51
|
Roberson S, Halpern ME. Convergence of signaling pathways underlying habenular formation and axonal outgrowth in zebrafish. Development 2017; 144:2652-2662. [PMID: 28619821 DOI: 10.1242/dev.147751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022]
Abstract
The habenular nuclei are a conserved integrating center in the vertebrate epithalamus, where they modulate diverse behaviors. Despite their importance, our understanding of habenular development is incomplete. Time-lapse imaging and fate mapping demonstrate that the dorsal habenulae (dHb) of zebrafish are derived from dbx1b-expressing (dbx1b+ ) progenitors, which transition into cxcr4b-expressing neuronal precursors. The precursors give rise to differentiated neurons, the axons of which innervate the midbrain interpeduncular nucleus (IPN). Formation of the dbx1b+ progenitor population relies on the activity of the Shh, Wnt and Fgf signaling pathways. Wnt and Fgf function additively to generate dHb progenitors. Surprisingly, Wnt signaling also negatively regulates fgf8a, confining expression to a discrete dorsal diencephalic domain. Moreover, the Wnt and Fgf pathways have opposing roles in transcriptional regulation of components of the Cxcr4-chemokine signaling pathway. The chemokine pathway, in turn, directs the posterior outgrowth of dHb efferents toward the IPN and, when disrupted, results in ectopic, anteriorly directed axonal projections. The results define a signaling network underlying the generation of dHb neurons and connectivity with their midbrain target.
Collapse
Affiliation(s)
- Sara Roberson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA .,Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| |
Collapse
|
52
|
Chilton JK, Guthrie S. Axons get ahead: Insights into axon guidance and congenital cranial dysinnervation disorders. Dev Neurobiol 2017; 77:861-875. [DOI: 10.1002/dneu.22477] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/12/2022]
Affiliation(s)
- John K. Chilton
- Wellcome Wolfson Centre for Medical Research; University of Exeter Medical School, Wellcome-Wolfson Centre for Medical Research; Exeter EX2 5DW United Kingdom
| | - Sarah Guthrie
- School of Life Sciences; University of Sussex; Falmer Brighton, BN1 9QG
| |
Collapse
|
53
|
Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist 2017; 23:627-648. [PMID: 29283028 DOI: 10.1177/1073858416685690] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.
Collapse
Affiliation(s)
- Tianci Chu
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B E Shields
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yi Ping Zhang
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Shi-Qing Feng
- 3 Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Jun Cai
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
54
|
Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma? Neuropsychopharmacology 2017; 42:99-114. [PMID: 27629365 PMCID: PMC5143500 DOI: 10.1038/npp.2016.198] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
The brain and the immune system are not fully formed at birth, but rather continue to mature in response to the postnatal environment. The two-way interaction between the brain and the immune system makes it possible for childhood psychosocial stressors to affect immune system development, which in turn can affect brain development and its long-term functioning. Drawing from experimental animal models and observational human studies, we propose that the psychoneuroimmunology of early-life stress can offer an innovative framework to understand and treat psychopathology linked to childhood trauma. Early-life stress predicts later inflammation, and there are striking analogies between the neurobiological correlates of early-life stress and of inflammation. Furthermore, there are overlapping trans-diagnostic patterns of association of childhood trauma and inflammation with clinical outcomes. These findings suggest new strategies to remediate the effect of childhood trauma before the onset of clinical symptoms, such as anti-inflammatory interventions and potentiation of adaptive immunity. Similar strategies might be used to ameliorate the unfavorable treatment response described in psychiatric patients with a history of childhood trauma.
Collapse
|
55
|
Kim S, Cho YS, Kim HM, Chung O, Kim H, Jho S, Seomun H, Kim J, Bang WY, Kim C, An J, Bae CH, Bhak Y, Jeon S, Yoon H, Kim Y, Jun J, Lee H, Cho S, Uphyrkina O, Kostyria A, Goodrich J, Miquelle D, Roelke M, Lewis J, Yurchenko A, Bankevich A, Cho J, Lee S, Edwards JS, Weber JA, Cook J, Kim S, Lee H, Manica A, Lee I, O'Brien SJ, Bhak J, Yeo JH. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly. Genome Biol 2016; 17:211. [PMID: 27802837 PMCID: PMC5090899 DOI: 10.1186/s13059-016-1071-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. RESULTS We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. CONCLUSIONS Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.
Collapse
Affiliation(s)
- Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Yun Sung Cho
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea
| | - Hak-Min Kim
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Oksung Chung
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea
| | - Hyunho Kim
- Geromics, Ulsan, 44919, Republic of Korea
| | - Sungwoong Jho
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea
| | - Hong Seomun
- Animal Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jeongho Kim
- Cheongju Zoo, Cheongju, 28311, Republic of Korea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Changmu Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Junghwa An
- Animal Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Chang Hwan Bae
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Youngjune Bhak
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungwon Jeon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyejun Yoon
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yumi Kim
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - JeHoon Jun
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea.,Geromics, Ulsan, 44919, Republic of Korea
| | - HyeJin Lee
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea.,Geromics, Ulsan, 44919, Republic of Korea
| | - Suan Cho
- Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea.,Geromics, Ulsan, 44919, Republic of Korea
| | - Olga Uphyrkina
- Institute of Biology & Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Aleksey Kostyria
- Institute of Biology & Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | | | - Dale Miquelle
- Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY, 10460, USA.,Department of Ecology, Far Eastern Federal University, Ayaks, Russki Island, Vladivostok, 690950, Russia
| | - Melody Roelke
- Laboratory of Animal Sciences Program, Leídos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - John Lewis
- International Zoo Veterinary Group (UK) IZVG LLP, Station House, Parkwood Street, Keighley, BD21 4NQ, UK
| | - Andrey Yurchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, 199004, Russia
| | - Anton Bankevich
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Juok Cho
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Semin Lee
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeremy S Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessica A Weber
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jo Cook
- Zoological Society of London, London, NW1 4RY, UK
| | - Sangsoo Kim
- Department of Bioinformatics & Life Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Hang Lee
- Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Ilbeum Lee
- Daejeon O-World, Daejeon, 35073, Republic of Korea
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, 199004, Russia. .,Oceanographic Center 8000 N. Ocean Drive, Nova Southeastern University, Ft Lauderdale, FL, 33004, USA.
| | - Jong Bhak
- The Genomics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Personal Genomics Institute, Genome Research Foundation, Cheongju, 28160, Republic of Korea. .,Geromics, Ulsan, 44919, Republic of Korea.
