51
|
Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. Int J Mol Sci 2020; 21:ijms21031154. [PMID: 32050516 PMCID: PMC7037343 DOI: 10.3390/ijms21031154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive and behavioural disturbances are a growing public healthcare issue for the modern society, as stressful lifestyle is becoming more and more common. Besides, several pieces of evidence state that environment is crucial in the development of several diseases as well as compromising healthy aging. Therefore, it is important to study the effects of stress on cognition and its relationship with aging. To address these queries, Chronic Mild Stress (CMS) paradigm was used in the senescence-accelerated mouse prone 8 (SAMP8) and resistant 1 (SAMR1). On one hand, we determined the changes produced in the three main epigenetic marks after 4 weeks of CMS treatment, such as a reduction in histone posttranslational modifications and DNA methylation, and up-regulation or down-regulation of several miRNA involved in different cellular processes in mice. In addition, CMS treatment induced reactive oxygen species (ROS) damage accumulation and loss of antioxidant defence mechanisms, as well as inflammatory signalling activation through NF-κB pathway and astrogliosis markers, like Gfap. Remarkably, CMS altered mTORC1 signalling in both strains, decreasing autophagy only in SAMR1 mice. We found a decrease in glycogen synthase kinase 3 β (GSK-3β) inactivation, hyperphosphorylation of Tau and an increase in sAPPβ protein levels in mice under CMS. Moreover, reduction in the non-amyloidogenic secretase ADAM10 protein levels was found in SAMR1 CMS group. Consequently, detrimental effects on behaviour and cognitive performance were detected in CMS treated mice, affecting mainly SAMR1 mice, promoting a turning to SAMP8 phenotype. In conclusion, CMS is a feasible intervention to understand the influence of stress on epigenetic mechanisms underlying cognition and accelerating senescence.
Collapse
|
52
|
Bidirectional Optogenetically-Induced Plasticity of Evoked Responses in the Rat Medial Prefrontal Cortex Can Impair or Enhance Cognitive Set-Shifting. eNeuro 2020; 7:ENEURO.0363-19.2019. [PMID: 31852759 PMCID: PMC6946542 DOI: 10.1523/eneuro.0363-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic stress compromises cognition, including executive function mediated in the medial prefrontal cortex (mPFC). To investigate mechanisms underlying these processes, we use chronic unpredictable stress (CUS), which reduces activity in the mPFC and impairs cognitive set-shifting, a measure of cognitive flexibility in laboratory rats. It has been shown that CUS attenuates the local electrical field potential response evoked in the mPFC by stimulation of the ascending excitatory afferent from the mediodorsal thalamus (MDT). Thus, in this study, to investigate the role that such changes in afferent-evoked responsivity of the mPFC might play in the cognitive deficits induced by CUS, we used optogenetics to directly induce plastic changes in the thalamic-mPFC afferent pathway. Glutamatergic neurons in the MDT were virally-induced to express the ChETA variant of channelrhodopsin. Then, to first validate the optogenetic induction of plasticity, long-term depression (LTD) or long-term potentiation (LTP) were induced by laser stimulation of ChETA-expressing terminals in the mPFC of anesthetized rats. In subsequent experiments, induction of opto-LTD in awake animals produced set-shifting deficits similar to those induced by CUS. By contrast, inducing opto-LTP in rats that had received prior CUS treatment corrected the stress-induced deficit in set-shifting. These results suggest that stress-induced plasticity in the thalamic-mPFC pathway is sufficient to produce stress-induced cognitive deficits, and may represent a novel target for effective therapeutic intervention to correct cognitive impairment in stress-related psychiatric disorders.
