51
|
Gotic I, Schibler U. The ticking tail: daily oscillations in mRNA poly(A) tail length drive circadian cycles in protein synthesis. Genes Dev 2013; 26:2669-72. [PMID: 23249731 DOI: 10.1101/gad.210690.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Genes & Development, Kojima and colleagues (pp. 2724-2736) examined the impact of mRNA poly(A) tail length on circadian gene expression. Their study demonstrates how dynamic changes in transcript poly(A) tail length can lead to rhythmic protein expression, irrespective of whether mRNA accumulation is circadian or constitutive.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Molecular Biology, National Centre of Competence in Research "Frontiers in Genetics," University of Geneva, CH-1211 Geneva-4, Switzerland.
| | | |
Collapse
|
52
|
Lee G, Kikuno K, Bahn JH, Kim KM, Park JH. Dopamine D2 Receptor as a Cellular Component Controlling Nocturnal Hyperactivities inDrosophila melanogaster. Chronobiol Int 2013; 30:443-59. [DOI: 10.3109/07420528.2012.741169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
53
|
Perez-Santangelo S, Schlaen RG, Yanovsky MJ. Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks. Brief Funct Genomics 2012; 12:13-24. [DOI: 10.1093/bfgp/els052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
54
|
Natural variation in the Drosophila melanogaster clock gene period modulates splicing of its 3'-terminal intron and mid-day siesta. PLoS One 2012; 7:e49536. [PMID: 23152918 PMCID: PMC3496713 DOI: 10.1371/journal.pone.0049536] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster exhibits circadian (≅24 hr) regulated morning and evening bouts of activity that are separated by a mid-day siesta. Increases in daily ambient temperature are accompanied by a progressively longer mid-day siesta and delayed evening activity. Presumably, this behavioral plasticity reflects an adaptive response that endows D. melanogaster with the ability to temporally optimize daily activity levels over a wide range of physiologically relevant temperatures. For example, the shift in activity towards the cooler nighttime hours on hot days might minimize the risks associated with exposure to mid-day heat, whereas on cold days activity is favored during the warmer daytime hours. These temperature-induced shifts in the distribution of daily activity are partly based on the thermal sensitive splicing of an intron found in the 3' untranslated region (UTR) of the circadian clock gene termed period (per). As temperature decreases, splicing of this 3'-terminal intron (termed dmpi8) is gradually increased, which is causally linked to a shorter mid-day siesta. Herein we identify several natural polymorphisms in the per 3' UTR from wild-caught populations of flies originating along the east coast of the United States. Two non-intronic closely spaced single nucleotide polymorphisms (SNPs) modulate dmpi8 splicing efficiency, with the least efficiently spliced version associated with a longer mid-day siesta, especially at lower temperatures. Although these SNPs modulate the splicing efficiency of dmpi8 they have little to no effect on its thermal responsiveness, consistent with the notion that the suboptimal 5' and 3' splice sites of the dmpi8 intron are the primary cis-acting elements mediating temperature regulation. Our results demonstrate that natural variations in the per gene can modulate the splicing efficiency of the dmpi8 intron and the daily distribution of activity, providing natural examples for the involvement of dmpi8 splicing in the thermal adaptation of behavioral programs in D. melanogaster.
Collapse
|
55
|
Mehta N, Cheng HYM. Micro-managing the circadian clock: The role of microRNAs in biological timekeeping. J Mol Biol 2012; 425:3609-24. [PMID: 23142644 DOI: 10.1016/j.jmb.2012.10.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/16/2012] [Accepted: 10/31/2012] [Indexed: 12/11/2022]
Abstract
Evolved under the selective pressures of a 24-h world, circadian timekeeping mechanisms are present in virtually all living organisms to coordinate daily rhythms in physiology and behavior. Until recently, the circadian clock was modeled as simple, interlocked transcription-translation feedback loops driving rhythms in gene expression of a handful of core clock genes. However, it has become evident that circadian clock regulation is immensely more complex than once thought and involves posttranscriptional, translational and posttranslational mechanisms. In particular, there has been a growing awareness of the vital role played by microRNAs (miRNAs) in regulating various aspects of circadian clock function. In this review, we will summarize our current knowledge of miRNA-dependent regulation of the circadian timing system in multiple organisms, including flies, mammals and higher plants. We will also discuss future perspectives for research on the role of miRNAs and noncoding RNAs in circadian regulation of health and disease.