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| |
Collapse
|
56
|
López Tobón A, Shah B. Commentary: Coordinating Thalamocortical Connections and Interneuron Migration in the Mammalian Cortex: Role of the Intermediates. Front Cell Neurosci 2016; 10:82. [PMID: 27065806 PMCID: PMC4814548 DOI: 10.3389/fncel.2016.00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/16/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro López Tobón
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-UniversitätMünster, Germany; Department of Experimental Oncology, European Institute of Oncology (IEO), Institute of Molecular Oncology Foundation and European Institute of Oncology Campus (IFOM-IEO Campus)Milan, Italy
| | - Bhavin Shah
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|
57
|
Zhang W, Sun JZ, Han Y, Chen J, Liu H, Wang Y, Yue B, Chen Y. CXCL12/CXCR4 signaling pathway regulates cochlear development in neonatal mice. Mol Med Rep 2016; 13:4357-64. [PMID: 27052602 DOI: 10.3892/mmr.2016.5085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotactic cytokines (chemokines) are a highly conserved class of secreted signaling molecules that are important in various cellular processes. CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4) have been previously reported to be crucial for the establishment of neural networks in different neuronal systems. However, it is unclear whether the CXCL12/CXCR4 signaling pathway regulates the development of the cochlea. The current study investigated the effects of the CXCL12/CXCR4 signaling pathway on cochlear development in neonatal mice. The expression levels of CXCL12 and CXCR4 were detected using immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrating that CXCL12 and CXCR4 expression were significantly increased during cochlear development in neonatal mice. Treatment of spiral ganglion neurons with CXCL12 significantly decreased the protein expression levels of caspase‑3 and cleaved caspase‑3, indicating that CXCL12/CXCR4 signaling increased cell survival of spiral ganglion neurons. Furthermore, CXCL12 treatment significantly increased the number and length of neurites extending from spiral ganglion neurons. By contrast, the in vitro effects of CXCL12 were significantly abrogated by AMD100, a CXCR4 antagonist. Additionally, inhibiting CXCL12/CXCR4 signaling in neonatal mice significantly reduced the cell number and altered the morphology of spiral ganglion neurons in vivo. Thus, the present study indicates that the CXCL12/CXCR4 signaling pathway is important during the development of cochleae in neonatal mice.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ji-Zhou Sun
- Department of Otolaryngology, Xi'an XD Group Hospital, Xi'an, Shaanxi 710077, P.R. China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hui Liu
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ye Wang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Yue
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
58
|
Nam H, Lee S. Identification of STAM1 as a novel effector of ventral projection of spinal motor neurons. Development 2016; 143:2334-43. [DOI: 10.1242/dev.135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
During spinal cord development, motor neuron (MN) axons exit the spinal cord ventrally, although the molecular basis for this process remains poorly understood. STAM1 and Hrs form a complex involved with endosomal targeting of cargo proteins, including the chemokine receptor CXCR4. Interestingly, the absence of CXCR4 signaling in spinal MNs is known to enforce improper extension of the axons into the dorsal side of the spinal cord. Here we report that the MN-specific Isl1-Lhx3 complex directly transactivates the Stam1 gene and STAM1 functions in determining the ventral spinal MN axonal projections. STAM1 is co-expressed with Hrs in embryonic spinal MNs, and knock-down of STAM1 in the developing chick spinal cord results in down-regulation of the expression of CXCR4, accompanied by dorsally projecting motor axons. Interestingly, overexpression of STAM1 or CXCR4 also results in dorsal projection of motor axons, suggesting that proper CXCR4 protein level is critical for the ventral motor axon trajectory. Our results reveal a critical regulatory axis for the ventral axonal trajectory of developing spinal MNs, consisting of the Isl1-Lhx3 complex, STAM1 and CXCR4.
Collapse
Affiliation(s)
- Heejin Nam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
59
|
Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling. J Neurosci 2015; 35:13053-63. [PMID: 26400936 DOI: 10.1523/jneurosci.1488-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons via the cognate receptor CXCR4. This paracrine signal may ensure thalamocortical connectivity and dispersion of inhibitory neurons in the rapidly growing cortex.
Collapse
|
60
|
Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:730121. [PMID: 26681969 PMCID: PMC4670657 DOI: 10.1155/2015/730121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 12/20/2022]
Abstract
Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p < 0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p < 0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.
Collapse
|
61
|
Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci 2015; 35:9211-24. [PMID: 26085643 DOI: 10.1523/jneurosci.0156-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radial glial cells are the neural progenitors of the developing CNS and have long radial processes that guide radially migrating neurons. The integrity of the radial glial scaffold, in particular proper adhesion between the endfeet of radial processes and the pial basement membrane (BM), is important for the cellular organization of the CNS, as indicated by evidence emerging from the developing cortex. However, the mechanisms underlying the maintenance of radial glial scaffold integrity during development, when the neuroepithelium rapidly expands, are still poorly understood. Here, we addressed this issue in the developing mouse spinal cord. We show that CXCR4, a receptor of chemokine CXCL12, is expressed in spinal cord radial glia. Conditional knock-out of Cxcr4 in radial glia caused disrupted radial glial scaffold with gaps at the pial endfeet layer and consequentially led to an invasion of boundary cap (BC) cells into the spinal cord. Because BC cells are PNS cells normally positioned at the incoming and outgoing axonal roots, their invasion into the spinal cord suggests a compromised CNS/PNS boundary in the absence of CXCL12/CXCR4 signaling. Both disrupted radial glial scaffold and invasion of BC cells into the CNS were also present in mice deficient in CXCR7, a second receptor of CXCL12. We further show that CXCL12 signaling promotes the radial glia adhesion to BM components and activates integrin β1 avidity. Our study unravels a novel molecular mechanism that deploys CXCL12/CXCR4/CXCR7 for the maintenance of radial glial scaffold integrity, which in turn safeguards the CNS/PNS boundary during spinal cord development.
Collapse
|
62
|
Huettl RE, Eckstein S, Stahl T, Petricca S, Ninkovic J, Götz M, Huber AB. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Dev Biol 2015; 413:86-103. [PMID: 26187199 DOI: 10.1016/j.ydbio.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/21/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.
