51
|
Development of an immobilized GPR17 receptor stationary phase for binding determination using frontal affinity chromatography coupled to mass spectrometry. Anal Biochem 2008; 384:123-9. [PMID: 18835238 DOI: 10.1016/j.ab.2008.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/14/2008] [Accepted: 09/08/2008] [Indexed: 11/23/2022]
Abstract
A liquid chromatographic stationary phase containing immobilized membranes from cells expressing the P2Y-like receptor GPR17 is described. Cellular membranes from 1321N1 cells transiently transfected with GPR17 vector [GPR17+] and from the same cell line transfected with the corresponding empty vector [GPR17(-)] were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6-mm-i.d. glass columns to create GPR17(+)-IAM and GPR17(-)-IAM stationary phases. Frontal chromatography experiments on both GPR17(+)-IAM and GPR17(-)-IAM demonstrated the presence of a specific interaction with GPR17 only in the former that was maximized by increasing the membrane/IAM ratio. GPR17(+)-IAM was used in frontal affinity chromatography experiments to calculate the dissociation constants (K(d)) of three ligands-the antagonist cangrelor (formerly AR-C69931MX, a P2Y(12)/P2Y(13) antagonist), MRS2179 (a P2Y(1) receptor antagonist), and the agonist UDP-all of which have been reported to also interact with GPR17. Immobilized GPR17 retained its ability to specifically bind the three analytes, as demonstrated by the agreement of the calculated K(d) values with previously reported data. Preliminary ranking experiments suggest the application of GPR17(+)-IAM in ranking affinity studies for the selection of new potential candidates.
Collapse
|
52
|
|
53
|
Bauer A, Stockwell B. Neurobiological applications of small molecule screening. Chem Rev 2008; 108:1774-86. [PMID: 18447397 DOI: 10.1021/cr0782372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andras Bauer
- Columbia University, Department of Biological Sciences, 614 Fairchild Center, New York, New York 10027, USA
| | | |
Collapse
|
54
|
Janssens K, Boussemaere M, Wagner S, Kopka K, Denef C. Beta1-adrenoceptors in rat anterior pituitary may be constitutively active. Inverse agonism of CGP 20712A on basal 3',5'-cyclic adenosine 5'-monophosphate levels. Endocrinology 2008; 149:2391-402. [PMID: 18202135 DOI: 10.1210/en.2007-1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Catecholamines directly stimulate GH, ACTH, and prolactin secretion from rat anterior pituitary through the beta(2)-adrenoceptor (AR). We recently showed that gonadotrophs express the beta(1)-AR and that glucocorticoids drastically increase its mRNA expression level. The present investigation explores whether beta(1)-ARs are functionally coupled to adenylate cyclase. In anterior pituitary cell aggregates, the highly selective beta(1)-AR antagonists CGP 20712A and ICI 89,406-8a attenuated isoproterenol-stimulated cAMP accumulation, but no agonist action of norepinephrine could be detected. Remarkably, CGP 20712A inhibited basal cAMP levels by its own for at least 50%, an action that tended to be more effective in dexamethasone-supplemented medium. The latter effect was abolished by the beta-AR antagonist carvedilol, but not by other beta-AR antagonists. Pretreatment with pertussis toxin abolished the action of CGP 20712A on basal cAMP. CGP 20712A also attenuated isoproterenol-induced cAMP accumulation in the gonadotroph cell lines alphaT3-1 and LbetaT2, but not in the somatotroph precursor cell line GHFT and the folliculo-stellate cell line TtT/GF. However, in LbetaT2 cells CGP 20712A did not inhibit basal cAMP levels by its own. The present data suggest that beta(1)-AR in the anterior pituitary is positively coupled to adenylyl cyclase but is constitutively active in a pertussis toxin-sensitive manner. CGP 20712A may act as an inverse agonist with approximately 50% negative intrinsic activity, suggesting that the beta(1)-AR significantly contributes to basal adenylate cyclase activity in the pituitary.
Collapse
Affiliation(s)
- Kristel Janssens
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Campus Gasthuisberg (O & N), B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
55
|
Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7:339-57. [PMID: 18382464 DOI: 10.1038/nrd2518] [Citation(s) in RCA: 1086] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and also the targets of many drugs. Understanding of the functional significance of the wide structural diversity of GPCRs has been aided considerably in recent years by the sequencing of the human genome and by structural studies, and has important implications for the future therapeutic potential of targeting this receptor family. This article aims to provide a comprehensive overview of the five main human GPCR families--Rhodopsin, Secretin, Adhesion, Glutamate and Frizzled/Taste2--with a focus on gene repertoire, general ligand preference, common and unique structural features, and the potential for future drug discovery.
