51
|
Guo J, Zhang L, Lian L, Hao M, Chen S, Hong Y. CircATP2B4 promotes hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells via the miR-223/ATR axis. Life Sci 2020; 262:118420. [DOI: 10.1016/j.lfs.2020.118420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
52
|
Epigenetic Regulation of Pulmonary Arterial Hypertension-Induced Vascular and Right Ventricular Remodeling: New Opportunities? Int J Mol Sci 2020; 21:ijms21238901. [PMID: 33255338 PMCID: PMC7727715 DOI: 10.3390/ijms21238901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a rare chronic disease with high impact on patients’ quality of life and currently no available cure. PAH is characterized by constant remodeling of the pulmonary artery by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), fibroblasts (FBs) and endothelial cells (ECs). This remodeling eventually leads to increased pressure in the right ventricle (RV) and subsequent right ventricle hypertrophy (RVH) which, when left untreated, progresses into right ventricle failure (RVF). PAH can not only originate from heritable mutations, but also develop as a consequence of congenital heart disease, exposure to drugs or toxins, HIV, connective tissue disease or be idiopathic. While much attention was drawn into investigating and developing therapies related to the most well understood signaling pathways in PAH, in the last decade, a shift towards understanding the epigenetic mechanisms driving the disease occurred. In this review, we reflect on the different epigenetic regulatory factors that are associated with the pathology of RV remodeling, and on their relevance towards a better understanding of the disease and subsequently, the development of new and more efficient therapeutic strategies.
Collapse
|
53
|
Luo Y, Huang C. CircSFMBT2 facilitates vascular smooth muscle cell proliferation by targeting miR-331-3p/HDAC5. Life Sci 2020; 264:118691. [PMID: 33166591 DOI: 10.1016/j.lfs.2020.118691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the functional role of circSFMBT2 in vascular smooth muscle cell (VSMC) proliferation and migration and the underlying molecular mechanism. METHODS The circSFMBT2 levels in neointimal tissue and platelet derived growth factor-BB (PDGF-BB)-treated VSMCs were detected by qRT-PCR. The role of circSFMBT2 in VSMC proliferation, migration and cell cycle distribution was assessed by MTT assay, transwell assay, wound healing assay and flow cytometry. The protein expression of contractile markers was evaluated by western blot. In vitro luciferase reporter assay, RNA pull-down assay, ChIP and coimmunoprecipitation (CoIP) were performed to explore the effects of circSFMBT2 on the downstream signaling pathway. RESULTS We found that circSFMBT2 was markedly increased in neointimal tissue relative to normal tissue and PDGF-BB-treated VSMCs relative to control VSMCs. The knockdown of circSFMBT2 by siRNA significantly inhibited the proliferation and migration of VSMCs. Interestingly, circSFMBT2 knockdown enhanced the expression of contractile marker proteins including SM22α, SM myosin heavy chain (SMMHC) and calponin. Further data demonstrated that circSFMBT2 interacted with miR-331-3p as a competing endogenous RNA and up-regulated the expression of histone deacetylase 5 (HDAC5), thereby regulating the level of angiogenic factor with G patch and FHA domains (Aggf1). CONCLUSION These results revealed that circSFMBT2 plays a vital role in VSMC proliferation and migration through the miR-331/HDAC5/Aggf1 axis, and suggest a novel target for treating proliferative vascular diseases.
Collapse
Affiliation(s)
- Yishu Luo
- Department of Clinical Medicine, School of Medicine, Nantong University, Nantong 226001, People's Republic of China
| | - Chen Huang
- Department of Clinical Medicine, School of Medicine, Nantong University, Nantong 226001, People's Republic of China; Department of Vascular Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
54
|
Peng Z, Fang S, Jiang M, Zhao X, Zhou C, Gong Z. Circular RNAs: Regulatory functions in respiratory tract cancers. Clin Chim Acta 2020; 510:264-271. [PMID: 32710944 DOI: 10.1016/j.cca.2020.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs having a covalently closed loop structure generated from back-splicing of pre-mRNA. These novel RNAs are characterized by high stability, abundance and conservation. Accumulating evidence has revealed that circRNAs are intimately associated with the pathogenesis, development and progression of multiple human diseases, including respiratory tract cancers. CircRNAs may serve as oncogenes or tumor suppressors to influence cell proliferation, differentiation, apoptosis, invasion and metastasis. CircRNAs may act as microRNA (miRNA) sponges, interact with RNA-binding proteins (RBPs), regulate gene transcription and/or translate into mini-peptides or proteins. In this review, we discuss recent progress in understanding the pathologic roles of circRNAs in respiratory tract cancers, such as nasopharyngeal carcinoma, laryngeal squamous cell carcinoma, and especially lung adenocarcinoma. We further discuss the diagnostic, therapeutic and prognostic roles as potential biomarkers in respiratory tract cancers, providing insight into the possibilities of applying circRNAs as therapeutic targets and biomarkers in precision oncology.