Collapse
Affiliation(s)
- Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Eckstein
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tessa Stahl
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefania Petricca
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
63
|
Somaa FA, Bye CR, Thompson LH, Parish CL. Meningeal cells influence midbrain development and the engraftment of dopamine progenitors in Parkinsonian mice. Exp Neurol 2015; 267:30-41. [PMID: 25708989 DOI: 10.1016/j.expneurol.2015.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 01/09/2023]
Abstract
Dopaminergic neuroblasts, isolated from ventral midbrain fetal tissue, have been shown to structurally and functionally integrate, and alleviate Parkinsonian symptoms following transplantation. The use of donor tissue isolated at an age younger than conventionally employed can result in larger grafts - a consequence of improved cell survival and neuroblast proliferation at the time of implantation. However studies have paid little attention to removal of the meninges from younger tissue, due to its age-dependent tight attachment to the underlying brain. Beyond the protection of the central nervous system, the meninges act as a signaling center, secreting a variety of trophins to influence neural development and additionally impact on neural repair. However it remains to be elucidated what influence these cells have on ventral midbrain development and grafted dopaminergic neuroblasts. Here we examined the temporal role of meningeal cells in graft integration in Parkinsonian mice and, using in vitro approaches, identified the mechanisms underlying the roles of meningeal cells in midbrain development. We demonstrate that young (embryonic day 10), but not older (E12), meningeal cells promote dopaminergic differentiation as well as neurite growth and guidance within grafts and during development. Furthermore we identify stromal derived factor 1 (SDF1), secreted by the meninges and acting on the CXCR4 receptor present on dopaminergic progenitors, as a contributory mediator in these effects. These findings identify new and important roles for the meningeal cells, and SDF1/CXCR4 signaling, in ventral midbrain development as well as neural repair following cell transplantation into the Parkinsonian brain.
Collapse
Affiliation(s)
- Fahad A Somaa
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher R Bye
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
64
|
Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 2014; 8:293. [PMID: 25346659 PMCID: PMC4191298 DOI: 10.3389/fncel.2014.00293] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2014] [Indexed: 11/13/2022] Open
Abstract
Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.
Collapse
Affiliation(s)
- Nicolas Stifani
- Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
65
|
O'Malley AM, Shanley DK, Kelly AT, Barry DS. Towards an understanding of semaphorin signalling in the spinal cord. Gene 2014; 553:69-74. [PMID: 25300255 DOI: 10.1016/j.gene.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/05/2014] [Indexed: 01/11/2023]
Abstract
Semaphorins are a large family of proteins that are classically associated with axon guidance. These proteins and their interacting partners, the neuropilins and plexins are now known to be key mediators in a variety of processes throughout the nervous system ranging from synaptic refinement to the correct positioning of neuronal and glial cell bodies. Recently, much attention has been given to the roles semaphorins play in other body tissues including the immune and vascular systems. This review wishes to draw attention back to the nervous system, specifically focusing on the role of semaphorins in the development of the spinal cord and their proposed roles in the adult. In addition, their functions in spinal cord injury at the glial scar are also discussed.
Collapse
Affiliation(s)
- Aisling M O'Malley
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel K Shanley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Albert T Kelly
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Denis S Barry
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
66
|
Xu X, Xie G, Hu Y, Li X, Huang P, Zhang H. Neural differentiation of mesenchymal stem cells influences their chemotactic responses to stromal cell-derived factor-1α. Cell Mol Neurobiol 2014; 34:1047-58. [PMID: 25038638 PMCID: PMC11488909 DOI: 10.1007/s10571-014-0082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/01/2014] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.
Collapse
Affiliation(s)
- Xiaojing Xu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Guiqin Xie
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ya’nan Hu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Xianyang Li
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ping Huang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Huanxiang Zhang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| |
Collapse
|
67
|
Durrant DM, Williams JL, Daniels BP, Klein RS. Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease. Adv Med 2014; 2014:806741. [PMID: 26556427 PMCID: PMC4590974 DOI: 10.1155/2014/806741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/27/2014] [Indexed: 01/25/2023] Open
Abstract
The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS) has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.
Collapse
Affiliation(s)
- Douglas M. Durrant
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jessica L. Williams
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Brian P. Daniels
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Robyn S. Klein
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
68
|
Denny KJ, Jeanes A, Fathe K, Finnell RH, Taylor SM, Woodruff TM. Neural tube defects, folate, and immune modulation. ACTA ACUST UNITED AC 2014; 97:602-609. [PMID: 24078477 DOI: 10.1002/bdra.23177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored.
Collapse
Affiliation(s)
- Kerina J Denny
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| | - Angela Jeanes
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| | - Kristin Fathe
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas, Austin, Texas
| | - Richard H Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas, Austin, Texas
| | - Stephen M Taylor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| |
Collapse
|
69
|
Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 2014; 92:433-9. [PMID: 24722947 DOI: 10.1007/s00109-014-1123-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Chemokines were recognized originally for their ability to dictate the migration and activation of leukocytes. However, CXC chemokine ligand 12 (CXCL12, also known as stromal cell-derived factor-1) and its receptor CXCR4 are the first chemokine and receptor that have been shown to be critical for developmental processes, including homing and maintenance of hematopoietic stem cells (HSCs), production of immune cells, homing of primordial germ cells (PGCs), cardiogenesis, arterial vessel branching in some organs, and appropriate assemblies of particular types of neurons. This review focuses on the pathophysiological relevance of CXCL12-CXCR4 signaling in mammals.
Collapse
Affiliation(s)
- Takashi Nagasawa
- Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan,
| |
Collapse
|
70
|
Kobayashi N, Homma S, Okada T, Masuda T, Sato N, Nishiyama K, Sakuma C, Shimada T, Yaginuma H. Elucidation of target muscle and detailed development of dorsal motor neurons in chick embryo spinal cord. J Comp Neurol 2014; 521:2987-3002. [PMID: 23504940 DOI: 10.1002/cne.23326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 02/15/2013] [Accepted: 02/26/2013] [Indexed: 11/05/2022]
Abstract
The avian cervical spinal cord includes motoneurons (MNs) that send their axons through the dorsal roots. They have been called dorsal motoneurons (dMNs) and assumed to correspond to MNs of the accessory nerve that innervate the cucullaris muscle (SAN-MNs). However, their target muscles have not been elucidated to date. The present study sought to determine the targets and the specific combination of transcription factors expressed by dMNs and SAN-MNs and to describe the detailed development of dMNs. Experiments with tracing techniques confirmed that axons of dMNs innervated the cucullaris muscle. Retrogradely labeled dMNs were distributed in the ventral horn of C3 and more caudal segments. In most cases, some dMNs were also observed in the C2 segment. It was also demonstrated that SAN-MNs existed in the ventral horn of the C1-2 segments and the adjacent caudal hindbrain. Both SAN-MNs and dMNs expressed Isl1 but did not express Isl2, MNR2, or Lhx3. Rather, these MNs expressed Phox2b, a marker for branchial motoneurons (brMNs), although the intensity of expression was weaker. Dorsal MNs and SAN-MNs were derived from the Nkx2.2-positive precursor domain and migrated dorsally. Dorsal MNs remain in the ventral domain of the neural tube, unlike brMNs in the brainstem. These results indicate that dMNs and SAN-MNs belong to a common MN population innervating the cucullaris muscle and also suggest that they are similar to brMNs of the brainstem, although there are differences in Phox2b expression and in the final location of each population. J. Comp. Neurol. 521: 2987-3002, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nobumi Kobayashi
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2014; 39:458-84. [PMID: 23336971 DOI: 10.1111/nan.12020] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.
