51
|
Auffret M, Samim I, Lepore M, Gruetter R, Just N. Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat. Brain Struct Funct 2014; 221:695-707. [PMID: 25366973 DOI: 10.1007/s00429-014-0933-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
The ability of Mn(2+) to follow Ca(2+) pathways upon stimulation transform them into remarkable surrogate markers of neuronal activity using activity-induced manganese-dependent MRI (AIM-MRI). In the present study, a precise follow-up of physiological parameters during MnCl2 and mannitol infusions improved the reproducibility of AIM-MRI allowing in-depth evaluation of the technique. Pixel-by-pixel T1 data were investigated using histogram distributions in the barrel cortex (BC) and the thalamus before and after Mn(2+) infusion, after blood brain barrier opening and after BC activation. Mean BC T1 values dropped significantly upon trigeminal nerve (TGN) stimulation (-38 %, P = 0.02) in accordance with previous literature findings. T1 histogram distributions showed that 34 % of T1s in the range 600-1500 ms after Mn(2+ )+ mannitol infusions shifted to 50-350 ms after TGN stimulation corresponding to a twofold increase of the percentage of pixels with the lowest T1s in BC. Moreover, T1 changes in response to stimulation increased significantly from superficial cortical layers (I-III) to deeper layers (V-VI). Cortical cytoarchitecture detection during a functional paradigm was performed extending the potential of AIM-MRI. Quantitative AIM-MRI could thus offer a means to interpret local neural activity across cortical layers while identification of the role of calcium dynamics in vivo during brain activation could play a key role in resolving neurovascular coupling mechanisms.
Collapse
Affiliation(s)
- Matthieu Auffret
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Idrees Samim
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mario Lepore
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nathalie Just
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Neocortical and thalamic interactions are necessary for the execution of complex sensory-motor tasks and associated cognitive processes. Investigation of thalamocortical circuit development is therefore critical to understand developmental disorders involving abnormal cortical function. Here, we review recent advances in our understanding of thalamus-dependent cortical patterning and cortical neuron differentiation. RECENT FINDINGS Although the principles of cortical map patterning are increasingly understood, the extent to which thalamocortical inputs contribute to cortical neuron differentiation is still unclear. The recent development of genetic models allowing cell-type-specific dissection of cortical input pathways has shed light on some of the input-dependent and activity-dependent processes occurring during cortical development, which are discussed here. SUMMARY These recent studies have revealed interwoven links between thalamic and cortical neurons, in which cell intrinsic differentiation programs are tightly regulated by synaptic input during a prolonged period of development. Challenges in the years to come will be to identify the mechanisms underlying the reciprocal interactions between intrinsic and extrinsic differentiation programs, and their contribution to neurodevelopmental disorders and neuropsychiatric disorders at large.
Collapse
|
53
|
Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. PROGRESS IN BRAIN RESEARCH 2014; 207:3-34. [PMID: 24309249 DOI: 10.1016/b978-0-444-63327-9.00001-1] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potency of the environment to shape brain function changes dramatically across the lifespan. Neural circuits exhibit profound plasticity during early life and are later stabilized. A focus on the cellular and molecular bases of these developmental trajectories has begun to unravel mechanisms, which control the onset and closure of such critical periods. Two important concepts have emerged from the study of critical periods in the visual cortex: (1) excitatory-inhibitory circuit balance is a trigger; and (2) molecular "brakes" limit adult plasticity. The onset of the critical period is determined by the maturation of specific GABA circuits. Targeting these circuits using pharmacological or genetic approaches can trigger premature onset or induce a delay. These manipulations are so powerful that animals of identical chronological age may be at the peak, before, or past their plastic window. Thus, critical period timing per se is plastic. Conversely, one of the outcomes of normal development is to stabilize the neural networks initially sculpted by experience. Rather than being passively lost, the brain's intrinsic potential for plasticity is actively dampened. This is demonstrated by the late expression of brake-like factors, which reversibly limit excessive circuit rewiring beyond a critical period. Interestingly, many of these plasticity regulators are found in the extracellular milieu. Understanding why so many regulators exist, how they interact and, ultimately, how to lift them in noninvasive ways may hold the key to novel therapies and lifelong learning.
Collapse
Affiliation(s)
- Anne E Takesian
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
54
|
Yu X, Koretsky AP. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury. Brain Connect 2014; 4:709-17. [PMID: 25117691 DOI: 10.1089/brain.2014.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC.
Collapse
Affiliation(s)
- Xin Yu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | | |
Collapse
|
55
|
Abstract
The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation.
Collapse
Affiliation(s)
- Zhifeng Kou
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA ; Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Armin Iraji
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
56
|
Albieri G, Barnes SJ, de Celis Alonso B, Cheetham CEJ, Edwards CE, Lowe AS, Karunaratne H, Dear JP, Lee KC, Finnerty GT. Rapid Bidirectional Reorganization of Cortical Microcircuits. Cereb Cortex 2014; 25:3025-35. [PMID: 24836895 PMCID: PMC4537443 DOI: 10.1093/cercor/bhu098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex.
