51
|
Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation. J Neurosci 2015; 34:15369-81. [PMID: 25392504 DOI: 10.1523/jneurosci.3424-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress.
Collapse
|
52
|
Dekeyster E, Aerts J, Valiente-Soriano FJ, De Groef L, Vreysen S, Salinas-Navarro M, Vidal-Sanz M, Arckens L, Moons L. Ocular hypertension results in retinotopic alterations in the visual cortex of adult mice. Curr Eye Res 2015; 40:1269-83. [PMID: 25615273 DOI: 10.3109/02713683.2014.990983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Glaucoma is a group of optic neuropathies characterized by the loss of retinal ganglion cells (RGCs). Since ocular hypertension (OHT) is a main risk factor, current therapies are predominantly based on lowering eye pressure. However, a subset of treated patients continues to lose vision. More research into pathological mechanisms underlying glaucoma is therefore warranted in order to develop novel therapeutic strategies. In this study we investigated the impact of OHT from eye to brain in mice. METHODS Monocular hypertension (mOHT) was induced in CD-1 mice by laser photocoagulation (LP) of the perilimbal and episcleral veins. The impact on the retina and its main direct target area, the superficial superior colliculus (sSC), was examined via immunostainings for Brn3a, VGluT2 and GFAP. Alterations in neuronal activity in V1 and extrastriate areas V2L and V2M were assessed using in situ hybridization for the activity reporter gene zif268. RESULTS Transient mOHT resulted in diffuse and sectorial RGC degeneration. In the sSC contralateral to the OHT eye, a decrease in VGluT2 immunopositive synaptic connections was detected one week post LP, which appeared to be retinotopically linked to the sectorial RGC degeneration patterns. In parallel, hypoactivity was discerned in contralateral retinotopic projection zones in V1 and V2. Despite complete cortical reactivation 4 weeks post LP, in the sSC no evidence for recovery of RGC synapse density was found and also the concomitant inflammation was not completely resolved. Nevertheless, sSC neurons appeared healthy upon histological inspection and subsequent analysis of cell density revealed no differences between the ipsi- and contralateral sSC. CONCLUSION In addition to RGC death, OHT induces loss of synaptic connections and neuronal activity in the visual pathway and is accompanied by an extensive immune response. Our findings stress the importance of looking beyond the eye and including the whole visual system in glaucoma research.
Collapse
Affiliation(s)
- Eline Dekeyster
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Jeroen Aerts
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | | | - Lies De Groef
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Samme Vreysen
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | - Manuel Salinas-Navarro
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Manuel Vidal-Sanz
- c Department of Ophthalmology , University of Murcia and IMIB-Arrixaca , Murcia , Spain
| | - Lutgarde Arckens
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | - Lieve Moons
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
53
|
Stankowska DL, Minton AZ, Rutledge MA, Mueller BH, Phatak NR, He S, Ma HY, Forster MJ, Yorio T, Krishnamoorthy RR. Neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Invest Ophthalmol Vis Sci 2015; 56:893-907. [PMID: 25587060 DOI: 10.1167/iovs.14-15008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP), leading to optic nerve head (ONH) cupping, axon loss, and apoptosis of retinal ganglion cells (RGCs), which could ultimately result in blindness. Brn3b is a class-4 POU domain transcription factor that plays a key role in RGC development, axon outgrowth, and pathfinding. Previous studies suggest that a decrease in Brn3b levels occurs in animal models of glaucoma. The goal of this study was to determine if adeno-associated virus (AAV)-directed overexpression of the Brn3b protein could have neuroprotective effects following elevated IOP-mediated neurodegeneration. METHODS Intraocular pressure was elevated in one eye of Brown Norway rats (Rattus norvegicus), following which the IOP-elevated eyes were intravitreally injected with AAV constructs encoding either the GFP (rAAV-CMV-GFP and rAAV-hsyn-GFP) or Brn3b (rAAV-CMV-Brn3b and rAAV-hsyn-Brn3b). Retina sections through the ONH were stained for synaptic plasticity markers and neuroprotection was assessed by RGC counts and visual acuity tests. RESULTS Adeno-associated virus-mediated expression of the Brn3b protein in IOP-elevated rat eyes promoted an upregulation of growth associated protein-43 (GAP-43), actin binding LIM protein (abLIM) and acetylated α-tubulin (ac-Tuba) both posterior to the ONH and in RGCs. The RGC survival as well as axon integrity score were significantly improved in IOP-elevated rAAV-hsyn-Brn3b-injected rats compared with those of the IOP-elevated rAAV-hsyn-GFP- injected rats. Additionally, intravitreal rAAV-hsyn-Brn3b administration significantly restored the visual optomotor response in IOP-elevated rat eyes. CONCLUSIONS Adeno-associated virus-mediated Brn3b protein expression may be a suitable approach for promoting neuroprotection in animal models of glaucoma.
