Wani IM, Arora S. Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey.
Med Biol Eng Comput 2020;
58:1873-1917. [PMID:
32583141 DOI:
10.1007/s11517-020-02171-3]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Computer-aided diagnosis (CAD) has revolutionized the field of medical diagnosis. They assist in improving the treatment potentials and intensify the survival frequency by early diagnosing the diseases in an efficient, timely, and cost-effective way. The automatic segmentation has led the radiologist to successfully segment the region of interest to improve the diagnosis of diseases from medical images which is not so efficiently possible by manual segmentation. The aim of this paper is to survey the vision-based CAD systems especially focusing on the segmentation techniques for the pathological bone disease known as osteoporosis. Osteoporosis is the state of the bones where the mineral density of bones decreases and they become porous, making the bones easily susceptible to fractures by small injury or a fall. The article covers the image acquisition techniques for acquiring the medical images for osteoporosis diagnosis. The article also discusses the advanced machine learning paradigms employed in segmentation for osteoporosis disease. Other image processing steps in osteoporosis like feature extraction and classification are also briefly described. Finally, the paper gives the future directions to improve the osteoporosis diagnosis and presents the proposed architecture. Graphical abstract.
Collapse