51
|
Abstract
The timing of events can be implicit or without awareness yet critical for task performance. However, the neural correlates of implicit timing are unknown. One system that has long been implicated in event timing is the olivocerebellar system, which originates exclusively from the inferior olive. By using event-related functional MRI in human subjects and a specially designed behavioral task, we examined the effect of the subjects' awareness of changes in stimulus timing on the olivocerebellar system response. Subjects were scanned while observing changes in stimulus timing that were presented near each subject's detection threshold such that subjects were aware of such changes in only approximately half the trials. The inferior olive and multiple areas within the cerebellar cortex showed a robust response to time changes regardless of whether the subjects were aware of these changes. Our findings provide support to the proposed role of the olivocerebellar system in encoding temporal information and further suggest that this system can operate independently of awareness and mediate implicit timing in a multitude of perceptual and motor operations, including classical conditioning and implicit learning.
Collapse
|
52
|
Luque NR, Garrido JA, Carrillo RR, Coenen OJMD, Ros E. Cerebellar input configuration toward object model abstraction in manipulation tasks. ACTA ACUST UNITED AC 2011; 22:1321-8. [PMID: 21708499 DOI: 10.1109/tnn.2011.2156809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is widely assumed that the cerebellum is one of the main nervous centers involved in correcting and refining planned movement and accounting for disturbances occurring during movement, for instance, due to the manipulation of objects which affect the kinematics and dynamics of the robot-arm plant model. In this brief, we evaluate a way in which a cerebellar-like structure can store a model in the granular and molecular layers. Furthermore, we study how its microstructure and input representations (context labels and sensorimotor signals) can efficiently support model abstraction toward delivering accurate corrective torque values for increasing precision during different-object manipulation. We also describe how the explicit (object-related input labels) and implicit state input representations (sensorimotor signals) complement each other to better handle different models and allow interpolation between two already stored models. This facilitates accurate corrections during manipulations of new objects taking advantage of already stored models.
Collapse
Affiliation(s)
- Niceto R Luque
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
53
|
Affiliation(s)
- Egidio D'Angelo
- Department of Physiology, University of Pavia, Via Forlanini 6, I-27100, Pavia, Italy.
| |
Collapse
|
54
|
Dere E, Zlomuzica A. The role of gap junctions in the brain in health and disease. Neurosci Biobehav Rev 2011; 36:206-17. [PMID: 21664373 DOI: 10.1016/j.neubiorev.2011.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022]
Abstract
Gap junctions connect the cytosolic compartments of adjacent cells for direct electrotonic and metabolic cell-to-cell communication. Gap junctions between glial cells or neurons are ubiquitously expressed in the brain and play a role in brain development including cell differentiation, cell migration and survival, tissue homeostasis, as well as in human diseases including hearing loss, skin disease, neuropathies, epilepsy, brain trauma, and cardiovascular disease. Furthermore, gap junctions are involved in the synchronization and rhythmic oscillation of hippocampal and neocotical neuronal ensembles which might be important for memory formation and consolidation. In this review the accumulated evidence from mouse mutant and pharmacological studies using gap junction blockers is summarized and the progress made in dissecting the physiological, pathophysiological and behavioral roles of gap junction mediated intercellular communication in the brain is discussed.
Collapse
Affiliation(s)
- Ekrem Dere
- Université Pierre et Marie Curie, Paris 6, UFR des Sciences de la Vie, UMR 7102, Neurobiologie des Processus Adaptatifs, 9 quai St Bernard, 75005 Paris, France.
| | | |
Collapse
|
55
|
Solodkin A, Peri E, Chen EE, Ben-Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. CEREBELLUM (LONDON, ENGLAND) 2011; 10:218-32. [PMID: 20886327 PMCID: PMC3091958 DOI: 10.1007/s12311-010-0214-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of cerebellar degenerative disorders, characterized by progressive gait unsteadiness, hand incoordination, and dysarthria. The mutational mechanism in SCA1, a dominantly inherited form of SCA, consists of an expanded trinucleotide CAG repeat. In SCA1, there is loss of Purkinje cells, neuronal loss in dentate nucleus, olives, and pontine nuclei. In the present study, we sought to apply intrinsic functional connectivity analysis combined with diffusion tensor imaging to define the state of cerebellar connectivity in SCA1. Our results on the intrinsic functional connectivity in lateral cerebellum and thalamus showed progressive organizational changes in SCA1 noted as a progressive increase in the absolute value of the correlation coefficients. In the lateral cerebellum, the anatomical organization of functional clusters seen as parasagittal bands in controls is lost, changing to a patchy appearance in SCA1. Lastly, only fractional anisotropy in the superior peduncle and changes in functional organization in thalamus showed a linear dependence to duration and severity of disease. The present pilot work represents an initial effort describing connectivity biomarkers of disease progression in SCA1. The functional changes detected with intrinsic functional analysis and diffusion tensor imaging suggest that disease progression can be analyzed as a disconnection syndrome.