Collapse
Affiliation(s)
- Giorgia Albieri
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Samuel J Barnes
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: MRC Centre for Developmental Neurobiology King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Benito de Celis Alonso
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: Faculty of Physics and Mathematics, prior to the University, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Claire E J Cheetham
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: National Institutes of Health, Bethesda, MD, USA
| | - Clarissa E Edwards
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK
| | - Andrew S Lowe
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK Current address: MRC Centre for Developmental Neurobiology King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | - Harini Karunaratne
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK
| | - John P Dear
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Kalok C Lee
- Division of Engineering, King's College London, Strand, London WC2R 2LS, UK
| | - Gerald T Finnerty
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (Box44), London SE5 8AF, UK
| |
Collapse
|
57
|
Chao THH, Chen JH, Yen CT. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats. PLoS One 2014; 9:e97305. [PMID: 24825464 PMCID: PMC4019572 DOI: 10.1371/journal.pone.0097305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/17/2014] [Indexed: 11/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.
Collapse
Affiliation(s)
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
58
|
Crossmodal induction of thalamocortical potentiation leads to enhanced information processing in the auditory cortex. Neuron 2014; 81:664-73. [PMID: 24507197 DOI: 10.1016/j.neuron.2013.11.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2013] [Indexed: 11/21/2022]
Abstract
Sensory systems do not work in isolation; instead, they show interactions that are specifically uncovered during sensory loss. To identify and characterize these interactions, we investigated whether visual deprivation leads to functional enhancement in primary auditory cortex (A1). We compared sound-evoked responses of A1 neurons in visually deprived animals to those from normally reared animals. Here, we show that visual deprivation leads to improved frequency selectivity as well as increased frequency and intensity discrimination performance of A1 neurons. Furthermore, we demonstrate in vitro that in adults visual deprivation strengthens thalamocortical (TC) synapses in A1, but not in primary visual cortex (V1). Because deafening potentiated TC synapses in V1, but not A1, crossmodal TC potentiation seems to be a general property of adult cortex. Our results suggest that adults retain the capability for crossmodal changes whereas such capability is absent within a sensory modality. Thus, multimodal training paradigms might be beneficial in sensory-processing disorders.
Collapse
|
59
|
Crocker-Buque A, Brown SM, Kind PC, Isaac JTR, Daw MI. Experience-Dependent, Layer-Specific Development of Divergent Thalamocortical Connectivity. Cereb Cortex 2014; 25:2255-66. [PMID: 24610243 PMCID: PMC4494033 DOI: 10.1093/cercor/bhu031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The main input to primary sensory cortex is via thalamocortical (TC) axons that form the greatest number of synapses in layer 4, but also synapse onto neurons in layer 6. The development of the TC input to layer 4 has been widely studied, but less is known about the development of the layer 6 input. Here, we show that, in neonates, the input to layer 6 is as strong as that to layer 4. Throughout the first postnatal week, there is an experience-dependent strengthening specific to layer 4, which correlates with the ability of synapses in layer 4, but not in layer 6, to undergo long-term potentiation (LTP). This strengthening consists of an increase in axon branching and the divergence of connectivity in layer 4 without a change in the strength of individual connections. We propose that experience-driven LTP stabilizes transient TC synapses in layer 4 to increase strength and divergence specifically in layer 4 over layer 6.
Collapse
Affiliation(s)
- Alex Crocker-Buque
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Sarah M Brown
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - John T R Isaac
- Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA Current address: Lilly UK, Erl Wood Manor, Windlesham, UK
| | - Michael I Daw
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
60
|
Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L. The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol 2014; 522:950-70. [DOI: 10.1002/cne.23455] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/17/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Jeroen Aerts
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Ellen Ytebrouck
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Samme Vreysen
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| |
Collapse
|
61
|
Yu X, Qian C, Chen DY, Dodd S, Koretsky AP. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat Methods 2014; 11:55-8. [PMID: 24240320 PMCID: PMC4276040 DOI: 10.1038/nmeth.2730] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 10/23/2013] [Indexed: 11/08/2022]
Abstract
Using a line-scanning method during functional magnetic resonance imaging (fMRI), we obtained high temporal (50-ms) and spatial (50-μm) resolution information along the cortical thickness and showed that the laminar position of fMRI onset coincides with distinct neural inputs in rat somatosensory and motor cortices. This laminar-specific fMRI onset allowed us to identify the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Der-yow Chen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan P. Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
62
|
Shih YYI, Yash TV, Rogers B, Duong TQ. FMRI of deep brain stimulation at the rat ventral posteromedial thalamus. Brain Stimul 2013; 7:190-3. [PMID: 24309153 DOI: 10.1016/j.brs.2013.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/25/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) of deep brain stimulation (DBS) has potentials to reveal neuroanatomical connectivity of a specific brain region in vivo. OBJECTIVE This study aimed to demonstrate frequency and amplitude tunings of the thalamocortical tract using DBS fMRI at the rat ventral posteromedial thalamus. METHODS Blood oxygenation level dependent (BOLD) fMRI data were acquired in a total of twelve rats at a high-field 11.7 T MRI scanner with modulation of nine stimulus frequencies (1-40 Hz) and seven stimulus amplitudes (0.2-3.6 mA). RESULTS BOLD response in the barrel cortex peaked at 25 Hz. The response increased with stimulus amplitude and reached a plateau at 1 mA. Cortical spreading depolarization (CSD) was observed occasionally after DBS that carries >10% BOLD waves spanning the entire ipsilateral cortex. CONCLUSION fMRI is sensitive to the frequency effect of DBS and has potential to investigate the function of a particular neuroanatomical pathway.
Collapse
Affiliation(s)
- Yen-Yu Ian Shih
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Tiwari V Yash
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Bill Rogers
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Timothy Q Duong
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Department of Veterans Affairs, USA.
| |
Collapse
|
63
|
Kral A. Auditory critical periods: A review from system’s perspective. Neuroscience 2013; 247:117-33. [DOI: 10.1016/j.neuroscience.2013.05.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
|
64
|
Yen CT, Lu PL. Thalamus and pain. ACTA ACUST UNITED AC 2013; 51:73-80. [DOI: 10.1016/j.aat.2013.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/02/2023]
|
65
|
Harsan LA, Dávid C, Reisert M, Schnell S, Hennig J, von Elverfeldt D, Staiger JF. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography. Proc Natl Acad Sci U S A 2013; 110:E1797-806. [PMID: 23610438 PMCID: PMC3651497 DOI: 10.1073/pnas.1218330110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway.
Collapse
Affiliation(s)
- Laura-Adela Harsan
- Department of Radiology, Medical Physics, University Medical Center and the BrainLinks-BrainTools Excellence Cluster of the University of Freiburg, 79106 - Freiburg, Germany
| | - Csaba Dávid
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, H-1094, Hungary
| | - Marco Reisert
- Department of Radiology, Medical Physics, University Medical Center and the BrainLinks-BrainTools Excellence Cluster of the University of Freiburg, 79106 - Freiburg, Germany
| | - Susanne Schnell
- Department of Radiology, Medical Physics, University Medical Center and the BrainLinks-BrainTools Excellence Cluster of the University of Freiburg, 79106 - Freiburg, Germany
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-2927; and
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, University Medical Center and the BrainLinks-BrainTools Excellence Cluster of the University of Freiburg, 79106 - Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, University Medical Center and the BrainLinks-BrainTools Excellence Cluster of the University of Freiburg, 79106 - Freiburg, Germany
| | - Jochen F. Staiger
- Department of Neuroanatomy and
- Deutsche Forschungsgemeinschaft Center for Molecular Physiology of the Brain/Excellence Cluster 171, Georg-August University, 37075 Göttingen, Germany
| |
Collapse
|
66
|
Blundon JA, Zakharenko SS. Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist 2013; 19:465-78. [PMID: 23558179 DOI: 10.1177/1073858413482983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory cortices can not only detect and analyze incoming sensory information but can also undergo plastic changes while learning behaviorally important sensory cues. This experience-dependent cortical plasticity is essential for shaping and modifying neuronal circuits to perform computations of multiple, previously unknown sensations, the adaptive process that is believed to underlie perceptual learning. Intensive efforts to identify the mechanisms of cortical plasticity have provided several important clues; however, the exact cellular sites and mechanisms within the intricate neuronal networks that underlie cortical plasticity have yet to be elucidated. In this review, we present several parallels between cortical plasticity in the auditory cortex and recently discovered mechanisms of synaptic plasticity gating at thalamocortical projections that provide the main input to sensory cortices. Striking similarities between the features and mechanisms of thalamocortical synaptic plasticity and those of experience-dependent cortical plasticity in the auditory cortex, especially in terms of regulation of an early critical period, point to thalamocortical projections as an important locus of plasticity in sensory cortices.
Collapse
Affiliation(s)
- Jay A Blundon
- Department of Development Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
67
|
Whitt JL, Petrus E, Lee HK. Experience-dependent homeostatic synaptic plasticity in neocortex. Neuropharmacology 2013; 78:45-54. [PMID: 23466332 DOI: 10.1016/j.neuropharm.2013.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 01/24/2023]
Abstract
The organism's ability to adapt to the changing sensory environment is due in part to the ability of the nervous system to change with experience. Input and synapse specific Hebbian plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), are critical for sculpting the nervous system to wire its circuit in tune with the environment and for storing memories. However, these synaptic plasticity mechanisms are innately unstable and require another mode of plasticity that maintains homeostasis to allow neurons to function within a desired dynamic range. Several modes of homeostatic adaptation are known, some of which work at the synaptic level. This review will focus on the known mechanisms of experience-induced homeostatic synaptic plasticity in the neocortex and their potential function in sensory cortex plasticity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- Jessica L Whitt
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily Petrus
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hey-Kyoung Lee
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|