51
|
Comparative transcriptomic analyses revealed genes and pathways responsive to heat stress in Diaphorina citri. Gene 2020; 727:144246. [DOI: 10.1016/j.gene.2019.144246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
|
52
|
Zhou C, Yang XB, Yang H, Long GY, Wang Z, Jin DC. Effects of abiotic stress on the expression of Hsp70 genes in Sogatella furcifera (Horváth). Cell Stress Chaperones 2020; 25:119-131. [PMID: 31773487 PMCID: PMC6985323 DOI: 10.1007/s12192-019-01053-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/07/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022] Open
Abstract
Sogatella furcifera (Horváth), a prominent rice pest in Asia, is a typical R-strategic and highly adaptable insect. Heat shock proteins (Hsps) are highly conserved molecular chaperones regulating responses to various abiotic stresses; however, limited information is available regarding their role in responding to abiotic stress in S. furcifera. This study aimed to investigate the effect of abiotic stresses on the expression of Hsp70 genes in the S. furcifera. Five Hsp70 genes were isolated from S. furcifera, and the expression patterns at different developmental stages and temperatures, upon treatment with different insecticides and ultraviolet A (UV-A) stress, were analyzed. Hsp70 genes were expressed at different developmental stages. Hsp70-2, Hsp70-5, and Hsp70-6 were significantly upregulated upon heat shock at 40 °C for 30 min. Hsp70-3 and Hsp70-4 were significantly upregulated upon heat shock at 30 °C for 30 min. Under UV-A stress, Hsp70-3, Hsp70-4, Hsp70-5, and Hsp70-6 were significantly upregulated. Conversely, Hsp70-2 was significantly downregulated under UV-A stress. The five Hsp70 genes were significantly downregulated in 3rd-instar nymphs on exposure to thiamethoxam, buprofezin, and avermectin at LC10 and LC25 concentrations. Hence, Hsp70 genes significantly contribute to the tolerance of S. furcifera to temperature and UV-A stress; however, they are not involved in the response to insecticides.
Collapse
Affiliation(s)
- Cao Zhou
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xi-Bin Yang
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hong Yang
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Gui-Yun Long
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zhao Wang
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Environment and Life Sciences, Kaili University, Kaili, 556011, People's Republic of China
| | - Dao-Chao Jin
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
53
|
Yuan J, Guo J, Wang H, Guo A, Lian Q, Gu Z. Acute toxicity of cypermethrin on the juvenile of red claw crayfish Cherax quadricarinatus. CHEMOSPHERE 2019; 237:124468. [PMID: 31549634 DOI: 10.1016/j.chemosphere.2019.124468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
In order to assess the toxicity of Cypermethrin (CYP), the 50% lethal concentration (LC50) of CYP on the juvenile of Cherax quadricarinatus is assessed. Meanwhile, the transcription level and the content in the antioxidant and biotransformation enzymes in hepatopancreas and immune enzymes in the serum of C. quadricarinatus exposed to CYP (0.1, 1, 10 and 100 ng·L-1) for 96 h were analyzed to reveal the CYP toxicity and detoxification mechanism. 24, 48, 72, 96 h LC50 were 1305.14, 424.52, 287.10 and 215.99 ng·L-1, respectively. There was no significant change of the content of enzymes at low concentration (0.16 ng·L-1). The fast increase of SOD and CAT content was observed at early stage (24 h), subsequent decreased at later stage of trail at medium concentration (0.32 and 0.63 ng·L-1). However, high concentration (1.25 ng·L-1) of CYP significantly inhibited SOD and CAT content. There was a significant increase in the level of MDA, PC and the content of GPx, EROD, CarE, GST at medium and high concentration after 72 h and 96 h exposure. The Na+-K+-ATPase, PO, ALK content decreased at medium and high concentration, especially at the 72-h and the 96-h exposure. The transcription was altered similarly to enzyme content, but the transcriptional response was generally more immediate than enzymatic response. Heat shock protein (hsp70) and multidrug resistance-associated protein 2 (abcc2) genes were up-regulated.
Collapse
Affiliation(s)
- Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Jianlin Guo
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China; Aquatic Breeding Company in Northern Area of Zhejiang Province, Huzhou, Zhejiang, 313001, China
| | - Haiyang Wang
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Aihuan Guo
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Qingping Lian
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China.
