison to control animals could be classified as “ripple-like” or “pHFO.” We compared their spectral characteristics, brain state dependence, and cellular participants. Strikingly, pHFO occurred irrespective of brain state, were associated with interictal spikes, engaged distinct subnetworks of principal neurons compared to ripple-like events, increased the sparsity of network activity, and initiated both general and immediate disruptions in spatial information coding. Taken together, our findings suggest that events that result in pHFOs have an immediate impact on memory processes, corroborating the need for proper classification of pHFOs to facilitate therapeutic interventions that selectively target pathological activity.
Collapse
|
61
|
Butler AA, Sanchez RG, Jarome TJ, Webb WM, Lubin FD. O-GlcNAc and EZH2-mediated epigenetic regulation of gene expression during consolidation of fear memories. ACTA ACUST UNITED AC 2019; 26:373-379. [PMID: 31416910 PMCID: PMC6699408 DOI: 10.1101/lm.049023.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
O-GlcNAcylation of serine/threonine residues on target proteins occurs dynamically in postmitotic neurons of the hippocampus and may serve to control both the stability and activity of target proteins. Remarkably, the addition and removal of the O-GlcNAc posttranslational modifications are catalyzed by a pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). More than thousands of proteins are modified by O-GlcNAcylation including epigenetic modifying enzymes. A critical target of OGT is the polycomb repressive complex 2 (PRC2) containing the histone lysine methyltransferase EZH2 that mediates trimethylation of lysine 27 on histone H3 (H3K27me3). However, whether OGT and PRC2 activity in the hippocampus couple to regulate gene transcription mechanisms during memory consolidation remains unknown. Here, we found increases in OGT expression and global O-GlcNAcylation levels in dorsal area CA1 of the hippocampus during memory consolidation. Additionally, we observed that OGT exerts control over epigenetic regulation via EZH2-H3K27me3 during memory consolidation. Blocking O-GlcNAc signaling via RNAi within dorsal area CA1 led to the global and site-specific loss of activity-dependent epigenetic plasticity at genes regulated by H3K27me3 and impairment of hippocampus-dependent memory. Together, these findings illustrate a unique epigenetic role of OGT via regulation of histone methylation mediated by EZH2 during memory consolidation of fear conditioned memories.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, the University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Richard G Sanchez
- Department of Neurobiology, the University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Timothy J Jarome
- Department of Neurobiology, the University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - William M Webb
- Department of Neurobiology, the University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, the University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
62
|
Ramm M, Möddel G, Sundermann B, Last A, Langenbruch L, Jungilligens J, Wellmer J, Young P, Axmacher N. Impaired processing of response conflicts in mesial temporal lobe epilepsy. J Neuropsychol 2019; 14:283-300. [PMID: 31207105 DOI: 10.1111/jnp.12186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Increasing evidence from neuroimaging studies points towards a hippocampal role in resolving approach-avoidance goal conflicts. Furthermore, previous neuroimaging findings suggest that the hippocampus (HC) contributes to successful conflict resolution as it is measured, for example, in a Stroop paradigm. However, it is still an open question whether the hippocampus is indeed causally relevant for resolving cognitive conflicts. Here, we investigated whether conflict resolution performance is affected by hippocampal pathology. N = 30 patients with mesial temporal lobe epilepsy (MTLE), almost exclusively showing MRI signs of hippocampal sclerosis, and an equal number of age-matched healthy controls performed an auditory Stroop paradigm. Participants listened to the words 'high' and 'low', spoken in either a high or a low pitch. Subjects' response time and accuracy to the phonetic information in the presence of incongruent (conflict trials) or congruent (non-conflict trials) semantic information were assessed. In addition, patients' regional grey matter (GM) brain volumes were analysed. We observed an increased effect of conflict on accuracy in patients with MTLE compared to healthy controls. This effect was negatively correlated with right HC volume. The results suggest that the impairment in the resolution of a response conflict is related to hippocampal structural integrity and thus add further support to the notion that the HC is not only involved but even causally relevant for successful cognitive conflict processing.