Collapse
Affiliation(s)
- G C DeLuca
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
72
|
Laumonnerie C, Da Silva RV, Kania A, Wilson SI. Netrin 1 and Dcc signalling are required for confinement of central axons within the central nervous system. Development 2014; 141:594-603. [DOI: 10.1242/dev.099606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The establishment of anatomically stereotyped axonal projections is fundamental to neuronal function. While most neurons project their axons within the central nervous system (CNS), only axons of centrally born motoneurons and peripherally born sensory neurons link the CNS and peripheral nervous system (PNS) together by navigating through specialized CNS/PNS transition zones. Such selective restriction is of importance because inappropriate CNS axonal exit could lead to loss of correct connectivity and also to gain of erroneous functions. However, to date, surprisingly little is known about the molecular-genetic mechanisms that regulate how central axons are confined within the CNS during development. Here, we show that netrin 1/Dcc/Unc5 chemotropism contributes to axonal confinement within the CNS. In both Ntn1 and Dcc mutant mouse embryos, some spinal interneuronal axons exit the CNS by traversing the CNS/PNS transition zones normally reserved for motor and sensory axons. We provide evidence that netrin 1 signalling preserves CNS/PNS axonal integrity in three ways: (1) netrin 1/Dcc ventral attraction diverts axons away from potential exit points; (2) a Dcc/Unc5c-dependent netrin 1 chemoinhibitory barrier in the dorsolateral spinal cord prevents interneurons from being close to the dorsal CNS/PNS transition zone; and (3) a netrin 1/Dcc-dependent, Unc5c-independent mechanism that actively prevents exit from the CNS. Together, these findings provide insights into the molecular mechanisms that maintain CNS/PNS integrity and, to the best of our knowledge, present the first evidence that chemotropic signalling regulates interneuronal CNS axonal confinement in vertebrates.
Collapse
Affiliation(s)
| | - Ronan V. Da Silva
- Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- McGill University Integrated Program in Neuroscience, Montreal, QC H3A 2B4, Canada
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- McGill University Integrated Program in Neuroscience, Montreal, QC H3A 2B4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Experimental Medicine and Departments of Biology, and Anatomy and Cell Biology, McGill University, Montréal, QC H3A 1A3, Canada
| | - Sara I. Wilson
- Umeå Centre for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| |
Collapse
|
73
|
Sinclair A, Latif AL, Holyoake TL. Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol 2014; 169:1693-707. [PMID: 23517124 DOI: 10.1111/bph.12183] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- A Sinclair
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
74
|
Hua ZL, Smallwood PM, Nathans J. Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons. eLife 2013; 2:e01482. [PMID: 24347548 PMCID: PMC3865743 DOI: 10.7554/elife.01482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Disruption of the Frizzled3 (Fz3) gene leads to defects in axonal growth in the VIIth and XIIth cranial motor nerves, the phrenic nerve, and the dorsal motor nerve in fore- and hindlimbs. In Fz3−/− limbs, dorsal axons stall at a precise location in the nerve plexus, and, in contrast to the phenotypes of several other axon path-finding mutants, Fz3−/− dorsal axons do not reroute to other trajectories. Affected motor neurons undergo cell death 2 days prior to the normal wave of developmental cell death that coincides with innervation of muscle targets, providing in vivo evidence for the idea that developing neurons with long-range axons are programmed to die unless their axons arrive at intermediate targets on schedule. These experiments implicate planar cell polarity (PCP) signaling in motor axon growth and they highlight the question of how PCP proteins, which form cell–cell complexes in epithelia, function in the dynamic context of axonal growth. DOI:http://dx.doi.org/10.7554/eLife.01482.001 For the nervous system to become wired up correctly, neurons within the developing embryo must project over long distances to form connections with remote targets. They do this by lengthening their axons—the ‘cables’ along which electrical signals flow—and some axons in adult humans can grow to be more than 1 metre long. This type of long-range pathfinding activity is particularly common for neurons that control movement, as many of these neurons must establish connections with muscles that are some distance away from the brain. For example, motor neurons in the brainstem form connections with muscles in the face to control facial expressions, while motor neurons in parts of the spinal cord project to muscles in the limbs. Multiple signaling pathways tell the developing axons which direction to grow en route to their final targets. Now, Hua et al. have shown that an evolutionarily conserved protein called Frizzled3 is also involved in this process. In mouse embryos that lacked Frizzled3, the motor nerves that control breathing and limb movements were thinner than those in normal mice. In the mutant animals, many motor axons failed to form connections with their targets. Instead, these axons came to an abrupt halt midway along their intended paths and the neurons from which they originated died soon afterwards. These experiments support the idea that developing neurons are programmed to die unless their axons progress on the appropriate schedule. As well as increasing our knowledge of the networks of connections that form within the developing mammalian nervous system, the work of Hua et al. provides new insights into some of the molecular mechanisms by which these connections are established. DOI:http://dx.doi.org/10.7554/eLife.01482.002
Collapse
Affiliation(s)
- Zhong L Hua
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | | |
Collapse
|
75
|
Yang S, Edman LC, Sánchez-Alcañiz JA, Fritz N, Bonilla S, Hecht J, Uhlén P, Pleasure SJ, Villaescusa JC, Marín O, Arenas E. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development 2013; 140:4554-64. [PMID: 24154522 DOI: 10.1242/dev.098145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CXCL12/CXCR4 signaling has been reported to regulate three essential processes for the establishment of neural networks in different neuronal systems: neuronal migration, cell positioning and axon wiring. However, it is not known whether it regulates the development of A9-A10 tyrosine hydroxylase positive (TH(+)) midbrain dopaminergic (mDA) neurons. We report here that Cxcl12 is expressed in the meninges surrounding the ventral midbrain (VM), whereas CXCR4 is present in NURR1(+) mDA precursors and mDA neurons from E10.5 to E14.5. CXCR4 is activated in NURR1(+) cells as they migrate towards the meninges. Accordingly, VM meninges and CXCL12 promoted migration and neuritogenesis of TH(+) cells in VM explants in a CXCR4-dependent manner. Moreover, in vivo electroporation of Cxcl12 at E12.5 in the basal plate resulted in lateral migration, whereas expression in the midline resulted in retention of TH(+) cells in the IZ close to the midline. Analysis of Cxcr4(-/-) mice revealed the presence of VM TH(+) cells with disoriented processes in the intermediate zone (IZ) at E11.5 and marginal zone (MZ) at E14. Consistently, pharmacological blockade of CXCR4 or genetic deletion of Cxcr4 resulted in an accumulation of TH(+) cells in the lateral aspect of the IZ at E14, indicating that CXCR4 is required for the radial migration of mDA neurons in vivo. Altogether, our findings demonstrate that CXCL12/CXCR4 regulates the migration and orientation of processes in A9-A10 mDA neurons.