Collapse
Affiliation(s)
- Dorota L Stankowska
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Alena Z Minton
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Margaret A Rutledge
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Brett H Mueller
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Nitasha R Phatak
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Shaoqing He
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Hai-Ying Ma
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Michael J Forster
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Thomas Yorio
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Raghu R Krishnamoorthy
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| |
Collapse
|
54
|
Paulus JD, Link BA. Loss of optineurin in vivo results in elevated cell death and alters axonal trafficking dynamics. PLoS One 2014; 9:e109922. [PMID: 25329564 PMCID: PMC4199637 DOI: 10.1371/journal.pone.0109922] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
Collapse
Affiliation(s)
- Jeremiah D. Paulus
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
55
|
Sponsel WE, Groth SL, Satsangi N, Maddess T, Reilly MA. Refined Data Analysis Provides Clinical Evidence for Central Nervous System Control of Chronic Glaucomatous Neurodegeneration. Transl Vis Sci Technol 2014; 3:1. [PMID: 24932429 DOI: 10.1167/tvst.3.3.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/15/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Refined data analysis was performed to assess binocular visual field conservation in patients with bilateral glaucomatous damage to determine whether unilateral visual field loss is random, anatomically symmetric, or nonrandom in relation to the fellow eye. METHODS This was a case-control study of 47 consecutive patients with bilaterally severe glaucoma; each right eye visual field locus was paired with randomly selected coisopteric left eye loci, with 760,000 (10,000 complete sets of 76 loci) such iterations performed per subject. The potential role of anatomic symmetry in bilateral visual field conservation was also assessed by pairing mirror-image loci of the paired fields. The mean values of the random coisopteric and the symmetric mirror pairings were compared with natural point-for-point pairings of the two eyes by paired t-test. RESULTS Mean unilateral thresholds across the entire visual field were 18.9 dB left and 19.9 dB right (average 19.4), 4 dB lower than the better of the naturally paired concomitant loci of 23.4 dB (P < 10-15). A remarkable natural tendency for conservation of the binocular visual field was confirmed, far stronger than explicable by random chance or anatomic symmetry (P < 0.0001), and reaffirmed by subsequent prospective simultaneous binocular visual field retesting of an arbitrary subset (n = 16) of the study population (P < 0.0001). CONCLUSIONS Refined data analysis of paired visual fields confirms the existence of a natural optimization of binocular visual function in severe bilateral glaucoma via interlocking fields that could be created only by central nervous system (CNS) involvement. TRANSLATIONAL RELEVANCE Integrated bilateral visual field analysis should better define actual visual disability and more accurately reflect the functional efficacy of current ocular and future CNS-oriented therapeutic approaches to the treatment of glaucoma. Glaucomatous eyes provide a highly accessible paired-organ study model for developing therapeutics to optimize conservation of function in neurodegenerative disorders.
Collapse
Affiliation(s)
- William E Sponsel
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA ; Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, USA ; Baptist Medical Center WESMDPA Glaucoma Service, San Antonio, TX, USA ; Australian Research Council Centre of Excellence in Vision Science, Canberra, Australia
| | - Sylvia L Groth
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nancy Satsangi
- University of Texas Health Science Center-San Antonio, San Antonio, TX, USA
| | - Ted Maddess
- Australian Research Council Centre of Excellence in Vision Science, Canberra, Australia
| | - Matthew A Reilly
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
56
|
Formichella CR, Abella SK, Sims SM, Cathcart HM, Sappington RM. Astrocyte Reactivity: A Biomarker for Retinal Ganglion Cell Health in Retinal Neurodegeneration. ACTA ACUST UNITED AC 2014; 5. [PMID: 25133067 PMCID: PMC4131747 DOI: 10.4172/2155-9899.1000188] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Retinal ganglion cell (RGC) loss in glaucoma is sectorial in nature and preceded by deficits in axonal transport. Neuroinflammation plays an important role in the pathophysiology of glaucoma in the retina, optic nerve and visual centers of the brain, where it similarly appears to be regulated spatially. In a murine model, we examined the spatial characteristics of astrocyte reactivity (migration/proliferation, hypertrophy and GFAP expression) in healthy retina, retina with two glaucoma-related risk factors (aging and genetic predisposition) and glaucomatous retina and established relationships between these reactivity indices and the spatial organization of astrocytes as well as RGC health. Astrocyte reactivity was quantified by morphological techniques and RGC health was determined by uptake and transport of the neural tracer cholera toxin beta subunit (CTB). We found that: (1) astrocyte reactivity occurs in microdomains throughout glaucomatous retina as well as retina with risk factors for glaucoma, (2) these astrocyte microdomains are primarily differentiated by the degree of retinal area covered by the astrocytes within them and (3) percent retinal area covered by astrocytes is highly predictive of RGC health. Our findings suggest that microdomains of astrocyte reactivity are biomarkers for functional decline of RGCs. Based on current and emerging imaging technologies, diagnostic assessment of astrocytes in the nerve fiber layer could succeed in translating axonal transport deficits to a feasible clinical application.