Collapse
Affiliation(s)
- Malin C Lagerström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, BOX 593, 751 24, Uppsala, Sweden
| | | |
Collapse
|
56
|
Malnic B. Searching for the ligands of odorant receptors. Mol Neurobiol 2008; 35:175-81. [PMID: 17917106 DOI: 10.1007/s12035-007-0013-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/30/1999] [Accepted: 11/09/2006] [Indexed: 11/29/2022]
Abstract
Through the sense of smell mammals can detect and discriminate between a large variety of odorants present in the surrounding environment. Odorants bind to a large repertoire of odorant receptors located in the cilia of olfactory sensory neurons of the nose. Each olfactory neuron expresses one single type of odorant receptor, and neurons expressing the same type of receptor project their axons to one or a few glomeruli in the olfactory bulb, creating a map of odorant receptor inputs. The information is then passed on to other regions of the brain, leading to odorant perception. To understand how the olfactory system discriminates between odorants, it is necessary to determine the odorant specificities of individual odorant receptors. These studies are complicated by the extremely large size of the odorant receptor family and by the poor functional expression of these receptors in heterologous cells. This article provides an overview of the methods that are currently being used to investigate odorant receptor-ligand interactions.
Collapse
Affiliation(s)
- Bettina Malnic
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo, CEP 05508-000, Brazil.
| |
Collapse
|
57
|
Clynen E, Baggerman G, Husson SJ, Landuyt B, Schoofs L. Peptidomics in drug research. Expert Opin Drug Discov 2008; 3:425-40. [DOI: 10.1517/17460441.3.4.425] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
58
|
Abstract
Neuromedin S, a novel neuropeptide of 36 amino acids, was isolated from rat brain as an endogenous ligand for the orphan G protein-coupled receptors FM-3/GPR66 and FM-4/TGR-1, identified to date as type-1 and type-2 neuromedin U (NMU) receptors, respectively. The peptide was designated neuromedin S (NMS) because it is specifically expressed in the suprachiasmatic nucleus of the hypothalamus. NMS is structurally related to NMU; these peptides share a C-terminal core structure. In this review, we will outline the recent discoveries regarding the structure, cognate receptors, distribution, and possible physiological functions of NMS.
Collapse
|
59
|
Alper KR, Lotsof HS, Kaplan CD. The ibogaine medical subculture. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:9-24. [PMID: 18029124 DOI: 10.1016/j.jep.2007.08.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 05/25/2023]
Abstract
AIM OF THE STUDY Ibogaine is a naturally occurring psychoactive indole alkaloid that is used to treat substance-related disorders in a global medical subculture, and is of interest as an ethnopharmacological prototype for experimental investigation and possible rational pharmaceutical development. The subculture is also significant for risks due to the lack of clinical and pharmaceutical standards. This study describes the ibogaine medical subculture and presents quantitative data regarding treatment and the purpose for which individuals have taken ibogaine. MATERIALS AND METHODS All identified ibogaine "scenes" (defined as a provider in an associated setting) apart from the Bwiti religion in Africa were studied with intensive interviewing, review of the grey literature including the Internet, and the systematic collection of quantitative data. RESULTS Analysis of ethnographic data yielded a typology of ibogaine scenes, "medical model", "lay provider/treatment guide", "activist/self-help", and "religious/spiritual". An estimated 3414 individuals had taken ibogaine as of February 2006, a fourfold increase relative to 5 years earlier, with 68% of the total having taken it for the treatment of a substance-related disorder, and 53% specifically for opioid withdrawal. CONCLUSIONS Opioid withdrawal is the most common reason for which individuals took ibogaine. The focus on opioid withdrawal in the ibogaine subculture distinguishes ibogaine from other agents commonly termed "psychedelics", and is consistent with experimental research and case series evidence indicating a significant pharmacologically mediated effect of ibogaine in opioid withdrawal.
Collapse
Affiliation(s)
- Kenneth R Alper
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
60
|
Abstract
Orphan G protein-coupled receptors (GPCRs) are receptors lacking endogenous ligands. Found by molecular biological analyses, they became the roots of reverse pharmacology, in which receptors are attempted to be matched to potential transmitters. Later, when high-throughput screening technology was applied to reverse pharmacology, dozens of orphan GPCRs became deorphanized. Furthermore, novel neuropeptides were discovered. This review retraces the history of the orphan GPCRs and of the discoveries of their endogenous ligands, it also discusses the difficulties that the search for new ligands is presently encountering.