Collapse
Affiliation(s)
- Neel Mehta
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
56
|
Prabhakaran PM, Sheeba V. Sympatric Drosophilid Species melanogaster and ananassae Differ in Temporal Patterns of Activity. J Biol Rhythms 2012; 27:365-76. [DOI: 10.1177/0748730412458661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The fruit fly Drosophila melanogaster has long served as a model system for circadian rhythm research. Various aspects of its genetic, molecular, and circuit-level properties are the subject of investigation, based on which several circadian behaviors and their neuronal controls have been unraveled. In an attempt to address the question of functional significance of circadian organization using a comparative approach, we studied activity/rest rhythm of wild-caught D. melanogaster (DM) and its close relative, Drosophila ananassae (DA). We compared features of the rhythm such as the ability to anticipate morning and evening transitions, presence or absence of morning-associated or evening-associated activity peaks, and phase of these peaks in both species. We found that these 2 sympatric species are different from each other in several aspects of activity/rest rhythm. Unlike DM, which showed a distinct bimodal activity pattern with both morning and evening peaks and a midday interval of relative inactivity under a 12:12-h light/dark regime, DA exhibited unimodal activity with a predominant morning peak, restricting most of its activity to the light phase with no apparent “siesta” during midday. While daytime sleep levels were not different between the 2 species, DA exhibited significantly lesser nighttime activity and higher, more consolidated sleep. This predominant morning activity of DA was also reflected in persistence and phasing of the morning peak under a range of photoperiods. Both under long and short days, the morning peak was the most dominant and persistent peak of DA, whereas the evening peak was more dominant in DM. In addition, DA had a significantly faster circadian clock and more consolidated activity compared with DM. Hence, we hypothesize that these recently diverged sympatric species of fruit flies occupy distinct temporal niches due to differences in their underlying circadian clocks and speculate that they occupy different spatial microenvironments in the wild.
Collapse
Affiliation(s)
- Priya M. Prabhakaran
- Behavioural Neurogenetics Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Behavioural Neurogenetics Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
57
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
58
|
Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 2012; 484:371-5. [DOI: 10.1038/nature10991] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/24/2012] [Indexed: 11/08/2022]
|
59
|
Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ. Alternative splicing at the right time. RNA Biol 2011; 8:954-9. [PMID: 21941124 DOI: 10.4161/rna.8.6.17336] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing (AS) allows the production of multiple mRNA variants from a single gene, which contributes to increase the complexity of the proteome. There is evidence that AS is regulated not only by auxiliary splicing factors, but also by components of the core spliceosomal machinery, as well as through epigenetic modifications. However, to what extent these different mechanisms contribute to the regulation of AS in response to endogenous or environmental stimuli is still unclear. Circadian clocks allow organisms to adjust physiological processes to daily changes in environmental conditions. Here we review recent evidence linking circadian clock and AS, and discuss the role of Protein Arginine Methyltransferase 5 (PRMT5) in these processes. We propose that the interactions between daily oscillations in AS and circadian rhythms in the expression of splicing factors and epigenetic regulators offer a great opportunity to dissect the contribution of these mechanisms to the regulation of AS in a physiologically relevant context.
Collapse
|
60
|
Staiger D, Green R. RNA-based regulation in the plant circadian clock. TRENDS IN PLANT SCIENCE 2011; 16:517-523. [PMID: 21782493 DOI: 10.1016/j.tplants.2011.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
The circadian clock is an endogenous, approximately 24-h timer that enables plants to anticipate daily changes in their environment and regulates a considerable fraction of the transcriptome. At the core of the circadian system is the oscillator, made up of interconnected feedback loops, involving transcriptional regulation of clock genes and post-translational modification of clock proteins. Recently, it has become clear that post-transcriptional events are also critical for shaping rhythmic mRNA and protein profiles. This review covers regulation at the RNA level of both the core clock and output genes in Arabidopsis (Arabidopsis thaliana), with comparisons with other model organisms. We discuss the role of splicing, mRNA decay and translational regulation as well as recent insights into rhythms of noncoding regulatory RNAs.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33501 Bielefeld, Germany.
| | | |
Collapse
|
61
|
Wenden B, Kozma-Bognár L, Edwards KD, Hall AJW, Locke JCW, Millar AJ. Light inputs shape the Arabidopsis circadian system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:480-91. [PMID: 21255161 DOI: 10.1111/j.1365-313x.2011.04505.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The circadian clock is a fundamental feature of eukaryotic gene regulation that is emerging as an exemplar genetic sub-network for systems biology. The circadian system in Arabidopsis plants is complex, in part due to its phototransduction pathways, which are themselves under circadian control. We therefore analysed two simpler experimental systems. Etiolated seedlings entrained by temperature cycles showed circadian rhythms in the expression of genes that are important for the clock mechanism, but only a restricted set of downstream target genes were rhythmic in microarray assays. Clock control of phototransduction pathways remained robust across a range of light inputs, despite the arrhythmic transcription of light-signalling genes. Circadian interactions with light signalling were then analysed using a single active photoreceptor. Phytochrome A (phyA) is expected to be the only active photoreceptor that can mediate far-red (FR) light input to the circadian clock. Surprisingly, rhythmic gene expression was profoundly altered under constant FR light, in a phyA-dependent manner, resulting in high expression of evening genes and low expression of morning genes. Dark intervals were required to allow high-amplitude rhythms across the transcriptome. Clock genes involved in this response were identified by mutant analysis, showing that the EARLY FLOWERING 4 gene is a likely target and mediator of the FR effects. Both experimental systems illustrate how profoundly the light input pathways affect the plant circadian clock, and provide strong experimental manipulations to understand critical steps in the plant clock mechanism.