Collapse
|
53
|
Moench KM, Breach MR, Wellman CL. Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Horm Behav 2020; 117:104615. [PMID: 31634476 PMCID: PMC6980662 DOI: 10.1016/j.yhbeh.2019.104615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA.
| |
Collapse
|
54
|
Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 150:129-153. [PMID: 32204829 DOI: 10.1016/bs.irn.2019.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress alters both cognitive and emotional function, and increases risk for a variety of psychological disorders, such as depression and posttraumatic stress disorder. The prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Therefore, understanding how stress-induced changes in the structure and function of the prefrontal cortex are related to stress-induced changes in behavior may elucidate some of the mechanisms contributing to stress-sensitive disorders. This review focuses on data from rodent models to describe the effects of chronic stress on behaviors mediated by the medial prefrontal cortex, the effects of chronic stress on the morphology and physiology of the medial prefrontal cortex, mechanisms that may mediate these effects, and evidence for sex differences in the effects of stress on the prefrontal cortex. Understanding how stress influences prefrontal cortex and behaviors mediated by it, as well as sex differences in this effect, will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in executive function and emotion regulation.
Collapse
|
55
|
Weisner PA, Chen CY, Sun Y, Yoo J, Kao WC, Zhang H, Baltz ET, Troy JM, Stubbs L. A Mouse Mutation That Dysregulates Neighboring Galnt17 and Auts2 Genes Is Associated with Phenotypes Related to the Human AUTS2 Syndrome. G3 (BETHESDA, MD.) 2019; 9:3891-3906. [PMID: 31554716 PMCID: PMC6829118 DOI: 10.1534/g3.119.400723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/19/2019] [Indexed: 01/23/2023]
Abstract
AUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder, intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, sugg esting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest is the nearest downstream neighbor of AUTS2, GALNT17, which encodes a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with autism and other types of AUTS2-linked neurological disease. Analyzing mutant cerebellar and hippocampal transcriptomes to explain this pathology, we identified disturbances in pathways related to neuron and synapse maturation, neurotransmitter signaling, and cellular stress, suggesting possible cellular mechanisms. These pathways, coupled with the translocation's selective effects on Auts2 isoforms and coordinated dysregulation of Galnt17, suggest novel hypotheses regarding the etiology of the human "AUTS2 syndrome" and the wide array of neurodevelopmental disorders linked to variance in this genomic region.
Collapse
Affiliation(s)
- P Anne Weisner
- Carl R. Woese Institute for Genomic Biology
- Neuroscience Program
| | - Chih-Ying Chen
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | - Younguk Sun
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | | | | | | | | | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology,
- Neuroscience Program
- Department of Cell and Developmental Biology, and
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| |
Collapse
|
56
|
Sharp AM, Lertphinyowong S, Yee SS, Paredes D, Gelfond J, Johnson-Pais TL, Leach RJ, Liss M, Risinger AL, Sullivan AC, Thompson IM, Morilak DA. Vortioxetine reverses medial prefrontal cortex-mediated cognitive deficits in male rats induced by castration as a model of androgen deprivation therapy for prostate cancer. Psychopharmacology (Berl) 2019; 236:3183-3195. [PMID: 31139875 PMCID: PMC6832770 DOI: 10.1007/s00213-019-05274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 01/10/2023]
Abstract
RATIONALE Androgen deprivation therapy (ADT) is an effective treatment for prostate cancer, but induces profound cognitive impairment. Little research has addressed mechanisms underlying these deficits or potential treatments. This is an unmet need to improve quality of life for prostate cancer survivors. OBJECTIVES We investigated mechanisms of cognitive impairment after ADT in rats and potential utility of the multimodal serotonin-targeting drug, vortioxetine, to improve the impairment, as vortioxetine has specific efficacy against cognitive impairment in depression. METHODS Male Sprague-Dawley rats were surgically castrated. Vortioxetine (28 mg/kg/day) was administered in the diet. The attentional set-shifting test was used to assess medial prefrontal cortex (mPFC) executive function. Afferent-evoked field potentials were recorded in the mPFC of anesthetized rats after stimulating the ventral hippocampus (vHipp) or medial dorsal thalamus (MDT). Gene expression changes were assessed by microarray. Effects of vortioxetine on growth of prostate cancer cells were assessed in vitro. RESULTS ADT impaired cognitive set shifting and attenuated responses evoked in the mPFC by the vHipp afferent, but not the MDT. Both the cognitive impairment and attenuated vHipp-evoked responses were reversed by chronic vortioxetine treatment. Preliminary investigation of gene expression in the mPFC indicates that factors involved in neuronal plasticity and synaptic transmission were down-regulated by castration and up-regulated by vortioxetine in castrated animals. Vortioxetine neither altered the growth of prostate cancer cells in vitro nor interfered with the antiproliferative effects of the androgen antagonist, enzalutamide. CONCLUSIONS These results suggest that vortioxetine may be useful in mitigating cognitive impairment associated with ADT for prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Sharp
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Suphada Lertphinyowong
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Samantha S Yee
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Michael Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Service, San Antonio, TX, 78229, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Anna C Sullivan
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- CHRISTUS Santa Rosa Hospital, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care Service, San Antonio, TX, 78229, USA.