Collapse
Affiliation(s)
- Markus Ramm
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.,Institute of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Germany
| | - Gabriel Möddel
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Germany
| | | | - Annegret Last
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Germany
| | - Johannes Jungilligens
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Germany
| | - Jörg Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Germany
| | - Peter Young
- Institute of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
63
|
Moxon KA, Shahlaie K, Girgis F, Saez I, Kennedy J, Gurkoff GG. From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol Dis 2019; 129:169-181. [PMID: 30798003 DOI: 10.1016/j.nbd.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Fady Girgis
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America
| | - Ignacio Saez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Jeffrey Kennedy
- Department of Neurology, University of California Davis, Sacramento, CA 95817, United States of America
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| |
Collapse
|
64
|
Almahozi A, Alsaaid M, Bin Jabal S, Kamal A. Retrieval-Induced Forgetting in a Pentylenetetrazole-Induced Epilepsy Model in the Rat. Brain Sci 2018; 8:brainsci8120215. [PMID: 30563173 PMCID: PMC6316546 DOI: 10.3390/brainsci8120215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 11/20/2022] Open
Abstract
The selective retrieval of some information may lead to the forgetting of related, but non-retrieved information. This memory phenomenon is termed retrieval-induced forgetting (RIF). Active inhibition is thought to function to resolve interference from competing information during retrieval, which results in forgetting. Epilepsy is associated with impaired inhibitory control that contributes to executive dysfunction. The purpose of this study is to investigate whether rats in a kindling model of epilepsy demonstrate normal levels of RIF. Rats were divided into two groups: saline and kindling. Pentylenetetrazole was injected intraperitoneally until the rats kindled. RIF was tested using a modified version of the spontaneous object recognition test, consisting of a sample phase, retrieval or interference phase, and a test phase. Exploration time for each object was analyzed. RIF was demonstrated in the saline group when rats subjected to the retrieval phase failed to discriminate between the familiar object and the novel object later in the test phase. Kindled rats, on the other hand, did not suffer forgetting even when they were subjected to the retrieval phase, as they spent significantly longer times exploring the novel rather than the familiar object in the test phase. Therefore, RIF was not observed in the kindling group. These findings indicate impaired retrieval-induced forgetting in kindled rats, which may be suggestive of a deficit in the inhibitory control of memory.
Collapse
Affiliation(s)
- Ahmad Almahozi
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| | - Maan Alsaaid
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| | - Saeed Bin Jabal
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| | - Amer Kamal
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| |
Collapse
|
65
|
van Schalkwijk FJ, Ricci M, Nikpour A, Miller LA. The impact of sleep characteristics and epilepsy variables on memory performance in patients with focal seizures. Epilepsy Behav 2018; 87:152-158. [PMID: 30097340 DOI: 10.1016/j.yebeh.2018.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 11/19/2022]
Abstract
Disturbed sleep can negatively affect overnight memory retention as well as new learning the subsequent day. In healthy participants, positive associations between memory performance and sleep characteristics (e.g., time spent in slow-wave sleep [SWS]) have been detected. In a previous study, we found that SWS was much reduced in patients with focal seizures, but when correlations between memory complaints and various sleep characteristics were considered, the only significant relationship was with the time to onset of rapid eye movement (REM) sleep (i.e., REM latency). In this study, we investigated the relationships between sleep, epilepsy, and objective memory performance variables. Twenty-five patients with focal seizures had their memory tested while undergoing a two-day ambulatory electroencephalography (EEG). The sleep variables of interest were the percentage of time spent in SWS (%SWS) and REM latency. Epilepsy variables included the presence of (1) seizures, (2) interictal epileptiform discharges, and/or (3) hippocampal lesions as well as site of seizure origin (temporal vs extratemporal). Overnight retention (of autobiographical events, a story, and a complex geometric figure) and the ability to learn a word list on day 2 were the measures of memory. A significant positive correlation was found between word-list learning and %SWS during the previous night. A significant negative correlation was observed between REM latency and overnight retention of