Collapse
Affiliation(s)
- Ziyi Peng
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaodong Zhao
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Chengwei Zhou
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China.
| | - Zhaohui Gong
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo 315211, China; Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.
| |
Collapse
|
55
|
Jin X, Xu Y, Guo M, Sun Y, Ding J, Li L, Zheng X, Li S, Yuan D, Li SS. hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1007-1019. [PMID: 33614247 PMCID: PMC7868929 DOI: 10.1016/j.omtn.2020.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
In this study, we explored the circular RNA (circRNA) profile in pulmonary arterial hypertension (PAH) patients caused by chronic obstructive pulmonary disease (COPD) and the effects of hsa_circNFXL1_009 on abnormal proliferation, apoptosis, and migration of human pulmonary arterial smooth muscle cells (hPASMCs) driven by hypoxia. Using microarrays, we screened the circRNA profile in whole-blood samples from three pairs of subjects and found 158 dysregulated circRNAs in patients with PAH-COPD. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis further validated that hsa_circNFXL1_009 was dramatically downregulated with the highest area under a receiver operating characteristic curve (ROC) in 21 pairs of subjects. Consistently, exposure to hypoxia markedly reduced the hsa_circNFXL1_009 level in cultured hPASMCs. Delivery of exogenous hsa_circNFXL1_009 attenuated hypoxia-induced proliferation, apoptotic resistance, and migration of hPASMCs, as evidenced by immunocytochemistry, 5-ethynyl-2′-deoxyuridine incorporation, wound healing, and a TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling) assay. A luciferase assay showed that hsa_circNFXL1_009 directly sponged hsa-miR-29b-2-5p (miR-29b) and positively regulated the expression of voltage-gated potassium (K+) channel subfamily B member 1 (KCNB1) at the mRNA level. Using patch-clamp electrophysiology, we proved that overexpression of hsa_circNFXL1_009 promoted a whole-cell K+ current in hPASMCs. Taken together, these studies identify hsa_circNFXL1_009 as a key regulator of PAH, and it may be used as a potential therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Guo
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yushuang Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Junzhu Ding
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaodong Zheng
- Department of Genetics and Cell Biology, Harbin Medical University-Daqing, Daqing, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Dandan Yuan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
56
|
Kong D, Gu R, Zhang C, Yin R. Knockdown of hsa_circ_0059955 Induces Apoptosis and Cell Cycle Arrest in Nucleus Pulposus Cells via Inhibiting Itchy E3 Ubiquitin Protein Ligase. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3951-3963. [PMID: 33061300 PMCID: PMC7526870 DOI: 10.2147/dddt.s253293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Background Circular RNAs (circRNAs) play an important role in the progression of intervertebral disc (IVD) degeneration (IVDD). Using bioinformatics analysis, we have found that the expression of circRNA hsa_circ_0059955 was significantly downregulated in IVDD tissues. However, the relevant mechanism of hsa_circ_0059955 in the progression of IVDD remains unclear. Methods CCK-8 and flow cytometry assays were used to evaluate cell proliferation and apoptosis. In addition, Western blot assay was used to detect the expressions of ITCH, p73, CDK2 in nucleus pulposus (NP) cells. Moreover, a puncture-induced IVDD rat model was established to explore the role of hsa_circ_0059955 in IVDD. Results The level of hsa_circ_0059955 was significantly decreased in IVDD tissues from IVDD patients. Itchy E3 ubiquitin protein ligase (ITCH) is the host gene of hsa_circ_0059955, and downregulation of hsa_circ_0059955 significantly decreased the expression of ITCH in NP cells. In addition, downregulation of hsa_circ_0059955 markedly inhibited proliferation and induced apoptosis and cell cycle arrest in NP cells. Moreover, in vivo study illustrated that overexpression of hsa_circ_0059955 ameliorated IVDD in rats. Conclusion Downregulation of hsa_circ_0059955 could induce apoptosis and cell cycle arrest in NP cells in vitro, while overexpression of hsa_circ_0059955 attenuated the IVDD in a puncture-induced rat model in vivo. Therefore, hsa_circ_0059955 might serve as a therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Chengtao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| | - Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital, Changchun, Jilin 130031, People's Republic of China
| |
Collapse
|
57
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
58
|