| |
Collapse
|
57
|
Zheng C, Huang Y, Bo B, Wei L, Liang Z, Wang Z. Projection from the Anterior Cingulate Cortex to the Lateral Part of Mediodorsal Thalamus Modulates Vicarious Freezing Behavior. Neurosci Bull 2019; 36:217-229. [PMID: 31531804 DOI: 10.1007/s12264-019-00427-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2019] [Indexed: 01/10/2023] Open
Abstract
Emotional contagion, a primary form of empathy, is present in rodents. Among emotional contagion behaviors, social transmission of fear is the most studied. Here, we modified a paradigm used in previous studies to more robustly assess the social transmission of fear in rats that experienced foot-shock. We used resting-state functional magnetic resonance imaging to show that foot-shock experience enhances the regional connectivity of the anterior cingulate cortex (ACC). We found that lesioning the ACC specifically attenuated the vicarious freezing behavior of foot-shock-experienced observer rats. Furthermore, ablation of projections from the ACC to the mediodorsal thalamus (MDL) bilaterally delayed the vicarious freezing responses, and activation of these projections decreased the vicarious freezing responses. Overall, our results demonstrate that, in rats, the ACC modulates vicarious freezing behavior via a projection to the MDL and provide clues to understanding the mechanisms underlying empathic behavior in humans.
Collapse
Affiliation(s)
- Chaowen Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binshi Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
58
|
Esquivel-Rendón E, Vargas-Mireles J, Cuevas-Olguín R, Miranda-Morales M, Acosta-Mares P, García-Oscos F, Pineda JC, Salgado H, Rose-John S, Atzori M. Interleukin 6 Dependent Synaptic Plasticity in a Social Defeat-Susceptible Prefrontal Cortex Circuit. Neuroscience 2019; 414:280-296. [DOI: 10.1016/j.neuroscience.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
|
59
|
Song C, Orlandi C, Sutton LP, Martemyanov KA. The signaling proteins GPR158 and RGS7 modulate excitability of L2/3 pyramidal neurons and control A-type potassium channel in the prelimbic cortex. J Biol Chem 2019; 294:13145-13157. [PMID: 31311860 DOI: 10.1074/jbc.ra119.007533] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Laurie P Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458.
| |
Collapse
|
60
|
Gelfo F. Does Experience Enhance Cognitive Flexibility? An Overview of the Evidence Provided by the Environmental Enrichment Studies. Front Behav Neurosci 2019; 13:150. [PMID: 31338030 PMCID: PMC6629767 DOI: 10.3389/fnbeh.2019.00150] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity accounts for the ability of the brain to change in both structure and function in consequence of life experiences. An enhanced stimulation provided by the environment is able to create a form of brain, neural, and cognitive reserve, which allows an individual to cope better with the environmental demands, also in case of neural damage leading to cognitive decline. With its complex manipulation of several stimuli, the animal experimental paradigm of environmental enrichment (EE) appears particularly effective in modulating the ability to successfully respond to the ever-changing characteristics of the environment. According to this point, it could be very relevant to analyze the specific effects of EE on cognitive flexibility (CF). CF could be defined as the ability to effectively change behavior in response to the environmental condition changing. This review article is specifically aimed to summarize and focus on the available evidence in relation to the effects of EE on CF. To this aim, findings obtained in behavioral tasks specifically structured to investigate animal CF, such as reversal learning and attentional set-shifting tests (tasks based on the request of responding to a rewarding rule that changes, within one or multiple perceptual dimensions), are reviewed. Data provided on the structural and biochemical correlates of these findings are also enumerated. Studies realized in healthy animals and also in pathological models are considered. On the whole, the summarized evidence clearly supports the specific beneficial effects of EE on CF. However, further studies on this key topic are strictly required to gain a comprehensive and detailed framework on the mechanisms by which an enhanced stimulation could improve CF.