Collapse
Affiliation(s)
- Shanzheng Yang
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 1, 17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Mithal DS, Ren D, Miller RJ. CXCR4 signaling regulates radial glial morphology and cell fate during embryonic spinal cord development. Glia 2013; 61:1288-305. [PMID: 23828719 DOI: 10.1002/glia.22515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 03/04/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022]
Abstract
Embryonic meninges secrete the chemokine SDF-1/CXCL12 as a chemotactic guide for migrating neural stem cells, but SDF-1 is not known to directly regulate the functions of radial glia. Recently, the developing meninges have been shown to regulate radial glial function, yet the mechanisms and signals responsible for this phenomenon remain unclear. Moreover, as a nonmigratory cell type, radial glia do not conform to traditional models associated with chemokine signaling in the central nervous system. Using fluorescent transgenes, in vivo genetic manipulations and pharmacological techniques, we demonstrate that SDF-1 derived from the meninges exerts a CXCR4-dependent effect on radial glia. Deletion of CXCR4 expression by radial glia influences their morphology, mitosis, and progression through both oligodendroglial and astroglial lineages. Additionally, disruption of CXCR4 signaling in radial glia has a transient effect on the migration of oligodendrocyte progenitors. These data indicate that a specific chemokine signal derived from the meninges has multiple regulatory effects on radial glia.
Collapse
Affiliation(s)
- Divakar S Mithal
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
77
|
Bhardwaj D, Náger M, Camats J, David M, Benguria A, Dopazo A, Cantí C, Herreros J. Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling. Front Cell Neurosci 2013; 7:52. [PMID: 23641195 PMCID: PMC3639410 DOI: 10.3389/fncel.2013.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023] Open
Abstract
Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling.
Collapse
Affiliation(s)
- Deepshikha Bhardwaj
- Depatments of Basic Medical Science and Experimental Medicine, IRBLleida-University of Lleida Lleida, Spain
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Zebrafish have emerged as a powerful model organism to study embryo morphogenesis. Due to their optical clarity, they are uniquely suited for time-lapse imaging studies, providing insights into the dynamic processes underlying tissue formation and cell migration. These studies have been tremendously facilitated by the availability of transgenic zebrafish lines, labelling distinct embryonic structures, individual cells, or even subcellular structures, such as the nucleus. Zebrafish studies have revealed that the migration of several different cell types in the embryo is controlled by chemokines, small vertebrate-specific proteins. Here, we report methods to analyze the expression pattern of a given chemokine and its receptor in transgenic zebrafish using fluorescent in situ hybridization in combination with an anti-green fluorescent protein (GFP) antibody staining. We furthermore illustrate how to image migrating cell populations using time-lapse microscopy in double-transgenic embryos. We show how to investigate cell number and direction of migration by using a nuclear-localized GFP. The combination of this transgene with a membrane-targeted red fluorescent protein allows for the simultaneous determination of changes in cell shape, such as the formation of filopodial extensions. We exemplify this by describing how a mutation in the chemokine receptor cxcr4a affects endothelial cell migration and blood vessel formation. Finally, we provide a method to perform fluorescent angiography to monitor blood vessel perfusion in chemokine receptor mutants.
Collapse
Affiliation(s)
- Eva Kochhan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | |
Collapse
|
79
|
Zhu Y, Murakami F. Chemokine CXCL12 and its receptors in the developing central nervous system: emerging themes and future perspectives. Dev Neurobiol 2012; 72:1349-62. [PMID: 22689506 DOI: 10.1002/dneu.22041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/24/2023]
Abstract
Homeostatic chemokine CXCL12 (also known as SDF-1) and its receptor CXCR4 are indispensable for the normal development of the nervous system. This chemokine system plays a plethora of functions in numerous neural developmental processes, from which the underlying molecular and cellular mechanisms are beginning to be unravelled. Recent identification of CXCR7 as a second receptor for CXCL12 provides opportunities to gain deeper insights into how CXCL12 operates in the nervous system. Here, we review the diverse roles of CXCL12 in the developing central nervous system, summarize the recent progress in uncovering CXCR7 functions, and discuss the emerging common themes from these works and future perspectives.
Collapse
Affiliation(s)
- Yan Zhu
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
80
|
Stacher Hörndli C, Chien CB. Sonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk. Development 2012; 139:2604-13. [PMID: 22696293 DOI: 10.1242/dev.077594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk and the expression of guidance cues at this choice point are necessary for the exit of RGC axons out of the eye. Sonic hedgehog (Shh) has been implicated in both patterning of ocular tissue and direct guidance of RGC axons. Here, we examine the precise spatial and temporal requirement for Hedgehog (Hh) signaling for intraretinal axon pathfinding and show that Shh acts to pattern the optic stalk in zebrafish but does not guide RGC axons inside the eye directly. We further reveal an interaction between the Hh and chemokine pathways for axon guidance and show that cxcl12a functions downstream of Shh and depends on Shh for its expression at the optic disc. Together, our results support a model in which Shh acts in RGC axon pathfinding indirectly by regulating axon guidance cues at the optic disc through patterning of the optic stalk.
Collapse
Affiliation(s)
- Cornelia Stacher Hörndli
- Program in Neuroscience, Department of Neurobiology and Anatomy, University of Utah Medical Center, 20 North 1900 East, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
81
|
Bravo-Ambrosio A, Mastick G, Kaprielian Z. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling. Development 2012; 139:1435-46. [PMID: 22399681 PMCID: PMC3308178 DOI: 10.1242/dev.072256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 01/11/2023]
Abstract
Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling.
