51
|
Chang L, Zhang Y, Liu J, Song Y, Lv A, Li Y, Zhou W, Yan Z, Almeida OFX, Wu Y. Differential Regulation of N-Methyl-D-Aspartate Receptor Subunits is an Early Event in the Actions of Soluble Amyloid-β(1-40) Oligomers on Hippocampal Neurons. J Alzheimers Dis 2016; 51:197-212. [PMID: 26836185 DOI: 10.3233/jad-150942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synaptic dysfunction during early stages of Alzheimer's disease (AD) is triggered by soluble amyloid-β (Aβ) oligomers that interact with NMDA receptors (NMDARs). We previously showed that Aβ induces synaptic protein loss through NMDARs, albeit through undefined mechanisms. Accordingly, we here examined the contribution of individual NMDAR subunits to synaptotoxicity and demonstrate that Aβ exerts differential effects on the levels and distribution of GluN2A and GluN2B subunits of NMDAR in dendrites. Treatment of cultured hippocampal neurons with Aβ1-40 (10 μM, 1 h) induced a significant increase of dendritic and synaptic GluN2B puncta densities with parallel decreases in the puncta densities of denritic and synaptic pTyr1472-GluN2B. Conversely, Aβ significantly decreased dendritic and synaptic GluN2A and dendritic pTyr1325-GluN2A puncta densities and increased synaptic pTyr1325-GluN2A puncta densities. Unexpectedly, Aβ treatment resulted in a significant reduction of GluN2B and pTyr1472-GluN2B protein levels but did not influence GluN2A and pTyr1325-GluN2A levels. These results show that Aβ exerts complex and distinct regulatory effects on the trafficking and phosphorylation of GluN2A and GluN2B, as well as on their localization within synaptic and non-synaptic sites. Increased understanding of these early events in Aβ-induced synaptic dysfunction is likely to be important for the development of timely preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yali Zhang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Angchu Lv
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Zhou
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhen Yan
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders. Neurochem Res 2016; 41:1507-15. [DOI: 10.1007/s11064-016-1876-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
|
53
|
Yin FX, Wang FS, Sheng JZ. Uncovering the Catalytic Direction of Chondroitin AC Exolyase: FROM THE REDUCING END TOWARDS THE NON-REDUCING END. J Biol Chem 2016; 291:4399-406. [PMID: 26742844 DOI: 10.1074/jbc.c115.708396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Glycosaminoglycans (GAGs) are polysaccharides that play vital functional roles in numerous biological processes, and compounds belonging to this class have been implicated in a wide variety of diseases. Chondroitin AC lyase (ChnAC) (EC 4.2.2.5) catalyzes the degradation of various GAGs, including chondroitin sulfate and hyaluronic acid, to give the corresponding disaccharides containing an Δ(4)-unsaturated uronic acid at their non-reducing terminus. ChnAC has been isolated from various bacteria and utilized as an enzymatic tool for study and evaluating the sequencing of GAGs. Despite its substrate specificity and the fact that its crystal structure has been determined to a high resolution, the direction in which ChnAC catalyzes the cleavage of oligosaccharides remain unclear. Herein, we have determined the structural cues of substrate depolymerization and the cleavage direction of ChnAC using model substrates and recombinant ChnAC protein. Several structurally defined oligosaccharides were synthesized using a chemoenzymatic approach and subsequently cleaved using ChnAC. The degradation products resulting from this process were determined by mass spectrometry. The results revealed that ChnAC cleaved the β1,4-glycosidic linkages between glucuronic acid and glucosamine units when these bonds were located on the reducing end of the oligosaccharide. In contrast, the presence of a GlcNAc-α-1,4-GlcA unit at the reducing end of the oligosaccharide prevented ChnAC from cleaving the GalNAc-β1,4-GlcA moiety located in the middle or at the non-reducing end of the chain. These interesting results therefore provide direct proof that ChnAC cleaves oligosaccharide substrates from their reducing end toward their non-reducing end. This conclusion will therefore enhance our collective understanding of the mode of action of ChnAC.
Collapse
Affiliation(s)
- Feng-Xin Yin
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and
| | - Feng-Shan Wang
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|