Collapse
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy.,Department of Clinical and Behavioural Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
61
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
62
|
Wickens MM, Deutschmann AU, McGrath AG, Parikh V, Briand LA. Glutamate receptor interacting protein acts within the prefrontal cortex to blunt cocaine seeking. Neuropharmacology 2019; 157:107672. [PMID: 31233823 DOI: 10.1016/j.neuropharm.2019.107672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
Glutamate receptor interacting protein (GRIP) is a neuronal scaffolding protein that anchors GluA2-containing AMPA receptors to the cell membrane. GRIP plays a critical role in activity-dependent synaptic plasticity, including that which occurs after drug exposure. Given that cocaine administration alters glutamate receptor trafficking within the prefrontal cortex (PFC), a better understanding of the role of receptor trafficking proteins could lead to a more complete understanding of addictive phenotypes. AMPA receptor trafficking in general, and GRIP specifically, is known to play a role in cocaine seeking and conditioned reward in the nucleus accumbens, but its role in the PFC has not been characterized. The current study demonstrates that conditional deletion of GRIP1 in the medial prefrontal cortex increases the motivation for cocaine and potentiates cue-induced reinstatement of cocaine seeking in male and female mice. As no effects of PFC GRIP1 deletion were seen in reinstatement of food seeking, strategy set-shifting, or reversal learning the effects on cocaine seeking are not related to generalized alterations in cognitive function. While disrupting GRIP1 might be expected to lead to decreased AMPA transmission, our electrophysiological data indicate an increase in sEPSC amplitude in the prefrontal cortex and a corresponding decrease in paired pulse facilitation in the nucleus accumbens. Taken together this suggests a strengthening of the PFC to NAc input following prefrontal GRIP1 deletion that may mediate the enhanced drug seeking behavior.
Collapse
Affiliation(s)
| | | | | | - Vinay Parikh
- Department of Psychology, Temple University, USA; Neuroscience Program, Temple University, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, USA; Neuroscience Program, Temple University, USA.
| |
Collapse
|
63
|
Ponzoni L, Sala C, Verpelli C, Sala M, Braida D. Different attentional dysfunctions in
eEF2K
−/−
, IL1RAPL1
−/−
and
SHANK3Δ11
−/−
mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12563. [DOI: 10.1111/gbb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Luisa Ponzoni
- CNR, Neuroscience Institute Milan Italy
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| | | | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| |
Collapse
|
64
|
The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry 2019; 85:443-453. [PMID: 30470559 PMCID: PMC6380948 DOI: 10.1016/j.biopsych.2018.09.031] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.