Collapse
Affiliation(s)
- Cathryn R Formichella
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simone K Abella
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephanie M Sims
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Heather M Cathcart
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
57
|
Calkins DJ. Age-related changes in the visual pathways: blame it on the axon. Invest Ophthalmol Vis Sci 2013; 54:ORSF37-41. [PMID: 24335066 DOI: 10.1167/iovs.13-12784] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aging visual system is marked by a decline in some, but not all, key functions. Some of this decline is attributed to changes in the optics of the eye, but other aspects must have a neural basis. Across mammals, with aging there is remarkable persistence of central structures to which retinal ganglion cell (RGC) axons project with little or no loss of neurons. Similarly, RGC bodies in the retina are subject to variable age-related loss, with most mammals showing none over time. In contrast, the RGC axon itself is highly vulnerable. Across species, the rate of axon loss in the optic nerve is related inversely to the total number of axons at maturity and lifespan. The result of this scaling is approximately a 40% total decline in axon number. Evidence suggests that the consistent vulnerability of RGC axons to aging arises from their high metabolic demand combined with diminishing resources. Thus, therapeutic interventions that conserve bioenergetics may have potential to abate age-related decline in visual function.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
58
|
Dapper JD, Crish SD, Pang IH, Calkins DJ. Proximal inhibition of p38 MAPK stress signaling prevents distal axonopathy. Neurobiol Dis 2013; 59:26-37. [PMID: 23859799 DOI: 10.1016/j.nbd.2013.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) isoforms are phosphorylated by a variety of stress stimuli in neurodegenerative disease and act as upstream activators of myriad pathogenic processes. Thus, p38 MAPK inhibitors are of growing interest as possible therapeutic interventions. Axonal dysfunction is an early component of most neurodegenerative disorders, including the most prevalent optic neuropathy, glaucoma. Sensitivity to intraocular pressure at an early stage disrupts anterograde transport along retinal ganglion cell (RGC) axons to projection targets in the brain with subsequent degeneration of the axons themselves; RGC body loss is much later. Here we show that elevated ocular pressure in rats increases p38 MAPK activation in retina, especially in RGC bodies. Topical eye-drop application of a potent and selective inhibitor of the p38 MAPK catalytic domain (Ro3206145) prevented both the degradation of anterograde transport to the brain and degeneration of axons in the optic nerve. Ro3206145 reduced in the retina phosphorylation of tau and heat-shock protein 27, both down-stream targets of p38 MAPK activation implicated in glaucoma, as well as expression of two inflammatory responses. We also observed increased p38 MAPK activation in mouse models. Thus, inhibition of p38 MAPK signaling in the retina may represent a therapeutic target for preventing early pathogenesis in optic neuropathies.
Collapse
Affiliation(s)
- Jason D Dapper
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
59
|
Capozzi ME, Gordon AY, Penn JS, Jayagopal A. Molecular imaging of retinal disease. J Ocul Pharmacol Ther 2013; 29:275-86. [PMID: 23421501 DOI: 10.1089/jop.2012.0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Imaging of the eye plays an important role in ocular therapeutic discovery and evaluation in preclinical models and patients. Advances in ophthalmic imaging instrumentation have enabled visualization of the retina at an unprecedented resolution. These developments have contributed toward early detection of the disease, monitoring of disease progression, and assessment of the therapeutic response. These powerful technologies are being further harnessed for clinical applications by configuring instrumentation to detect disease biomarkers in the retina. These biomarkers can be detected either by measuring the intrinsic imaging contrast in tissue, or by the engineering of targeted injectable contrast agents for imaging of the retina at the cellular and molecular level. Such approaches have promise in providing a window on dynamic disease processes in the retina such as inflammation and apoptosis, enabling translation of biomarkers identified in preclinical and clinical studies into useful diagnostic targets. We discuss recently reported and emerging imaging strategies for visualizing diverse cell types and molecular mediators of the retina in vivo during health and disease, and the potential for clinical translation of these approaches.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8808, USA
| | | | | | | |
Collapse
|