Collapse
Affiliation(s)
- Ana Solodkin
- Department of Neurology, MC 2030, The University of Chicago Hospitals, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
56
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
57
|
Wu X, Nestrasil I, Ashe J, Tuite P, Bushara K. Inferior olive response to passive tactile and visual stimulation with variable interstimulus intervals. THE CEREBELLUM 2011; 9:598-602. [PMID: 20730634 DOI: 10.1007/s12311-010-0203-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The unique anatomical and electrophysiological features of the inferior olive and its importance to cerebellar function have been recognized for decades. However, understanding the exact function of the inferior olive has been limited by the general lack of correlation between its neural activity and specific behavioral states. Electrophysiological studies in animals showed that the inferior olive response to sensory stimuli is generally invariant to stimulus properties but is enhanced by unexpected stimuli. Using functional magnetic resonance imaging in humans, we have shown that the inferior olive is activated when subjects performed a task requiring perception of visual stimuli with unpredictable timing (Xu et al. J Neurosci 26(22):5990-5995, 2006, Liu et al. J Neurophysiol 100(3):1557-1561, 2008). In the current study, subjects were scanned while passively perceiving visual and tactile stimuli that were rendered unpredictable by continuously varying interstimulus intervals (ISIs). Sequences of visual stimuli and tactile stimuli to the right hand were presented separately within the same scanning session. In addition to the activation of multiple areas in the cerebellar cortex consistent with previous imaging studies, the results show that both tactile and visual stimulation with variable ISIs were effective in activating the inferior olive. Together with our previous findings, the current results are consistent with the electrophysiological studies in animals and further support the view that the inferior olive and the climbing fiber system primarily convey the temporal information of sensory input regardless of the modality.
Collapse
Affiliation(s)
- X Wu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
58
|
Brown ME, Martin JR, Rosenbluth J, Ariel M. A novel path for rapid transverse communication of vestibular signals in turtle cerebellum. J Neurophysiol 2010; 105:1071-88. [PMID: 21178000 DOI: 10.1152/jn.00986.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive dye activity within the thin, unfoliated turtle cerebellar cortex (Cb) was recorded in vitro during eighth cranial nerve (nVIII) stimulation. Short latency responses were localized to the middle of the lateral edges of both ipsilateral and contralateral Cb [vestibulocerebellum (vCb)]. Even with a severed contralateral Cb peduncle, stimulation of the nVIII ipsilateral to the intact peduncle evoked contralateral vCb responses with a mean latency of only 0.25 ms after the ipsilateral responses, even though the distance between them was ∼ 5 mm. We investigated whether a rapidly conducting commissure exists between each vCb by stimulating one of them directly. Responses in both vCb spread sagittally, but, surprisingly, there was no sequential activation along a transverse Cb beam between them. In contrast, stimulation medial to either vCb evoked transverse beams that required ∼ 20 ms to cross the Cb. Therefore, the rapid commissural connection between each vCb is not mediated by slowly conducting parallel fibers. Also, the vCb was not strongly activated by climbing fiber stimulation, suggesting that inputs to vCb involve distinct cerebellar circuits. Responses between the two vCb remained following knife cuts through the rostral and caudal Cb along the midline, through both peduncles, and even shallow midline cuts to the middle Cb through its white matter and granule cell layer. Commissural responses were still observed only with a narrow transverse bridge between each vCb or in thick transverse Cb slices. Horseradish peroxidase transport from one vCb labeled transverse axons traveling within the Purkinje cell layer that were larger than parallel fibers and lacked varicosities. In sagittal sections, cross-section profiles of myelinated axons were observed around Purkinje cells midway between the rostral and caudal Cb. This novel pathway for transverse communication between lateral edges of turtle Cb suggests that afferents may directly conduct vestibular information rapidly across the Cb to coordinate vestibulomotor reflex behaviors.