Collapse
Affiliation(s)
- Bénédicte Wenden
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JH, UK
| | | | | | | | | | | |
Collapse
|
62
|
Staiger D, Köster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 2011; 68:71-83. [PMID: 20803230 PMCID: PMC11114774 DOI: 10.1007/s00018-010-0513-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
An endogenous timing mechanism, the circadian clock, causes rhythmic expression of a considerable fraction of the genome of most organisms to optimally align physiology and behavior with their environment. Circadian clocks are self-sustained oscillators primarily based on transcriptional feedback loops and post-translational modification of clock proteins. It is increasingly becoming clear that regulation at the RNA level strongly impacts the cellular circadian transcriptome and proteome as well as the oscillator mechanism itself. This review focuses on posttranscriptional events, discussing RNA-binding proteins that, by influencing the timing of pre-mRNA splicing, polyadenylation and RNA decay, shape rhythmic expression profiles. Furthermore, recent findings on the contribution of microRNAs to orchestrating circadian rhythms are summarized.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, 33501, Bielefeld, Germany.
| | | |
Collapse
|
63
|
Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. ADVANCES IN GENETICS 2011; 74:141-73. [PMID: 21924977 DOI: 10.1016/b978-0-12-387690-4.00005-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene-the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail and provide an in-depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shifts to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here, I review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24-h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&MUniversity, College Station, USA
| |
Collapse
|
64
|
Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010; 330:379-85. [PMID: 20947768 DOI: 10.1126/science.1195262] [Citation(s) in RCA: 658] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental temperature cycles are a universal entraining cue for all circadian systems at the organismal level with the exception of homeothermic vertebrates. We report here that resistance to temperature entrainment is a property of the suprachiasmatic nucleus (SCN) network and is not a cell-autonomous property of mammalian clocks. This differential sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature, which can then act as a universal cue for the entrainment of cell-autonomous oscillators throughout the body. Pharmacological experiments show that network interactions in the SCN are required for temperature resistance and that the heat shock pathway is integral to temperature resetting and temperature compensation in mammalian cells. These results suggest that the evolutionarily ancient temperature resetting response can be used in homeothermic animals to enhance internal circadian synchronization.
Collapse
Affiliation(s)
- Ethan D Buhr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208-3520, USA
| | | | | |
Collapse
|
65
|
Abstract
Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this "simple" model organism.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
66
|
Isaac RE, Li C, Leedale AE, Shirras AD. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc Biol Sci 2009; 277:65-70. [PMID: 19793753 DOI: 10.1098/rspb.2009.1236] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
67
|
Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol 2009; 7:49. [PMID: 19671128 PMCID: PMC2745372 DOI: 10.1186/1741-7007-7-49] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022] Open
Abstract
Background Circadian clocks are internal daily time keeping mechanisms that allow organisms to anticipate daily changes in their environment and to organize their behavior and physiology in a coherent schedule. Although circadian clocks use temperature compensation mechanisms to maintain the same pace over a range of temperatures, they are also capable of synchronizing to daily temperature cycles. This study identifies key properties of this process. Results Gradually ramping daily temperature cycles are shown here to synchronize behavioral and molecular daily rhythms in Drosophila with a remarkable efficiency. Entrainment to daily temperature gradients of amplitudes as low as 4°C persisted even in the context of environmental profiles that also included continuous gradual increases or decreases in absolute temperature. To determine which elements of daily temperature gradients acted as the key determinants of circadian activity phase, comparative analyses of daily temperature gradients with different wave forms were performed. The phases of ascending and descending temperature acted together as key determinants of entrained circadian phase. In addition, circadian phase was found to be modulated by the relative temperature of release into free running conditions. Release at or close to the trough temperature of entrainment consistently resulted in phase advances. Re-entrainment to daily temperature gradients after large phase shifts occurred relatively slowly and required several cycles, allowing flies to selectively respond to periodic rather than anecdotal signals. The temperature-entrained phase relationship between clock gene expression rhythms and locomotor activity rhythms strongly resembled that previously observed for light entrainment. Moreover, daily temperature gradient and light/dark entrainment reinforced each other if the phases of ascending and descending temperature were in their natural alignment with the light and dark phases, respectively. Conclusion The present study systematically examined the entrainment of clock-controlled behavior to daily environmental temperature gradients. As a result, a number of key properties of circadian temperature entrainment were identified. Collectively, these properties represent a circadian temperature entrainment mechanism that is optimized in its ability to detect the time-of-day information encoded in natural environmental temperature profiles. The molecular events synchronized to the daily phases of ascending and descending temperature are expected to play an important role in the mechanism of circadian entrainment to daily temperature cycles.
Collapse
|
68
|
Abstract
Drosophila melanogaster has a broad geographic range. Daily activity in this species exhibits seasonality such that midday rest expands on long warm days, possibly to avoid desiccation. Comparative analyses show that temperature-dependent control of this behavior is partly linked to patterns of per mRNA splicing that are absent in Drosophila yakuba, a related species native to warmer climates with little seasonal change.
Collapse
Affiliation(s)
- Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA.
| | | |
Collapse
|