51
|
Keough KC, Whalen S, Inoue F, Przytycki PF, Fair T, Deng C, Steyert M, Ryu H, Lindblad-Toh K, Karlsson E, Nowakowski T, Ahituv N, Pollen A, Pollard KS. Three-dimensional genome rewiring in loci with human accelerated regions. Science 2023; 380:eabm1696. [PMID: 37104607 PMCID: PMC10999243 DOI: 10.1126/science.abm1696] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/01/2023] [Indexed: 04/29/2023]
Abstract
Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs.
Collapse
Affiliation(s)
- Kathleen C Keough
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Pawel F Przytycki
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Tyler Fair
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Marilyn Steyert
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Hane Ryu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Alex Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics and Bakar Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
52
|
Fair T, Pollen AA. Genetic architecture of human brain evolution. Curr Opin Neurobiol 2023; 80:102710. [PMID: 37003107 DOI: 10.1016/j.conb.2023.102710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/03/2023]
Abstract
Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/@TylerFair_
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
53
|
Genetic Variation in Transcription Factor Binding Sites. Int J Mol Sci 2023; 24:ijms24055038. [PMID: 36902467 PMCID: PMC10003035 DOI: 10.3390/ijms24055038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
The interaction between transcription factors (TFs) and DNA is the core process that determines the state of a cell's transcriptome [...].
Collapse
|
54
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen A, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in the developing human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528663. [PMID: 36824845 PMCID: PMC9949039 DOI: 10.1101/2023.02.15.528663] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and disease. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 sequences, including differentially accessible cell-type specific regions in the developing cortex and single-nucleotide variants associated with psychiatric disorders. In primary cells, we identified 46,802 active enhancer sequences and 164 disorder-associated variants that significantly alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning, we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institutes; San Francisco, CA, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University; Kyoto, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | | | - Scott Norton
- Child Study Center, Yale University; New Haven, CT, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University; New Haven, CT, USA
- Department of Neuroscience, Yale University; New Haven, CT, USA
| | - Alex Pollen
- Department of Neurology, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
55
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
56
|
Hansen T, Fong S, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528376. [PMID: 36824965 PMCID: PMC9949080 DOI: 10.1101/2023.02.14.528376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie >50% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-to regulatory differences between species.
Collapse
Affiliation(s)
- Tyler Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Sarah Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Lead contact
| |
Collapse
|
57
|
Zhang X, Fang B, Huang YF. Transcription factor binding sites are frequently under accelerated evolution in primates. Nat Commun 2023; 14:783. [PMID: 36774380 PMCID: PMC9922303 DOI: 10.1038/s41467-023-36421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Recent comparative genomic studies have identified many human accelerated elements (HARs) with elevated substitution rates in the human lineage. However, it remains unknown to what extent transcription factor binding sites (TFBSs) are under accelerated evolution in humans and other primates. Here, we introduce two pooling-based phylogenetic methods with dramatically enhanced sensitivity to examine accelerated evolution in TFBSs. Using these new methods, we show that more than 6000 TFBSs annotated in the human genome have experienced accelerated evolution in Hominini, apes, and Old World monkeys. Although these TFBSs individually show relatively weak signals of accelerated evolution, they collectively are more abundant than HARs. Also, we show that accelerated evolution in Pol III binding sites may be driven by lineage-specific positive selection, whereas accelerated evolution in other TFBSs might be driven by nonadaptive evolutionary forces. Finally, the accelerated TFBSs are enriched around developmental genes, suggesting that accelerated evolution in TFBSs may drive the divergence of developmental processes between primates.
Collapse
Affiliation(s)
- Xinru Zhang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA. .,Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Bohao Fang
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, Boston, MA, 02135, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
58
|
Koesterich J, An JY, Inoue F, Sohota A, Ahituv N, Sanders SJ, Kreimer A. Characterization of De Novo Promoter Variants in Autism Spectrum Disorder with Massively Parallel Reporter Assays. Int J Mol Sci 2023; 24:3509. [PMID: 36834916 PMCID: PMC9959321 DOI: 10.3390/ijms24043509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common, complex, and highly heritable condition with contributions from both common and rare genetic variations. While disruptive, rare variants in protein-coding regions clearly contribute to symptoms, the role of rare non-coding remains unclear. Variants in these regions, including promoters, can alter downstream RNA and protein quantity; however, the functional impacts of specific variants observed in ASD cohorts remain largely uncharacterized. Here, we analyzed 3600 de novo mutations in promoter regions previously identified by whole-genome sequencing of autistic probands and neurotypical siblings to test the hypothesis that mutations in cases have a greater functional impact than those in controls. We leveraged massively parallel reporter assays (MPRAs) to detect transcriptional consequences of these variants in neural progenitor cells and identified 165 functionally high confidence de novo variants (HcDNVs). While these HcDNVs are enriched for markers of active transcription, disruption to transcription factor binding sites, and open chromatin, we did not identify differences in functional impact based on ASD diagnostic status.
Collapse
Affiliation(s)
- Justin Koesterich
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
- Department of Cell and Developmental Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Joon-Yong An
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neuroscience, University of California, San Francisco, CA 94143, USA
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Republic of Korea
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA 94158, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Ajuni Sohota
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA 94158, USA
| | - Stephan J. Sanders
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neuroscience, University of California, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, CA 94158, USA
- Institute for Developmental and Regenerative Medicine, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Anat Kreimer
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|