Collapse
Affiliation(s)
- S Chung
- Department of Pharmacology, University of California Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
61
|
Harrold JA, Halford JCG. Orphan G-protein-coupled receptors : strategies for identifying ligands and potential for use in eating disorders. Drugs R D 2007; 8:287-99. [PMID: 17767394 DOI: 10.2165/00126839-200708050-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are key regulators of intercellular interactions, participating in almost every physiological response. They exert their effects by being activated by a variety of endogenous ligands. Traditionally, these ligands were identified first, providing tools to characterise the receptors. However, since the late 1980s, homology screening approaches have allowed the GPCRs to be found first, and in turn used as orphan targets to identify their ligands. Over the last decade this method has led to the identification of 12 novel neuropeptide families. Interestingly, four of these deorphanised GPCR systems, melanin-concentrating hormone, ghrelin, orexin and neuropeptide B/neuropeptide W, have been found to play a role in the control of energy balance. This article reviews the role of these GPCR systems in the control of food intake and energy expenditure, and discusses their potential use in therapies directed at eating disorders. As obesity has reached epidemic proportions across the developed world, pharmacotherapy has focused on this condition. However, difficulties in weight control also characterise disorders of binge eating such as bulimia and binge-eating disorder. Consequently, hypophagic treatments may be of potential benefit in normal, overweight or obese individuals displaying aberrant (out of control) eating behaviour.
Collapse
Affiliation(s)
- Joanne A Harrold
- Kissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
62
|
Takei Y, Ogoshi M, Inoue K. A 'reverse' phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front Neuroendocrinol 2007; 28:143-60. [PMID: 17659326 DOI: 10.1016/j.yfrne.2007.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 04/23/2007] [Accepted: 05/09/2007] [Indexed: 11/20/2022]
Abstract
Vertebrates expanded their habitats from aquatic to terrestrial environments during the course of evolution. In parallel, osmoregulatory and cardiovascular systems evolved to counter the problems of desiccation and gravity on land. In our physiological studies on body fluid and blood pressure regulation in various vertebrate species, we found that osmoregulatory and cardiovascular hormones have changed their structure and function during the transition from aquatic to terrestrial life. In fact, Na(+)-regulating and vasodepressor hormones play essential roles in fishes, while water-regulating and vasopressor hormones are dominant in tetrapods. Accordingly, Na(+)-regulating and vasodepressor hormones, such as natriuretic peptide (NP) and adrenomedullin (AM), are much diversified in teleost fishes compared with mammals. Based on this finding, new NPs and AMs were identified in mammals and other tetrapods. These hormones have only minor roles in the maintenance of normal blood volume and pressure in mammals, but their importance seems to increase when homeostasis is disrupted. Therefore, such hormones can be used for diagnosis and treatment of body fluid and cardiovascular disorders such as cardiac/renal failure and hypertension. In this review, we introduce a new approach for identification of novel Na(+)-regulating and vasodepressor hormones in mammals based on fish studies. Until recently, new hormones were first discovered in mammals, and then identified and applied in fishes. However, chances are increasing in recent years to identify new hormones first in fishes then in mammals, based on the difference in the regulatory systems between fishes and tetrapods. As the direction is opposite from the traditional phylogenetic approach, we added 'reverse' to its name. The 'reverse' phylogenetic approach offers a typical example of how comparative fish studies can contribute to the general and clinical endocrinology.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|
63
|
Colette J, Avé E, Grenier-Boley B, Coquel AS, Lesellier K, Puget K. Bioinformatics-based discovery and identification of new biologically active peptides for GPCR deorphanization. J Pept Sci 2007; 13:568-74. [PMID: 17694568 DOI: 10.1002/psc.898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to their involvement in many physiological and pathological processes, G-protein-coupled receptors (GPCRs) are interesting targets for drug development. Approximately, 100 endoGPCRs lack their natural ligands and remain orphan (oGPCRs). Consequently, oGPCR deorphanization appears a promising research field for the development of new therapeutics. On the basis of the knowledge of currently known GPCR/ligand couples, some oGPCRs may be targeted by peptides. However, to find new drugs for GPCRs, Genepep has developed a dedicated bioinformatics platform to screen transcriptomic databases for the prediction of new GPCR ligands. The peptide lists generated include specific data, such as chemical and physical properties, the occurrence of post-translational modifications (PTMs) and an annotation referring to the location and expression level of the related putative genes. This information system allows a selection through series of biological criteria of approximately 10 000 natural peptides including already known GPCR ligands and potential new candidates for GPCR deorphanization. The most promising peptides for functional assay screening and future development as therapeutic agents are under evaluation.
Collapse
Affiliation(s)
- Jean Colette
- Genepep S.A., Zone d'activité les Baronnes, Ateliers Relais, Lots 4 & 5, 34 730 Prades le Lez, France
| | | | | | | | | | | |
Collapse
|
64
|
Ozawa A, Cai Y, Lindberg I. Production of bioactive peptides in an in vitro system. Anal Biochem 2007; 366:182-9. [PMID: 17540328 PMCID: PMC2128726 DOI: 10.1016/j.ab.2007.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/31/2007] [Accepted: 04/14/2007] [Indexed: 11/23/2022]
Abstract
An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|