Collapse
Affiliation(s)
- Arlene Bravo-Ambrosio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Grant Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
82
|
Oliver JA, Maarouf O, Cheema FH, Liu C, Zhang QY, Kraus C, Zeeshan Afzal M, Firdous M, Klinakis A, Efstratiadis A, Al-Awqati Q. SDF-1 activates papillary label-retaining cells during kidney repair from injury. Am J Physiol Renal Physiol 2012; 302:F1362-73. [PMID: 22461304 DOI: 10.1152/ajprenal.00202.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The adult kidney contains a population of low-cycling cells that resides in the papilla. These cells retain for long periods S-phase markers given as a short pulse early in life; i.e., they are label-retaining cells (LRC). In previous studies in adult rat and mice, we found that shortly after acute kidney injury many of the quiescent papillary LRC started proliferating (Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q. J Am Soc Nephrol 20: 2315-2327, 2009; Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. J Clin Invest 114: 795-804, 2004) and, with cell-tracking experiments, we found upward migration of some papillary cells including LRC (Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q. J Am Soc Nephrol 20: 2315-2327, 2009). To identify molecular cues involved in the activation (i.e., proliferation and/or migration) of the papillary LRC that follows injury, we isolated these cells from the H2B-GFP mice and found that they migrated and proliferated in response to the cytokine stromal cell-derived factor-1 (SDF-1). Moreover, in a papillary organ culture assay, the cell growth out of the upper papilla was dependent on the interaction of SDF-1 with its receptor Cxcr4. Interestingly, location of these two proteins in the kidney revealed a complementary location, with SDF-1 being preferentially expressed in the medulla and Cxcr4 more abundant in the papilla. Blockade of Cxcr4 in vivo prevented mobilization of papillary LRC after transient kidney ischemic injury and worsened its functional consequences. The data indicate that the SDF-1/Cxcr4 axis is a critical regulator of papillary LRC activation following transient kidney injury and during organ repair.
Collapse
Affiliation(s)
- Juan A Oliver
- 1Department of Medicine, Columbia University, 630 West 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Bilbo SD, Smith SH, Schwarz JM. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol 2012; 7:24-41. [PMID: 21822589 PMCID: PMC3267003 DOI: 10.1007/s11481-011-9299-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/14/2011] [Indexed: 12/15/2022]
Abstract
Cognitive decline is a common problem of aging. Whereas multiple neural and glial mechanisms may account for these declines, microglial sensitization and/or dystrophy has emerged as a leading culprit in brain aging and dysfunction. However, glial activation is consistently observed in normal brain aging as well, independent of frank neuroinflammation or functional impairment. Such variability suggests the existence of additional vulnerability factors that can impact neuronal-glial interactions and thus overall brain and cognitive health. The goal of this review is to elucidate our working hypothesis that an individual's risk or resilience to neuroinflammatory disorders and poor cognitive aging may critically depend on their early life experience, which can change immune reactivity within the brain for the remainder of the lifespan. For instance, early-life infection in rats can profoundly disrupt memory function in young adulthood, as well as accelerate age-related cognitive decline, both of which are linked to enduring changes in glial function that occur in response to the initial infection. We discuss these findings within the context of the growing literature on the role of immune molecules and neuroimmune crosstalk in normal brain development. We highlight the intrinsic factors (e.g., chemokines, hormones) that regulate microglial development and their colonization of the embryonic and postnatal brain, and the capacity for disruption or "re-programming" of this crucial process by external events (e.g., stress, infection). An impact on glia, which in turn alters neural development, has the capacity to profoundly impact cognitive and mental health function at all stages of life.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
84
|
Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, Zhang Y, Zhang Z. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci 2012; 316:141-9. [PMID: 22280945 DOI: 10.1016/j.jns.2012.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Stromal cell-derived factor-1 (SDF-1) and its cognate receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), are involved in the migration of stem cells. AIM To test the hypothesis that mesenchymal stem cells (MSCs) with genetically modified CXCR4 can promote their own recruitment around the ischemic core. METHODS Lentiviral vectors were used to overexpress the CXCR4-eGFP fusion protein (CXCR4/eGFP) or eGFP only (eGFP) or to introduce siRNA targeting endogenous CXCR4 (siRNA/eGFP) in rat mesenchymal stem cells (rMSCs). Rats were injected with either the transduced rMSCs or PBS as a control via the femoral vein following a left middle cerebral artery occlusion (MCAO). RESULTS One week after MCAO, immunofluorescence staining revealed a significant increase in the number of eGFP-positive cells surrounding the infarct areas in the CXCR4-rMSC-treated group compared to the rMSC-treated control group. Conversely, there was a significant reduction in the number of eGFP-positive cells in the siRNA-rMSC-treated group. Moreover, there was an increase in the capillary vascular volume of the peri-infarct area, a reduction in the volume of the cerebral infarction and improved neurological function in the CXCR4-rMSC-treated group compared to those in the rMSC-, siRNA-rMSC- or PBS-treated groups. CONCLUSION CXCR4 overexpression in the rMSCs promoted their mobilization and enhanced neuroprotection in a rat cerebral ischemia model. This strategy may be a useful therapeutic approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Xiaolan Yu
- Department of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Mithal DS, Banisadr G, Miller RJ. CXCL12 signaling in the development of the nervous system. J Neuroimmune Pharmacol 2012; 7:820-34. [PMID: 22270883 DOI: 10.1007/s11481-011-9336-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Chemokines are small, secreted proteins that have been shown to be important regulators of leukocyte trafficking and inflammation. All the known effects of chemokines are transduced by action at a family of G protein coupled receptors. Two of these receptors, CCR5 and CXCR4, are also known to be the major cellular receptors for HIV-1. Consideration of the evolution of the chemokine family has demonstrated that the chemokine Stromal cell Derived Factor-1 or SDF1 (CXCL12) and its receptor CXCR4 are the most ancient members of the family and existed in animals prior to the development of a sophisticated immune system. Thus, it appears that the original function of chemokine signaling was in the regulation of stem cell trafficking and development. CXCR4 signaling is important in the development of many tissues including the nervous system. Here we discuss the manner in which CXCR4 signaling can regulate the development of different structures in the central and peripheral nervous systems and the different strategies employed to achieve these effects.
Collapse
Affiliation(s)
- Divakar S Mithal
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
86
|
Crossing the border: molecular control of motor axon exit. Int J Mol Sci 2011; 12:8539-61. [PMID: 22272090 PMCID: PMC3257087 DOI: 10.3390/ijms12128539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022] Open
Abstract
Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS) neurons, motor neurons (MNs) project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs). In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord. Notably, specialized neural crest cell derivatives, referred to as Boundary Cap (BC) cells, pre-figure and demarcate MEPs in vertebrates. Surprisingly, however, BC cells are not required for MN axon exit, but rather restrict MN cell bodies from ectopically migrating along their axons out of the CNS. Here, we describe the small set of studies that have addressed motor axon exit in Drosophila and vertebrates, and discuss our fragmentary knowledge of the mechanisms, which guide motor axons out of the CNS.