| |
Collapse
|
54
|
Dumas P, Morin MD, Boquel S, Moffat CE, Morin PJ. Expression status of heat shock proteins in response to cold, heat, or insecticide exposure in the Colorado potato beetle Leptinotarsa decemlineata. Cell Stress Chaperones 2019; 24:539-547. [PMID: 30815817 PMCID: PMC6527667 DOI: 10.1007/s12192-019-00983-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/19/2019] [Indexed: 02/08/2023] Open
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an agricultural pest that threatens the potato industry worldwide. This insect is widely regarded as one of the most difficult-to-control pests, as it can thrive in a wide range of temperature conditions and routinely develops resistance towards various insecticides. The molecular changes associated with response to these challenges have not been fully investigated in L. decemlineata. While differential expression and characterization of heat shock proteins (HSPs) in response to stress have been conducted in several insects, data regarding HSPs in L. decemlineata are limited. The overarching objective of this study consisted of evaluating the expression of various HSPs in L. decemlineata exposed to different temperatures or treated with the insecticides imidacloprid and chlorantraniliprole. Expression levels of HSP60, HSP70, HSP90, and HSP Beta-1 were evaluated by qRT-PCR and insect mortality was assessed using dsRNAs aimed at select HSP targets. Elevated HSP70 and HSP90 transcript levels were observed in heat-exposed L. decemlineata while downregulation of HSP70 transcript levels was measured in insects submitted to cold conditions. Chlorantraniliprole exposure was associated with reduced HSP Beta-1 transcript levels while no change in expression was monitored in insects exposed to imidacloprid. RNAi-based knockdown of HSP60 levels correlated with significant insect mortality 14 days after dsRNA injection. These results highlight the modulation of HSPs that occur in L. decemlineata exposed to fluctuating temperatures and position HSPs as interesting candidates in the identification of novel molecular leads that could be targeted to control this insect.
Collapse
Affiliation(s)
- Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Mathieu D Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Sébastien Boquel
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
55
|
Wang F, Gong H, Zhang H, Zhou Y, Cao J, Zhou J. Molecular characterization, tissue-specific expression, and RNA knockdown of the putative heat shock cognate 70 protein from Rhipicephalus haemaphysaloides. Parasitol Res 2019; 118:1363-1370. [PMID: 30891634 DOI: 10.1007/s00436-019-06258-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/11/2019] [Indexed: 11/27/2022]
Abstract
Heat shock cognate 70-kDa protein (RH-Hsc70) was identified from a cDNA library synthesized from the sialotranscriptomes of unfed and fed Rhipicephalus haemaphysaloides. The RH-Hsc70 open reading frame is 1950 bp long and encodes a protein that is 649 amino acids in length, with a predicted molecular weight of 71.1 kDa and a theoretical pI of 5.43. RH-Hsc70 exhibits 98% amino acid identity with Hsc70 in Haemaphysalis flava and 83% identity with Hsc70 in arthropods and mammals. RH-Hsc70 was mainly expressed in nymphs and adult ticks, not in larvae. Real-time quantitative PCR analysis indicated that RH-Hsc70 mRNA expression was induced by blood feeding in adult ticks. In addition, RH-Hsc70 gene expression was higher in the ovaries of fed adult ticks than that in the midguts, salivary glands, and fat bodies of unfed or fed adult ticks. RH-Hsc70 gene knockdown inhibited tick blood feeding, significantly decreased tick engorgement rate, and increased tick death rate. These data illustrate the importance of RH-Hsc70 in tick blood feeding and aging, which makes it a promising candidate for the development of anti-tick vaccines.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
56
|
Yi J, Wu H, Liu J, Lai X, Guo J, Li D, Zhang G. Molecular characterization and expression of six heat shock protein genes in relation to development and temperature in Trichogramma chilonis. PLoS One 2018; 13:e0203904. [PMID: 30226893 PMCID: PMC6143235 DOI: 10.1371/journal.pone.0203904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
Trichogramma is a kind of egg parasitoid wasp that is widely used to control lepidopterous pests. Temperature is one of the main factors that determines the various life activities of this species, including development, reproduction and parasitism efficiency. Heat shock proteins (HSPs) are highly conserved and ubiquitous proteins that are best known for their responsiveness to temperature and other stresses. To explore the potential role of HSPs in Trichogramma species, we obtained the full-length cDNAs of six HSP genes (Tchsp10, Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3, and Tchsp90) from T. chilonis and analyzed their expression patterns during development and exposure to temperature stress. The deduced amino acid sequences of these HSP genes contained the typical signatures of their corresponding protein family and showed high homology to their counterparts in other species. The expression levels of Tchsp10, Tchsp21.6 and Tchsp60 decreased during development. However, the expression of Tchsc70-3 increased from the pupal stage to the adult stage. Tchsp70 and Tchsp90 exhibited the highest expression levels in the adult stage. The expression of six Tchsps was dramatically upregulated after 1 h of exposure to 32 and 40°C but did not significantly change after 1 h of exposure to 10 and 17°C. This result indicated that heat stress, rather than cold stress, induced the expression of HSP genes. Furthermore, the expression of these genes was time dependent, and the expression of each gene reached its peak after 1 h of heat exposure (40°C). Tchsp10 and Tchsp70 exhibited a low-intensity cold response after 4 and 8 h of exposure to 10°C, respectively, but the other genes did not respond to cold at any time points. These results suggested that HSPs may play different roles in the development of this organism and in its response to temperature stress.
Collapse
Affiliation(s)
- Jiequn Yi
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Han Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianbai Liu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xueshuang Lai
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| |
Collapse
|