51
|
Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Mol Ther 2017; 25:1076-1094. [PMID: 28391961 DOI: 10.1016/j.ymthe.2017.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past 20 years, there has been tremendous progress in retinal gene therapy. The safety and efficacy results in one early-onset severe blinding disease may lead to the first gene therapy drug approval in the United States. Here, we review how far the field has come over the past two decades and speculate on the directions that the field will take in the future.
Collapse
|
52
|
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. PROGRESS IN BRAIN RESEARCH 2017; 231:191-223. [PMID: 28554397 DOI: 10.1016/bs.pbr.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration and inherited retinal degenerations represent the leading causes of blindness in industrialized countries. Despite different initiating causes, they share a common final pathophysiology, the loss of the light sensitive photoreceptors. Replacement by transplantation may offer a potential treatment strategy for both patient populations. The last decade has seen remarkable progress in our ability to generate retinal cell types, including photoreceptors, from a variety of murine and human pluripotent stem cell sources. Driven in large part by the requirement for renewable cell sources, stem cells have emerged not only as a promising source of replacement photoreceptors but also to provide in vitro systems with which to study retinal development and disease processes and to test therapeutic agents.
Collapse
Affiliation(s)
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
53
|
Ramachandran PS, Lee V, Wei Z, Song JY, Casal G, Cronin T, Willett K, Huckfeldt R, Morgan JIW, Aleman TS, Maguire AM, Bennett J. Evaluation of Dose and Safety of AAV7m8 and AAV8BP2 in the Non-Human Primate Retina. Hum Gene Ther 2016; 28:154-167. [PMID: 27750461 DOI: 10.1089/hum.2016.111] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Within the next decade, we will see many gene therapy clinical trials for eye diseases, which may lead to treatments for thousands of visually impaired people around the world. To target retinal diseases that affect specific cell types, several recombinant adeno-associated virus (AAV) serotypes have been generated and used successfully in preclinical mouse studies. Because there are numerous anatomic and physiologic differences between the eyes of mice and "men" and because surgical delivery approaches and immunologic responses also differ between these species, this study evaluated the transduction characteristics of two promising new serotypes, AAV7m8 and AAV8BP2, in the retinas of animals that are most similar to those of humans: non-human primates (NHPs). We report that while AAV7m8 efficiently targets a variety of cell types by subretinal injection in NHPs, transduction after intravitreal delivery was mostly restricted to the inner retina at lower doses that did not induce an immune response. AAV8BP2 targets the cone photoreceptors efficiently but bipolar cells inefficiently by subretinal injection. Additionally, transduction by both serotypes in the anterior chamber of the eye and the optic pathway of the brain was observed post-intravitreal delivery. Finally, we assessed immunogenicity, keeping in mind that these AAV capsids may be used in future clinical trials. We found that AAV8BP2 had a better safety profile compared with AAV7m8, even at the highest doses administered. These studies underscore the differences in AAV transduction between mice and primates, highlighting the importance of careful evaluation of therapeutic vectors in NHPs prior to moving to clinical trials.
Collapse
Affiliation(s)
- Pavitra S Ramachandran
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Vivian Lee
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Zhangyong Wei
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Ji Yun Song
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Giulia Casal
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Therese Cronin
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Keirnan Willett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Rachel Huckfeldt
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Jessica I W Morgan
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Tomas S Aleman
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Albert M Maguire
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Parke DW, Lum F, McLeod SD. Stem Cell Treatment: Think Twice If They Ask for Payment. Ophthalmology 2016; 123:S62-S63. [PMID: 27664287 DOI: 10.1016/j.ophtha.2016.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022] Open
|