Collapse
|
65
|
Paredes D, Morilak DA. A Rodent Model of Exposure Therapy: The Use of Fear Extinction as a Therapeutic Intervention for PTSD. Front Behav Neurosci 2019; 13:46. [PMID: 30914932 PMCID: PMC6421316 DOI: 10.3389/fnbeh.2019.00046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
The symptoms of post-traumatic stress disorder (PTSD) include cognitive impairment related to medial prefrontal cortical dysfunction. Indeed, a deficit of cognitive flexibility, i.e., an inability to modify previously learned thoughts and behaviors based on changes in the environment, may underlie many of the other symptoms of PTSD, such as changes in mood, hyper-arousal, intrusive thoughts, exaggerated and over-generalized fear, and avoidance behavior. Cognitive-behavioral therapies target the cognitive dysfunction observed in PTSD patients, training them to recalibrate stress-related perceptions, interpretations and responses. Preclinically, the extinction of conditioned fear bears resemblance to one form of cognitive therapy, exposure therapy, whereby an individual learns, through repeated exposure to a fear-provoking stimulus in a safe environment, that the stimulus no longer signals imminent threat, and their fear response is suppressed. In this review article, we highlight recent findings from our lab using fear extinction as a preclinical model of exposure therapy in rodents exposed to chronic unpredictable stress (CUS). We specifically focus on the therapeutic effects of extinction on stress-compromised set-shifting as a measure of cognitive flexibility, and active vs. passive coping behavior as a measure of avoidance. Finally, we discuss mechanisms involving activity and plasticity in the medial prefrontal cortex (mPFC) necessary for the therapeutic effects of extinction on cognitive flexibility and active coping.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States.,South Texas Veterans Health Care System (STVHCS), San Antonio, TX, United States
| |
Collapse
|
66
|
Morgenroth E, Orlov N, Lythgoe DJ, Stone JM, Barker H, Munro J, Eysenck M, Allen P. Altered relationship between prefrontal glutamate and activation during cognitive control in people with high trait anxiety. Cortex 2019; 117:53-63. [PMID: 30928721 DOI: 10.1016/j.cortex.2019.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/06/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
Trait anxiety can affect cognitive control resulting in ineffective and/or inefficient task performance. Moreover, previous functional Magnetic Resonance Imaging (fMRI) studies have reported altered dorsolateral prefrontal cortex (DLPFC) activity in anxious cohorts, particularly when executive control is required. Recently, it has been demonstrated that cortical glutamate levels can predict both functional activation during cognitive control, and anxiety levels. In the present study we sought to investigate the relationship between trait anxiety, prefrontal glutamate levels and functional activation in DLPFC during a cognitive control task. Thirty-nine participants assigned to either low trait anxiety (LTA) or high trait anxiety (HTA) groups underwent 1H-Magnetic Resonance Spectroscopy (1H-MRS) to measure levels of resting glutamate in the prefrontal cortex (PFC). Participants also completed fMRI during a Stroop task comprising congruent and incongruent colour word trials. The HTA group showed reduced task performance relative to the LTA group. In the LTA group, there was a positive association between PFC Glu levels and DLPFC activation during incongruent trials. This association was absent in the HTA group. Individual differences in trait anxiety affect the relationship between PFC glutamate levels and DLPFC activation, possibly contributing to ineffective task performance when cognitive control is required.
Collapse
Affiliation(s)
| | - Natasza Orlov
- Department of Psychology, University of Roehampton, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James M Stone
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Holly Barker
- Department of Psychology, University of Roehampton, London, UK
| | - James Munro
- Department of Psychology, University of Roehampton, London, UK; Department of Psychology, Edinburgh Napier University, Edinburgh, UK
| | - Michael Eysenck
- Department of Psychology, University of Roehampton, London, UK; Department of Psychology, Royal Holloway University of London, London, UK
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Combined Universities Brain Imaging Centre, London, UK
| |
Collapse
|
67
|
Wellman CL, Moench KM. Preclinical studies of stress, extinction, and prefrontal cortex: intriguing leads and pressing questions. Psychopharmacology (Berl) 2019; 236:59-72. [PMID: 30225660 PMCID: PMC6374178 DOI: 10.1007/s00213-018-5023-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Stress is associated with cognitive and emotional dysfunction, and increases risk for a variety of psychological disorders, including depression and posttraumatic stress disorder. Prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Extinction of conditioned fear provides an excellent model system for examining how stress-induced changes in corticolimbic structure and function are related to stress-induced changes in neural function and behavior, as the neural circuitry underlying this behavior is well characterized. OBJECTIVES This review examines how acute and chronic stress influences extinction and describes how stress alters the structure and function of the medial prefrontal cortex, a potential neural substrate for these effects. In addition, we identify important unanswered questions about how stress-induced change in prefrontal cortex may mediate extinction deficits and avenues for future research. KEY FINDINGS A substantial body of work demonstrates deficits in extinction after either acute or chronic stress. A separate and substantial literature demonstrates stress-induced neuronal remodeling in medial prefrontal cortex, along with several key neurohormonal contributors to this remodeling, and there is substantial overlap in prefrontal mechanisms underlying extinction and the mechanisms implicated in stress-induced dysfunction of-and neuronal remodeling in-medial prefrontal cortex. However, data directly examining the contribution of changes in prefrontal structure and function to stress-induced extinction deficits is currently lacking. CONCLUSIONS Understanding how stress influences extinction and its neural substrates as well as individual differences in this effect will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in extinction.