autobiographical events. Overnight retention scores for the story and geometric figure were not related to sleep characteristics but were negatively affected by the presence of epileptiform activity. Story retention was also worse for temporal lobe epilepsy (TLE) than for patients with extratemporal epilepsy (ETE). Those with hippocampal lesions were more impaired than those without lesions on word-list learning, autobiographical events' retention, and story retention. When multiple contributing factors were entered into regression analyses, %SWS was found to be the best predictor of subsequent word-list learning, whereas the presence of a hippocampal lesion was the best predictor of overnight retention of autobiographical events and a story. These findings provide further evidence of the ways in which particular sleep characteristics are associated with memory and suggest that treatment of sleep disturbances in patients with epilepsy might be helpful for improving their performance.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria; Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Monica Ricci
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia; ARC Centre of Excellence in Cognition and Its Disorders, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Armin Nikpour
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia; ARC Centre of Excellence in Cognition and Its Disorders, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Laurie A Miller
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, Australia; ARC Centre of Excellence in Cognition and Its Disorders, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
66
|
Cano-López I, Calvo A, Boget T, Carreño M, Donaire A, Setoain X, Pintor L, Rumià J, González-Bono E, Junqué C, Bargalló N. Typical asymmetry in the hemispheric activation during an fMRI verbal comprehension paradigm is related to better performance in verbal and non-verbal tasks in patients with epilepsy. Neuroimage Clin 2018; 20:742-752. [PMID: 30238918 PMCID: PMC6154460 DOI: 10.1016/j.nicl.2018.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
Chronic exposure to seizures in patients with left hemisphere (LH) epileptic focus could favor higher activation in the contralateral hemisphere during language processing, but the cognitive effects of this remain unclear. This study assesses the relationship between asymmetry in hemispheric activation during language fMRI and performance in verbal and non-verbal tasks. Whereas prior studies primarily used fMRI paradigms that favor frontal lobe activation and less prominent activation of the medial or superior temporal lobes, we used a verbal comprehension paradigm previously demonstrated to activate reliably receptive language areas. Forty-seven patients with drug-resistant epilepsy candidates for surgery underwent a multidisciplinary assessment, including a comprehensive neuropsychological evaluation and an fMRI verbal comprehension paradigm. Patients were distributed in two groups depending on laterality indexes (LI): typical hemispheric asymmetry (unilateral left activation preponderance; n = 23) and atypical hemispheric asymmetry (bilateral or unilateral right preponderance; n = 24). Right-handedness and right hemisphere (RH) focus were significant predictors of typical asymmetry. Patients with typical activation pattern presented better performance intelligence quotient and verbal learning than patients with atypical hemispheric asymmetry (for all, p < 0.014). Patients with LH focus had more frequently atypical hemispheric asymmetry than patients with RH focus (p = 0.05). Specifically, they showed lower LI and this was related to worse performance in verbal and non-verbal tasks. In conclusion, an increased activation of homologous RH areas for verbal comprehension processing could imply a competition of cognitive resources in the performance of the same task, disrupting cognitive performance.
Collapse
Affiliation(s)
- Irene Cano-López
- IDOCAL/Department of Psychobiology, Psychology Center, University of Valencia, Valencia, Spain.
| | - Anna Calvo
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Teresa Boget
- Epilepsy Unit, Department of Psychiatry, Hospital Clínic, Barcelona, Spain
| | - Mar Carreño
- Epilepsy Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - Antonio Donaire
- Epilepsy Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - Xavier Setoain
- Epilepsy Unit, Department of Nuclear Medicine, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Luis Pintor
- Epilepsy Unit, Department of Psychiatry, Hospital Clínic, Barcelona, Spain
| | - Jordi Rumià
- Epilepsy Unit, Department of Neurosurgery, Hospital Clínic, Barcelona, Spain
| | - Esperanza González-Bono
- IDOCAL/Department of Psychobiology, Psychology Center, University of Valencia, Valencia, Spain
| | - Carme Junqué
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, Barcelona, Spain
| | - Núria Bargalló
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Epilepsy Unit, Department of Radiology, Hospital Clínic, Barcelona, Spain
| |
Collapse
|