Ding P, Ding Y, Tian Y, Lei X. Circular RNA circ_0010283 regulates the viability and migration of oxidized low‑density lipoprotein‑induced vascular smooth muscle cells via an miR‑370‑3p/HMGB1 axis in atherosclerosis. Int J Mol Med 2020; 46:1399-1408. [PMID: 32945389 PMCID: PMC7447304 DOI: 10.3892/ijmm.2020.4703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a disease during which the inside of an artery narrows due to the accumulation of plaque, and vascular smooth muscle cells (VSMCs) are involved in the progression of atherosclerosis. Circular RNAs (circRNAs) have been reported to be involved in the progression of atherosclerosis. However, the role of circ_0010283 in atherosclerosis progression remains unclear. The present study aimed to investigate the functions and the mechanism of circ_0010283 in oxidized low-density lipoprotein (ox-LDL)-induced VSMCs and to identify new potential biomarkers for the treatment of atherosclerosis. Cell viability and migration were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. The relationship between microRNA (miR)-370-3p and circ_0010283 or high mobility group box 1 (HMGB1) was predicated by online software and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. The results of the present study demonstrated that the expression levels of circ_0010283 and HMGB1 were significantly upregulated in ox-LDL-induced VSMCs compared with those in VSMCs without ox-LDL induction, whereas the expression of miR-370-3p was downregulated. Knockdown of circ_0010283 suppressed VSMC viability and migration, as well as the expression of viability-associated proteins cyclin D1 and proliferating cell nuclear antigen, and migration-associated proteins matrix metalloproteinase 2 (MMP2) and MMP9 in ox-LDL-induced VSMCs compared with untreated VSMCs. In addition, miR-370-3p was demonstrated to be a target of circ_0010283 and to target HMGB1; thus, circ_0010283 regulated HMGB1 expression via miR-370-3p. Further experiments indicated that inhibition of miR-370-3p reversed the circ_0010283 silencing-mediated inhibitory effects on VMSC viability and migration. Additionally, the miR-370-3p-mediated suppressive effects on cell viability and migration were rescued by overexpression of HMGB1. In conclusion, circ_0010283 mediated cell viability and migration via a miR-370-3p/HMGB1 axis in ox-LDL-induced VSMCs.
Collapse
Affiliation(s)
- Peng Ding
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi 710000, P.R. China
| | - Yi Ding
- Department of Nephrology and Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi 710000, P.R. China
| | - Ye Tian
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi 710000, P.R. China
| | - Xiaochun Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi 710000, P.R. China
| |
Collapse
|
59
|
Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 2020; 47:5535-5547. [PMID: 32567025 DOI: 10.1007/s11033-020-05601-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, People's Republic of China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
60
|
Duan R, Niu H, Yu T, Cui H, Yang T, Hao K, Wang C. Identification and Bioinformatic Analysis of Circular RNA Expression in Peripheral Blood Mononuclear Cells from Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:1391-1401. [PMID: 32606648 PMCID: PMC7305829 DOI: 10.2147/copd.s252896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Circular RNAs (circRNAs) regulate other RNA transcripts by competing for shared microRNAs, which play roles in the pathogenesis of many diseases, including chronic obstructive pulmonary disease (COPD). However, the role of circRNAs in COPD remains unknown. This study aimed to investigate the expression profile and the role of circRNAs in COPD. Patients and Methods Twenty-one COPD patients and twenty-one normal controls were recruited. Total RNAs were collected from peripheral blood mononuclear cells (PBMCs) of each participant. CircRNAs and protein-coding mRNAs were profiled by microarray and systematically compared between patients with COPD and control subjects. The top differentially expressed circRNAs and mRNAs were validated by quantitative real-time PCR (RT-qPCR). Functional analysis identified pathways relevant to the pathogenesis of COPD. Next, the circRNA target pathway network, the circRNA-miRNA-mRNA network (ceRNA network) and functional ceRNA regulatory modules were constructed. Results In total, 2132 circRNAs and 2734 protein-coding mRNAs were differentially expressed (|fold change| >1.5 and P-value <0.05) in COPD patients. Six out of nine selected RNAs were confirmed by RT-qPCR validation. Our functional analysis suggested that immune imbalances and inflammatory responses play roles in the pathogenesis of COPD. The ceRNA network highlighted the differentially expressed circRNAs and their related miRNAs and mRNAs in COPD. In the circRNA target pathway network and functional ceRNA regulatory modules, hsa_circRNA_0008672 appeared in the top three KEGG pathways (NOD-like receptor signaling pathway, natural killer cell mediated cytotoxicity and Th17 cell differentiation) and may act as the miRNA sponge regulating the hsa_circRNA_0008672/miR-1265/MAPK1 axis. Conclusion Our findings demonstrate critical roles of the circRNAs in COPD molecular etiology. The data support a plausible mechanism that circRNAs may be involved in the development of COPD by affecting the immune balance. Moreover, the hsa_circRNA_0008672/miR-1265/MAPK1 axis may contribute to the pathogenesis of COPD, warranting further investigation.
Collapse
Affiliation(s)
- Ruirui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Diseases, Beijing, People's Republic of China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Diseases, Beijing, People's Republic of China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Diseases, Beijing, People's Republic of China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Han Cui
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Diseases, Beijing, People's Republic of China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Diseases, Beijing, People's Republic of China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Diseases, Beijing, People's Republic of China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|