Collapse
|
87
|
Kao TJ, Law C, Kania A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 2011; 23:83-91. [PMID: 22040916 DOI: 10.1016/j.semcdb.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 12/23/2022]
Abstract
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | |
Collapse
|
88
|
Rezzoug F, Seelan RS, Bhattacherjee V, Greene RM, Pisano MM. Chemokine-mediated migration of mesencephalic neural crest cells. Cytokine 2011; 56:760-8. [PMID: 22015108 DOI: 10.1016/j.cyto.2011.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/27/2022]
Abstract
Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, "transwell" assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo "bead implantation" assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo.
Collapse
Affiliation(s)
- Francine Rezzoug
- University of Louisville, Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, 501 S. Preston St., Suite 350, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
89
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
90
|
Rostène W, Dansereau MA, Godefroy D, Van Steenwinckel J, Goazigo ARL, Mélik-Parsadaniantz S, Apartis E, Hunot S, Beaudet N, Sarret P. Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem 2011; 118:680-94. [DOI: 10.1111/j.1471-4159.2011.07371.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
Boldajipour B, Doitsidou M, Tarbashevich K, Laguri C, Yu SR, Ries J, Dumstrei K, Thelen S, Dörries J, Messerschmidt EM, Thelen M, Schwille P, Brand M, Lortat-Jacob H, Raz E. Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor. Development 2011; 138:2909-14. [DOI: 10.1242/dev.068379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization – the specialization of two gene copies to perform complementary functions following gene duplication – which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes.
Collapse
Affiliation(s)
- Bijan Boldajipour
- Institute of Cell Biology, Center of Molecular Biology of Inflammation, University of Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
- Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37070 Göttingen, Germany
| | - Maria Doitsidou
- Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37070 Göttingen, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center of Molecular Biology of Inflammation, University of Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Cedric Laguri
- IBS, Institut de Biologie Structurale, UMR 5075 CNRS CEA UJF, 41 Rue Horowitz, F-38027 Grenoble, France
| | - Shuizi Rachel Yu
- Biotechnology Center, and Center for Regenerative Therapies, TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Jonas Ries
- Biophysics, Biotechnology Center, TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Karin Dumstrei
- Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37070 Göttingen, Germany
| | - Sylvia Thelen
- Institute for Research in Biomedicine, via Vela 6, CH-6500 Bellinzona, Switzerland
| | - Julia Dörries
- Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37070 Göttingen, Germany
| | - Esther-Maria Messerschmidt
- Institute of Cell Biology, Center of Molecular Biology of Inflammation, University of Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine, via Vela 6, CH-6500 Bellinzona, Switzerland
| | - Petra Schwille
- Biophysics, Biotechnology Center, TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Michael Brand
- Biotechnology Center, and Center for Regenerative Therapies, TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Hugues Lortat-Jacob
- IBS, Institut de Biologie Structurale, UMR 5075 CNRS CEA UJF, 41 Rue Horowitz, F-38027 Grenoble, France
| | - Erez Raz
- Institute of Cell Biology, Center of Molecular Biology of Inflammation, University of Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
- Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37070 Göttingen, Germany
| |
Collapse
|
92
|
McIntyre JC, Titlow WB, McClintock TS. Axon growth and guidance genes identify nascent, immature, and mature olfactory sensory neurons. J Neurosci Res 2011; 88:3243-56. [PMID: 20882566 DOI: 10.1002/jnr.22497] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurogenesis of projection neurons requires that axons be initiated, extended, and connected. Differences in the expression of axon growth and guidance genes must drive these events, but comprehensively characterizing these differences in a single neuronal type has not been accomplished. Guided by a catalog of gene expression in olfactory sensory neurons (OSNs), in situ hybridization and immunohistochemistry revealed that Cxcr4 and Dbn1, two axon initiation genes, marked the developmental transition from basal progenitor cells to immature OSNs in the olfactory epithelium. The CXCR4 immunoreactivity of these nascent OSNs overlapped partially with markers of proliferation of basal progenitor cells and partially with immunoreactivity for GAP43, the canonical marker of immature OSNs. Intracellular guidance cue signaling transcripts Ablim1, Crmp1, Dypsl2, Dpysl3, Dpysl5, Gap43, Marcskl1, and Stmn1-4 were specific to, or much more abundant in, the immature OSN layer. Receptors that mediate axonal inhibition or repulsion tended to be expressed in both immature and mature OSNs (Plxna1, Plxna4, Nrp2, Efna5) or specifically in mature OSNs (Plxna3, Unc5b, Efna3, Epha5, Epha7), although some were specific to immature OSNs (Plxnb1, Plxnb2, Plxdc2, Nrp1). Cell adhesion molecules were expressed either by both immature and mature OSNs (Dscam, Ncam1, Ncam2, Nrxn1) or solely by immature OSNs (Chl1, Nfasc1, Dscaml1). Given the loss of intracellular signaling protein expression, the continued expression of guidance cue receptors in mature OSNs is consistent with a change in the role of these receptors, perhaps to sending signals back to the cell body and nucleus.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
93
|
Kobayashi K, Masuda T, Takahashi M, Miyazaki JI, Nakagawa M, Uchigashima M, Watanabe M, Yaginuma H, Osumi N, Kaibuchi K, Kobayashi K. Rho/Rho-kinase signaling pathway controls axon patterning of a specified subset of cranial motor neurons. Eur J Neurosci 2011; 33:612-21. [PMID: 21219475 DOI: 10.1111/j.1460-9568.2010.07554.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cranial motor neurons, which are divided into somatic motor (SM), branchiomotor (BM) and visceral motor (VM) neurons, form distinct axonal trajectories to innervate their synapse targets. Rho GTPase regulates various neuronal functions through one of the major effector proteins, Rho-kinase. Here, we addressed the in vivo role of the Rho/Rho-kinase signaling pathway in axon patterning of cranial motor neurons. We performed conditional expression of a dominant-negative mutant for RhoA or Rho-kinase in transgenic mice by using the Cre-loxP system to suppress the activity of these molecules in developing cranial motor neurons. Blockade of the Rho/Rho-kinase signaling pathway caused defects in the patterning of SM axons but not in that of BM/VM axons, in which defects were accompanied by reduced muscle innervation and reduced synapse formation by SM neurons. In addition, blockade of the signaling pathway shifted the trajectory of growing SM axons in explant cultures, whereas it did not appear to affect the rate of spontaneous axonal outgrowth. These results indicate that the Rho/Rho-kinase signaling pathway plays an essential role in the axon patterning of cranial SM neurons during development.