Collapse
Affiliation(s)
- Cara L. Wellman
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| | - Kelly M. Moench
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| |
Collapse
|
68
|
De Berardis D, Fornaro M, Valchera A, Cavuto M, Perna G, Di Nicola M, Serafini G, Carano A, Pompili M, Vellante F, Orsolini L, Fiengo A, Ventriglio A, Yong-Ku K, Martinotti G, Di Giannantonio M, Tomasetti C. Eradicating Suicide at Its Roots: Preclinical Bases and Clinical Evidence of the Efficacy of Ketamine in the Treatment of Suicidal Behaviors. Int J Mol Sci 2018; 19:E2888. [PMID: 30249029 PMCID: PMC6213585 DOI: 10.3390/ijms19102888] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the continuous advancement in neurosciences as well as in the knowledge of human behaviors pathophysiology, currently suicide represents a puzzling challenge. The World Health Organization (WHO) has established that one million people die by suicide every year, with the impressive daily rate of a suicide every 40 s. The weightiest concern about suicidal behavior is how difficult it is for healthcare professionals to predict. However, recent evidence in genomic studies has pointed out the essential role that genetics could play in influencing person's suicide risk. Combining genomic and clinical risk assessment approaches, some studies have identified a number of biomarkers for suicidal ideation, which are involved in neural connectivity, neural activity, mood, as well as in immune and inflammatory response, such as the mammalian target of rapamycin (mTOR) signaling. This interesting discovery provides the neurobiological bases for the use of drugs that impact these specific signaling pathways in the treatment of suicidality, such as ketamine. Ketamine, an N-methyl-d-aspartate glutamate (NMDA) antagonist agent, has recently hit the headlines because of its rapid antidepressant and concurrent anti-suicidal action. Here we review the preclinical and clinical evidence that lay the foundations of the efficacy of ketamine in the treatment of suicidal ideation in mood disorders, thereby also approaching the essential question of the understanding of neurobiological processes of suicide and the potential therapeutics.
Collapse
Affiliation(s)
- Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, "G. Mazzini" Hospital, p.zza Italia 1, 64100 Teramo, Italy.
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, 63100 Ascoli Piceno, Italy.
| | - Marilde Cavuto
- Department of Theory, Analysis and Composition, Music Conservatory "L. Canepa", 07100 Sassari, Italy.
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, 22032 Como, Italy.
- Department of Psychiatry and Neuropsychology, University of Maastricht, 6221 Maastricht, The Netherlands.
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Coral Gables, FL 33114, USA.
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Catholic University of Sacred Heart, 00118 Rome, Italy.
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy.
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "Madonna Del Soccorso", A.S.U.R. 12, 63074 San Benedetto del Tronto, Italy.
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, 00118 Rome, Italy.
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield SG141LZ, UK.
| | - Annastasia Fiengo
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASUR Marche AV5, Mental Health Unit, 63100 Ascoli Piceno, Italy.
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy.
| | - Kim Yong-Ku
- Department of Psychiatry, Korea University College of Medicine, Seoul 08826, Korea.
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Carmine Tomasetti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| |
Collapse
|
69
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
70
|
Yue N, Li B, Yang L, Han QQ, Huang HJ, Wang YL, Wang J, Yu R, Wu GC, Liu Q, Yu J. Electro-Acupuncture Alleviates Chronic Unpredictable Stress-Induced Depressive- and Anxiety-Like Behavior and Hippocampal Neuroinflammation in Rat Model of Depression. Front Mol Neurosci 2018; 11:149. [PMID: 29946236 PMCID: PMC6007169 DOI: 10.3389/fnmol.2018.00149] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Depression is the second leading cause of disability worldwide. The effects of clinical depression may be mediated by neuroinflammation such as activation of microglia and high levels of proinflammatory cytokines in certain brain areas. Traditional Chinese medicine techniques such as electro-acupuncture (EA) are used extensively in Asia to treat mental health disorders. However, EA has not been rigorously studied in treatment of depression. This study was designed to assess the effectiveness of EA on depressive-like behavior and explore the role of hippocampal neuroinflammation in the potential antidepressant effect of EA. In this study, we used six chronic unpredictable stressors daily in a random sequence for 10 weeks. EA were performed on “Bai-Hui” (Du-20) (+) and “Yang-Ling-Quan” (GB-34, the right side; −) acupoints by an EA apparatus (HANS Electronic Apparatus, LH202H, 2/100 Hz, 0.3 mA) for 30 min once every other day for last 4 weeks. The behavior tests including open field test and forced swimming test, which are widely used to assess depressive and anxiety-like behavior were performed on the Monday and Tuesday of the eleventh week. The results showed that 10 week of chronic unpredictable stress (CUS) caused behavioral deficits in rats and neuroinflammation in hippocampus, such as increased expression of NLRP3 inflammasome components, upregulated mRNA level of IL-1β and the protein level of IL-1β mature form (p17) and activation of microglia. Moreover, 4 weeks of EA treatment significantly attenuated behavioral deficits caused by CUS. EA’s antidepressant effect was accompanied by markedly decreased expression of certain NLRP3 inflammasome components and matured IL-1β. Meanwhile, EA treatment can significantly reverse CUS-induced increases in P2X7 receptor, Iba-1, IL-18, TNFα and IL-6 expression and decreases in GFAP expression. In conclusion, EA exhibited the antidepressant effect and alleviated the hippocampal neuroinflammation. These findings may provide insight into the role of hippocampal neuroinflammation in the antidepressant effect of EA.
Collapse
Affiliation(s)
- Na Yue
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai, China
| | - Liu Yang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Lin Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
71
|
Bueno-Junior LS, Leite JP. Input Convergence, Synaptic Plasticity and Functional Coupling Across Hippocampal-Prefrontal-Thalamic Circuits. Front Neural Circuits 2018; 12:40. [PMID: 29875637 PMCID: PMC5975431 DOI: 10.3389/fncir.2018.00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Executive functions and working memory are long known to involve the prefrontal cortex (PFC), and two PFC-projecting areas: midline/paramidline thalamus (MLT) and cornus ammonis 1 (CA1)/subiculum of the hippocampal formation (HF). An increasing number of rodent electrophysiology studies are examining these substrates together, thus providing circuit-level perspectives on input convergence, synaptic plasticity and functional coupling, as well as insights into cognition mechanisms and brain disorders. Our review article puts this literature into a method-oriented narrative. As revisited throughout the text, limbic thalamic and hippocampal afferents to the PFC gate one another’s inputs, which in turn are modulated by PFC interneurons and ascending monoaminergic projections. In addition, long-term synaptic plasticity, paired-pulse facilitation (PPF), and event-related potentials (ERP) dynamically vary across PFC-related circuits during learning paradigms and drug effects. Finally, thalamic-prefrontal loops, which have been shown to amplify both cognitive processes and limbic seizures, are also being implicated as relays in the prefrontal-hippocampal feedback, contributing to spatial navigation and decision making. Based on these issues, we conclude the review with a critical synthesis and some research directions.
Collapse
Affiliation(s)
- Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
72
|
Macht VA, Reagan LP. Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective. Front Neuroendocrinol 2018; 49:31-42. [PMID: 29258741 DOI: 10.1016/j.yfrne.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States.
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
| |
Collapse
|
73
|
Activity in the Ventral Medial Prefrontal Cortex Is Necessary for the Therapeutic Effects of Extinction in Rats. J Neurosci 2018; 38:1408-1417. [PMID: 29335360 DOI: 10.1523/jneurosci.0635-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 12/12/2017] [Accepted: 12/25/2017] [Indexed: 11/21/2022] Open
Abstract
Poor response and high relapse rates remain problematic in the treatment of stress-related psychiatric disorders such as depression and post-traumatic stress disorder. Although mechanisms of pharmacotherapies are intensely studied, little is known about mechanisms of behavioral therapy that could inform improved treatments. We have previously demonstrated the therapeutic effects of extinction learning as a behavioral intervention modeling exposure therapy in rats. In the present study, we tested the hypothesis that activity in the ventral medial prefrontal cortex (vmPFC) during extinction is necessary for its therapeutic effects. The inhibitory Gi-coupled designer receptor exclusively activated by designer drug CaMKIIα-hM4Di was expressed in vmPFC before administering chronic unpredictable stress (CUS). vmPFC projection neurons were then inhibited during extinction treatment by administering clozapine-N-oxide. Coping behavior and cognitive flexibility were assessed 24 h later on the shock-probe defensive burying test and attentional set-shifting test, respectively. Replicating previous results, extinction reversed the CUS-induced deficits in coping behavior and cognitive flexibility. Inhibiting vmPFC during extinction blocked these therapeutic effects. Further, increasing vmPFC activity with the excitatory Gq-coupled designer receptor exclusively activated by designer drug hM3Dq 24 h before testing was sufficient to reverse the CUS-induced deficits. CUS reduced mPFC responsivity, assessed by measuring afferent-evoked field potentials in the mPFC, and this reduction was reversed by extinction treatment 24 h before testing. These results demonstrate the necessity of vmPFC activity in the therapeutic effects of extinction as a model of exposure therapy, and suggest that increased vmPFC activity induced by extinction is sufficient to produce lasting plastic changes that underlie its beneficial effects.SIGNIFICANCE STATEMENT Stress-related psychiatric disorders remain poorly treated. Psychotherapies can be effective, but their mechanisms remain unknown, hindering progress toward improved treatment. We used a rat model of behavioral therapy to identify potential targets for enhancing treatment. Fear extinction as a therapeutic behavioral intervention reversed stress-induced cognitive dysfunction and passive coping in rats, modeling components of stress-related psychiatric disease. Extinction also reversed stress-induced attenuation of mPFC responsivity. The therapeutic effects were prevented by blocking activity of glutamatergic neurons in the mPFC during extinction, and were mimicked by inducing activity in lieu of extinction. Thus, activity and plasticity in the mPFC underlie the beneficial effects of extinction on cognitive flexibility and coping behavior compromised by stress, and could be targets to enhance behavioral therapy.
Collapse
|
74
|
Buhusi M, Brown CK, Buhusi CV. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress. Front Behav Neurosci 2017; 11:177. [PMID: 29066960 PMCID: PMC5641315 DOI: 10.3389/fnbeh.2017.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI), a measure of selective attention and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons) in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Colten K Brown
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
75
|
Enriched environment combined with fluoxetine ameliorates depression-like behaviors and hippocampal SYP expression in a rat CUS model. Brain Res Bull 2017; 135:33-39. [DOI: 10.1016/j.brainresbull.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
|
76
|
Jaggar M, Weisstaub N, Gingrich JA, Vaidya VA. 5-HT 2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress. Neurobiol Stress 2017. [PMID: 28626787 PMCID: PMC5470573 DOI: 10.1016/j.ynstr.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A) receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS) on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC) and hippocampus in 5-HT2A receptor knockout (5-HT2A−/−) and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2), trophic factors (Bdnf, Igf1) and immediate early genes (IEGs) (Arc, Fos, Fosb, Egr1-4) in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic.
Collapse
Affiliation(s)
- Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Noelia Weisstaub
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Jay A Gingrich
- Department of Psychiatry, Columbia University, New York, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|