51
|
Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee ML, Kato KX, Yamasaki T, Xu S, Ishimoto T, Yamagata S, Otsuguro KI, Horiuchi M, Iijima N, Kimura K, Toda C. Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Mol Metab 2021; 54:101366. [PMID: 34728342 PMCID: PMC8609163 DOI: 10.1016/j.molmet.2021.101366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Objective The regulation of food intake is a major research area in the study of obesity, which plays a key role in the development of metabolic syndrome. Gene targeting studies have clarified the roles of hypothalamic neurons in feeding behavior, but the deletion of a gene has a long-term effect on neurophysiology. Our understanding of short-term changes such as appetite under physiological conditions is therefore still limited. Methods Targeted recombination in active populations (TRAP) is a newly developed method for labeling active neurons by using tamoxifen-inducible Cre recombination controlled by the promoter of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1), a member of immediate early genes. Transgenic mice for TRAP were fasted overnight, re-fed with normal diet, and injected with 4-hydroxytamoxifen 1 h after the refeeding to label the active neurons. The role of labeled neurons was examined by expressing excitatory or inhibitory designer receptors exclusively activated by designer drugs (DREADDs). The labeled neurons were extracted and RNA sequencing was performed to identify genes that are specifically expressed in these neurons. Results Fasting-refeeding activated and labeled neurons in the compact part of the dorsomedial hypothalamus (DMH) that project to the paraventricular hypothalamic nucleus. Chemogenetic activation of the labeled DMH neurons decreased food intake and developed place preference, an indicator of positive valence. Chemogenetic activation or inhibition of these neurons had no influence on the whole-body glucose metabolism. The labeled DMH neurons expressed prodynorphin (pdyn), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and thyrotropin-releasing hormone receptor (Trhr) genes. Conclusions We identified a novel cell type of DMH neurons that can inhibit food intake and promote feeding-induced positive valence. Our study provides insight into the role of DMH and its molecular mechanism in the regulation of appetite and emotion. Fasting-refeeding activates a subset of neurons in the dorsomedial hypothalamus (DMH). Chemogenetic inhibition of the DMH neurons increases food intake. Chemogenetic activation of the DMH neurons inhibits food intake and promotes positive valence. The DMH neurons express pdyn, GRP, CCK and Trhr genes.
Collapse
Affiliation(s)
- Daigo Imoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Izumi Yamamoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hirokazu Matsunaga
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Toya Yonekura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ming-Liang Lee
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kan X Kato
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takeshi Yamasaki
- Laboratory of Animal Experiment, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Shucheng Xu
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Taiga Ishimoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Satoshi Yamagata
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Norifumi Iijima
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Chitoku Toda
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
52
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
53
|
nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J Genet Genomics 2021; 49:217-229. [PMID: 34606992 DOI: 10.1016/j.jgg.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
The nuclear receptor DAX-1 (encoded by the NR0B1 gene) is presented in the hypothalamic tissues in humans and other vertebrates. Human patients with NR0B1 mutations often have hypothalamic-pituitary defects, but the involvement of NR0B1 in hypothalamic development and function is not well understood. Here, we report the disruption of the nr0b1 gene in zebrafish causes abnormal expression of gonadotropins, a reduction in fertilization rate, and an increase in post-fasting food intake, which is indicative of abnormal hypothalamic functions. We find that loss of nr0b1 increases the number of prodynorphin (pdyn)-expressing neurons but decreases the number of pro-opiomelanocortin (pomcb)-expressing neurons in the zebrafish hypothalamic arcuate region (ARC). Further examination reveals that the proliferation of progenitor cells is reduced in the hypothalamus of nr0b1 mutant embryos accompanying with the decreased expression of genes in the Notch signaling pathway. Additionally, the inhibition of Notch signaling in wild-type embryos increases the number of pdyn neurons, mimicking the nr0b1 mutant phenotype. In contrast, ectopic activation of Notch signaling in nr0b1 mutant embryos decreases the number of pdyn neurons. Taken together, our results suggest that nr0b1 regulates neural progenitor proliferation and maintenance to ensure normal hypothalamic neuron development.
Collapse
|
54
|
Chen M, Zhang X, Fan J, Sun H, Yao Q, Shi J, Qu H, Du S, Cheng Y, Ma S, Zhang M, