51
|
Senthilkumaran M, Bobrovskaya L, Verberne AJM, Llewellyn-Smith IJ. Insulin-responsive autonomic neurons in rat medulla oblongata. J Comp Neurol 2018; 526:2665-2682. [PMID: 30136719 DOI: 10.1002/cne.24523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022]
Abstract
Low blood glucose activates brainstem adrenergic and cholinergic neurons, driving adrenaline secretion from the adrenal medulla and glucagon release from the pancreas. Despite their roles in maintaining glucose homeostasis, the distributions of insulin-responsive adrenergic and cholinergic neurons in the medulla are unknown. We fasted rats overnight and gave them insulin (10 U/kg i.p.) or saline after 2 weeks of handling. Blood samples were collected before injection and before perfusion at 90 min. We immunoperoxidase-stained transverse sections of perfused medulla to show Fos plus either phenylethanolamine N-methyltransferase (PNMT) or choline acetyltransferase (ChAT). Insulin injection lowered blood glucose from 4.9 ± 0.3 mmol/L to 1.7 ± 0.2 mmol/L (mean ± SEM; n = 6); saline injection had no effect. In insulin-treated rats, many PNMT-immunoreactive C1 neurons had Fos-immunoreactive nuclei, with the proportion of activated neurons being highest in the caudal part of the C1 column. In the rostral ventrolateral medulla, 33.3% ± 1.4% (n = 8) of C1 neurons were Fos-positive. Insulin also induced Fos in 47.2% ± 2.0% (n = 5) of dorsal medullary C3 neurons and in some C2 neurons. In the dorsal motor nucleus of the vagus (DMV), insulin evoked Fos in many ChAT-positive neurons. Activated neurons were concentrated in the medial and middle regions of the DMV beneath and just rostral to the area postrema. In control rats, very few C1, C2, or C3 neurons and no DMV neurons were Fos-positive. The high numbers of PNMT-immunoreactive and ChAT-immunoreactive neurons that express Fos after insulin treatment reinforce the importance of these neurons in the central response to a decrease in glucose bioavailability.
Collapse
Affiliation(s)
- M Senthilkumaran
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - L Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - A J M Verberne
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine-Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - I J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
52
|
Role of C1 neurons in anti-inflammatory reflex: Mediation between afferents and efferents. Neurosci Res 2018; 136:6-12. [DOI: 10.1016/j.neures.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
|
53
|
Kim YS, Kato HE, Yamashita K, Ito S, Inoue K, Ramakrishnan C, Fenno LE, Evans KE, Paggi JM, Dror RO, Kandori H, Kobilka BK, Deisseroth K. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 2018; 561:343-348. [PMID: 30158696 PMCID: PMC6340299 DOI: 10.1038/s41586-018-0511-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023]
Abstract
The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.
Collapse
Affiliation(s)
- Yoon Seok Kim
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Japan.
| | | | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Charu Ramakrishnan
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kathryn E Evans
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
54
|
Alvarsson A, Stanley SA. Remote control of glucose-sensing neurons to analyze glucose metabolism. Am J Physiol Endocrinol Metab 2018; 315:E327-E339. [PMID: 29812985 PMCID: PMC6171010 DOI: 10.1152/ajpendo.00469.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
The central nervous system relies on a continual supply of glucose, and must be able to detect glucose levels and regulate peripheral organ functions to ensure that its energy requirements are met. Specialized glucose-sensing neurons, first described half a century ago, use glucose as a signal and modulate their firing rates as glucose levels change. Glucose-excited neurons are activated by increasing glucose concentrations, while glucose-inhibited neurons increase their firing rate as glucose concentrations fall and decrease their firing rate as glucose concentrations rise. Glucose-sensing neurons are present in multiple brain regions and are highly expressed in hypothalamic regions, where they are involved in functions related to glucose homeostasis. However, the roles of glucose-sensing neurons in healthy and disease states remain poorly understood. Technologies that can rapidly and reversibly activate or inhibit defined neural populations provide invaluable tools to investigate how specific neural populations regulate metabolism and other physiological roles. Optogenetics has high temporal and spatial resolutions, requires implants for neural stimulation, and is suitable for modulating local neural populations. Chemogenetics, which requires injection of a synthetic ligand, can target both local and widespread populations. Radio- and magnetogenetics offer rapid neural activation in localized or widespread neural populations without the need for implants or injections. These tools will allow us to better understand glucose-sensing neurons and their metabolism-regulating circuits.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
55
|
Bedbrook CN, Deverman BE, Gradinaru V. Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annu Rev Neurosci 2018; 41:323-348. [DOI: 10.1146/annurev-neuro-080317-062048] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant viruses allow for targeted transgene expression in specific cell populations throughout the nervous system. The adeno-associated virus (AAV) is among the most commonly used viruses for neuroscience research. Recombinant AAVs (rAAVs) are highly versatile and can package most cargo composed of desired genes within the capsid's ∼5-kb carrying capacity. Numerous regulatory elements and intersectional strategies have been validated in rAAVs to enable cell type–specific expression. rAAVs can be delivered to specific neuronal populations or globally throughout the animal. The AAV capsids have natural cell type or tissue tropism and trafficking that can be modified for increased specificity. Here, we describe recently engineered AAV capsids and associated cargo that have extended the utility of AAVs in targeting molecularly defined neurons throughout the nervous system, which will further facilitate neuronal circuit interrogation and discovery.
Collapse
Affiliation(s)
- Claire N. Bedbrook
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Benjamin E. Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
56
|
Jiang Y, Browning KN, Toti L, Travagli RA. Vagally mediated gastric effects of brain stem α 2-adrenoceptor activation in stressed rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G504-G516. [PMID: 29351390 PMCID: PMC5966751 DOI: 10.1152/ajpgi.00382.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Chronic stress exerts vagally dependent effects to disrupt gastric motility; previous studies have shown that, among other nuclei, A2 neurons are involved in mediating these effects. Several studies have also shown robust in vitro and in vivo effects of α2-adrenoceptor agonists on vagal motoneurons. We have demonstrated previously that brainstem vagal neurocircuits undergo remodeling following acute stress; however, the effects following brief periods of chronic stress have not been investigated. Our aim, therefore, was to test the hypothesis that different types of chronic stress influence gastric tone and motility by inducing plasticity in the response of vagal neurocircuits to α2-adrenoreceptor agonists. In rats that underwent 5 days of either homotypic or heterotypic stress loading, we applied the α2-adrenoceptor agonist, UK14304, either by in vitro brainstem perfusion to examine its ability to modulate GABAergic synaptic inputs to vagal motoneurons or in vivo brainstem microinjection to observe actions to modulate antral tone and motility. In neurons from naïve rats, GABAergic currents were unresponsive to exogenous application of UK14304. In contrast, GABAergic currents were inhibited by UK14304 in all neurons from homotypic and, in a subpopulation of neurons, heterotypic stressed rats. In control rats, UK14304 microinjection inhibited gastric tone and motility via withdrawal of vagal cholinergic tone; in heterotypic stressed rats, the larger inhibition of antrum tone was due to a concomitant activation of peripheral nonadrenergic, noncholinergic pathways. These data suggest that stress induces plasticity in brainstem vagal neurocircuits, leading to an upregulation of α2-mediated responses. NEW & NOTEWORTHY Catecholaminergic neurons of the A2 area play a relevant role in stress-related dysfunction of the gastric antrum. Brief periods of chronic stress load induce plastic changes in the actions of adrenoceptors on vagal brainstem neurocircuits.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - Luca Toti
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
57
|
Li AJ, Wang Q, Ritter S. Selective Pharmacogenetic Activation of Catecholamine Subgroups in the Ventrolateral Medulla Elicits Key Glucoregulatory Responses. Endocrinology 2018; 159:341-355. [PMID: 29077837 PMCID: PMC5761588 DOI: 10.1210/en.2017-00630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Catecholamine (CA) neurons in the ventrolateral medulla (VLM) contribute importantly to glucoregulation during glucose deficit. However, it is not known which CA neurons elicit different glucoregulatory responses or whether selective activation of CA neurons is sufficient to elicit these responses. Therefore, to selectively activate CA subpopulations, we injected male or female Th-Cre+ transgenic rats with the Cre-dependent DREADD construct, AAV2-DIO-hSyn-hM3D(Gq)-mCherry, at one of four rostrocaudal levels of the VLM: rostral C1 (C1r), middle C1 (C1m), the area of A1 and C1 overlap (A1/C1), and A1. Transfection was highly selective for CA neurons at each site. Systemic injection of the Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor agonist, clozapine-N-oxide (CNO), stimulated feeding in rats transfected at C1r, C1m, or A1/C1 but not A1. CNO increased corticosterone secretion in rats transfected at C1m or A1/C1 but not A1. In contrast, CNO did not increase blood glucose or induce c-Fos expression in the spinal cord or adrenal medulla after transfection of any single VLM site but required dual transfection of both C1m and C1r, possibly indicating that CA neurons mediating blood glucose responses are more sparsely distributed in C1r and C1m than those mediating feeding and corticosterone secretion. These results show that selective activation of C1 CA neurons is sufficient to increase feeding, blood glucose levels, and corticosterone secretion and suggest that each of these responses is mediated by CA neurons concentrated at different levels of the C1 cell group.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| |
Collapse
|
58
|
Central Network Dynamics Regulating Visceral and Humoral Functions. J Neurosci 2017; 37:10848-10854. [PMID: 29118214 DOI: 10.1523/jneurosci.1833-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 02/07/2023] Open
Abstract
The brain processes information from the periphery and regulates visceral and immune activity to maintain internal homeostasis, optimally respond to a dynamic external environment, and integrate these functions with ongoing behavior. In addition to its relevance for survival, this integration underlies pathology as evidenced by diseases exhibiting comorbid visceral and psychiatric symptoms. Advances in neuroanatomical mapping, genetically specific neuronal manipulation, and neural network recording are overcoming the challenges of dissecting complex circuits that underlie this integration and deciphering their function. Here we focus on reciprocal communication between the brain and urological, gastrointestinal, and immune systems. These studies are revealing how autonomic activity becomes integrated into behavior as part of a social strategy, how the brain regulates innate immunity in response to stress, and how drugs impact emotion and gastrointestinal function. These examples highlight the power of the functional organization of circuits at the interface of the brain and periphery.
Collapse
|
59
|
Stornetta RL, Guyenet PG. C1 neurons: a nodal point for stress? Exp Physiol 2017; 103:332-336. [PMID: 29080216 DOI: 10.1113/ep086435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the topic of this review? The C1 neurons (C1) innervate sympathetic and parasympathetic preganglionic neurons plus numerous brain nuclei implicated in stress, arousal and autonomic regulations. We consider here the contribution of C1 to stress-induced responses. What advances does it highlight? C1 activation is required for blood pressure stability during hypoxia and mild hemorrhage which exemplifies their homeostatic function. During restraint stress, C1 activate the splenic anti-inflammatory pathway resulting in tissue protection against ischemic injury. This effect, along with glucose release and, possibly, arousal are examples of adaptive non-homeostatic responses to stress that are also mediated by C1. The C1 cells are catecholaminergic and glutamatergic neurons located in the rostral ventrolateral medulla. Collectively, these neurons innervate sympathetic and parasympathetic preganglionic neurons, the hypothalamic paraventricular nucleus and countless brain structures involved in autonomic regulation, arousal and stress. Optogenetic inhibition of rostral C1 neurons has little effect on blood pressure (BP) at rest in conscious rats but produces large reductions in BP when the animals are anaesthetized or exposed to hypoxia. Optogenetic C1 stimulation increases BP and produces arousal from non-rapid eye movement sleep. C1 cell stimulation mimics the effect of restraint stress to attenuate kidney injury caused by renal ischaemia-reperfusion. These effects are mediated by the sympathetic nervous system through the spleen and eliminated by silencing the C1 neurons. These few examples illustrate that, depending on the nature of the stress, the C1 cells mediate adaptive responses of a homeostatic or allostatic nature.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|