Collapse
Affiliation(s)
- Michael E Brown
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
59
|
Ariel M, Brown ME. Origin and timing of voltage-sensitive dye signals within layers of the turtle cerebellar cortex. Brain Res 2010; 1357:26-40. [PMID: 20707989 DOI: 10.1016/j.brainres.2010.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/16/2022]
Abstract
Optical recording techniques were applied to the turtle cerebellum to localize synchronous responses to microstimulation of its cortical layers and reveal the cerebellum's three-dimensional processing. The in vitro yet intact cerebellum was first immersed in voltage-sensitive dye and its responses while intact were compared to those measured in thick cerebellar slices. Each slice is stained throughout its depth, even though the pial half appeared darker during epi-illumination and lighter during trans-illumination. Optical responses were shown to be mediated by the voltage-sensitive dye because the evoked signals had opposite polarity for 540- and 710-nm light, but no response to 850-nm light. Molecular layer stimulation of the intact cerebellum evoked slow transverse beams. Similar beams were observed in the molecular layer of thick transverse slices but not sagittal slices. With low currents, beams in transverse slices were restricted to sublayers within the molecular layer, conducting slowly away from the stimulus site. These excitatory beams were observed nearly all the way across the turtle cerebellum, distances of 4-6mm. Microstimulation of the granule cell layer of both transverse or sagittal slices evoked a local membrane depolarization restricted to a radial wedge, but these radial responses did not activate measurable molecular layer beams in transverse slices. White matter microstimulation in sagittal slices (near the ventricular surface of the turtle cerebellum) activated the granule cell and Purkinje cell layers, but not the molecular layer. These responses were nearly synchronous, were primarily caudal to the stimulation, and were blocked by cobalt ions. Therefore, synaptic responses in all cerebellar layers contribute to optical signals recorded in intact cerebellum in vitro (Brown and Ariel, 2009). Rapid radial signaling connects a sagittally-oriented, fast-conduction system of the deep layers with the transverse-oriented, slow-conducting molecular layer, thereby permitting complex temporal processing between two tangential but orthogonal paths in the cerebellar cortex.
Collapse
Affiliation(s)
- Michael Ariel
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
60
|
Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: A mini-review. THE CEREBELLUM 2010; 9:167-73. [PMID: 19898914 DOI: 10.1007/s12311-009-0145-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Few imaging studies have been devoted to the structural and functional connectivity of the red and inferior olivary nuclei although these two nuclei represent two main targets of the cerebellum within the brainstem. However, the RN is anatomically and functionally related to a widespread sensorimotor, limbic, and executive brain network. It projects massively onto the principal olive with which it contributes to a cerebello-rubro-olivo-cerebellar loop modulated by cortical and subcortical afferents. Despite a minor role in planning and execution of rhythmic movements, the red nucleus in conjunction with the inferior olive, more specifically involved in the detection of "unexpected" events, contributes to sensorimotor, sensory and, likely, cognitive higher functions.
Collapse
|
61
|
Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci U S A 2010; 107:12323-8. [PMID: 20566869 DOI: 10.1073/pnas.1001745107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large-conductance voltage- and calcium-activated potassium (BK) channels are ubiquitously expressed in the brain and play an important role in the regulation of neuronal excitation. Previous work has shown that the total deletion of these channels causes an impaired motor behavior, consistent with a cerebellar dysfunction. Cellular analyses showed that a decrease in spike firing rate occurred in at least two types of cerebellar neurons, namely in Purkinje neurons (PNs) and in Golgi cells. To determine the relative role of PNs, we developed a cell-selective mouse mutant, which lacked functional BK channels exclusively in PNs. The behavioral analysis of these mice revealed clear symptoms of ataxia, indicating that the BK channels of PNs are of major importance for normal motor coordination. By using combined two-photon imaging and patch-clamp recordings in these mutant mice, we observed a unique type of synaptic dysfunction in vivo, namely a severe silencing of the climbing fiber-evoked complex spike activity. By performing targeted pharmacological manipulations combined with simultaneous patch-clamp recordings in PNs, we obtained direct evidence that this silencing of climbing fiber activity is due to a malfunction of the tripartite olivo-cerebellar feedback loop, consisting of the inhibitory synaptic connection of PNs to the deep cerebellar nuclei (DCN), followed by a projection of inhibitory DCN afferents to the inferior olive, the origin of climbing fibers. Taken together, our results establish an essential role of BK channels of PNs for both cerebellar motor coordination and feedback regulation in the olivo-cerebellar loop.