Collapse
Affiliation(s)
- Kenta Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
95
|
Eng D, Campbell A, Hilton T, Leid M, Gross MK, Kioussi C. Prediction of regulatory networks in mouse abdominal wall. Gene 2010; 469:1-8. [PMID: 20797427 PMCID: PMC2956860 DOI: 10.1016/j.gene.2010.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/13/2023]
Abstract
Sequence specific transcription factors are essential for pattern formation and cell differentiation processes in mammals. The formation of the abdominal wall depends on a flawless merge of several developmental fields in time and space. The absence of Pitx2 leads to an open abdominal wall in mice, while mutations in humans result in umbilical defects, suggesting that a single homeobox transcription factor coordinates the formation and patterning of this anatomical structure. Gene expression analysis from abdominal tissue including the abdominal wall after removal of the major organs, of wild type, Pitx2 heterozygote and mutant mice, at embryonic day 10.5, identified 275 genes with altered expression levels. Pitx2 target genes were clustered using the "David Bioinformatics Functional Annotation Tool" web application, which bins genes according to gene ontology (GO) key word enrichment. This provided a way to both narrow the target gene list and to start identifying potential gene families regulated by Pitx2. Target genes in the most enriched bins were further analyzed for the presence and the evolutionary conservation of Pitx2 consensus binding sequence, TAATCY, on the -20 kb, intronic and coding gene sequences. Twenty Pitx2 target genes that passed all the above criteria were classified as genes involved in cell transport and growth. Data from these studies suggest that Pitx2 acts as an inhibitor of protein transport and cell apoptosis contributing to the open body wall phenotype. This work provides the framework to which the developmental network leading to abdominal wall syndromes can be built.
Collapse
Affiliation(s)
- Diana Eng
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Adam Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Traci Hilton
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K. Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
96
|
Cronshaw DG, Nie Y, Waite J, Zou YR. An essential role of the cytoplasmic tail of CXCR4 in G-protein signaling and organogenesis. PLoS One 2010; 5:e15397. [PMID: 21124917 PMCID: PMC2988825 DOI: 10.1371/journal.pone.0015397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/06/2010] [Indexed: 11/22/2022] Open
Abstract
CXCR4 regulates cell proliferation, enhances cell survival and induces chemotaxis, yet molecular mechanisms underlying its signaling remain elusive. Like all other G-protein coupled receptors (GPCRs), CXCR4 delivers signals through G-protein-dependent and -independent pathways, the latter involving its serine-rich cytoplasmic tail. To evaluate the signaling and biological contribution of this G-protein-independent pathway, we generated mutant mice that express cytoplasmic tail-truncated CXCR4 (ΔT) by a gene knock-in approach. We found that ΔT mice exhibited multiple developmental defects, with not only G-protein-independent but also G-protein-dependent signaling events completely abolished, despite ΔT's ability to still associate with G-proteins. These results reveal an essential positive regulatory role of the cytoplasmic tail in CXCR4 signaling and suggest the tail is crucial for mediating G-protein activation and initiating crosstalk between G-protein-dependent and G-protein-independent pathways for correct GPCR signaling.
Collapse
Affiliation(s)
- Darran G Cronshaw
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | |
Collapse
|
97
|
Lerner O, Davenport D, Patel P, Psatha M, Lieberam I, Guthrie S. Stromal cell-derived factor-1 and hepatocyte growth factor guide axon projections to the extraocular muscles. Dev Neurobiol 2010; 70:549-64. [PMID: 20506246 DOI: 10.1002/dneu.20796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vertebrate eye movements depend on the co-ordinated function of six extraocular muscles that are innervated by the oculomotor, trochlear, and abducens nerves. Here, we show that the diffusible factors, stromal cell-derived factor-1 (SDF-1) and hepatocyte growth factor (HGF), guide the development of these axon projections. SDF-1 is expressed in the mesenchyme around the oculomotor nerve exit point, and oculomotor axons fail to exit the neuroepithelium in mice mutant for the SDF-1 receptor CXCR4. Both SDF-1 and HGF are expressed in or around the ventral and dorsal oblique muscles, which are distal targets for the oculomotor and trochlear nerves, respectively, as well as in the muscles which are later targets for oculomotor axon branches. We find that in vitro SDF-1 and HGF promote the growth of oculomotor and trochlear axons, whereas SDF-1 also chemoattracts oculomotor axons. Oculomotor neurons show increased branching in the presence of SDF-1 and HGF singly or together. HGF promotes the growth of trochlear axons more than that of oculomotor axons. Taken together, these data point to a role for both SDF-1 and HGF in extraocular nerve projections and indicate that SDF-1 functions specifically in the development of the oculomotor nerve, including oculomotor axon branch formation to secondary muscle targets. HGF shows some specificity in preferentially enhancing development of the trochlear nerve.
Collapse
Affiliation(s)
- Oleg Lerner
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connections can be established with a relatively small number of factors. In the context of motor guidance, we highlight some of the temporal and spatial mechanisms used to optimize the fidelity of pathfinding and increase the functional diversity of the signaling proteins.
Collapse
Affiliation(s)
- Dario Bonanomi
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
99
|
Gammill LS, Roffers-Agarwal J. Division of labor during trunk neural crest development. Dev Biol 2010; 344:555-65. [PMID: 20399766 DOI: 10.1016/j.ydbio.2010.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 01/13/2023]
Abstract
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.
Collapse
Affiliation(s)
- Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
100
|
Derecki NC, Privman E, Kipnis J. Rett syndrome and other autism spectrum disorders--brain diseases of immune malfunction? Mol Psychiatry 2010; 15:355-63. [PMID: 20177406 PMCID: PMC3368984 DOI: 10.1038/mp.2010.21] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroimmunology was once referred to in terms of its pathological connotation only and was generally understood as covering the deleterious involvement of the immune system in various diseases and disorders of the central nervous system (CNS). However, our conception of the function of the immune system in the structure, function, and plasticity of the CNS has undergone a sea change after relevant discoveries over the past two decades, and continues to be challenged by more recent studies of neurodevelopment and cognition. This review summarizes the recent advances in understanding of immune-system participation in the development and functioning of the CNS under physiological conditions. Considering as an example Rett syndrome a devastating neurodevelopmental disease, we offer a hypothesis that might help to explain the part played by immune cells in its etiology, and hence suggests that the immune system might be a feasible therapeutic target for alleviation of some of the symptoms of this and other autism spectrum disorders.
Collapse
Affiliation(s)
- NC Derecki
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - E Privman
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
,Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
| | - J Kipnis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
,Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|