Collapse
|
62
|
Canavier CC, Achuthan S. Pulse coupled oscillators and the phase resetting curve. Math Biosci 2010; 226:77-96. [PMID: 20460132 DOI: 10.1016/j.mbs.2010.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Limit cycle oscillators that are coupled in a pulsatile manner are referred to as pulse coupled oscillators. In these oscillators, the interactions take the form of brief pulses such that the effect of one input dies out before the next is received. A phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike in an oscillatory neuron depending upon where in the cycle the input is applied. PRCs can be used to predict phase locking in networks of pulse coupled oscillators. In some studies of pulse coupled oscillators, a specific form is assumed for the interactions between oscillators, but a more general approach is to formulate the problem assuming a PRC that is generated using a perturbation that approximates the input received in the real biological network. In general, this approach requires that circuit architecture and a specific firing pattern be assumed. This allows the construction of discrete maps from one event to the next. The fixed points of these maps correspond to periodic firing modes and are easier to locate and analyze for stability compared to locating and analyzing periodic modes in the original network directly. Alternatively, maps based on the PRC have been constructed that do not presuppose a firing order. Specific circuits that have been analyzed under the assumption of pulsatile coupling include one to one lockings in a periodically forced oscillator or an oscillator forced at a fixed delay after a threshold event, two bidirectionally coupled oscillators with and without delays, a unidirectional N-ring of oscillators, and N all-to-all networks.
Collapse
Affiliation(s)
- Carmen C Canavier
- Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
63
|
Shaikh AG, Hong S, Liao K, Tian J, Solomon D, Zee DS, Leigh RJ, Optican LM. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. ACTA ACUST UNITED AC 2010; 133:923-40. [PMID: 20080879 PMCID: PMC2842510 DOI: 10.1093/brain/awp323] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The inferior olivary nuclei clearly play a role in creating oculopalatal tremor, but the exact mechanism is unknown. Oculopalatal tremor develops some time after a lesion in the brain that interrupts inhibition of the inferior olive by the deep cerebellar nuclei. Over time the inferior olive gradually becomes hypertrophic and its neurons enlarge developing abnormal soma-somatic gap junctions. However, results from several experimental studies have confounded the issue because they seem inconsistent with a role for the inferior olive in oculopalatal tremor, or because they ascribe the tremor to other brain areas. Here we look at 3D binocular eye movements in 15 oculopalatal tremor patients and compare their behaviour to the output of our recent mathematical model of oculopalatal tremor. This model has two mechanisms that interact to create oculopalatal tremor: an oscillator in the inferior olive and a modulator in the cerebellum. Here we show that this dual mechanism model can reproduce the basic features of oculopalatal tremor and plausibly refute the confounding experimental results. Oscillations in all patients and simulations were aperiodic, with a complicated frequency spectrum showing dominant components from 1 to 3 Hz. The model’s synchronized inferior olive output was too small to induce noticeable ocular oscillations, requiring amplification by the cerebellar cortex. Simulations show that reducing the influence of the cerebellar cortex on the oculomotor pathway reduces the amplitude of ocular tremor, makes it more periodic and pulse-like, but leaves its frequency unchanged. Reducing the coupling among cells in the inferior olive decreases the oscillation’s amplitude until they stop (at ∼20% of full coupling strength), but does not change their frequency. The dual-mechanism model accounts for many of the properties of oculopalatal tremor. Simulations suggest that drug therapies designed to reduce electrotonic coupling within the inferior olive or reduce the disinhibition of the cerebellar cortex on the deep cerebellar nuclei could treat oculopalatal tremor. We conclude that oculopalatal tremor oscillations originate in the hypertrophic inferior olive and are amplified by learning in the cerebellum.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- P Strata
- EBRI-Santa Lucia Foundation (IRCCS), Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | | | | |
Collapse
|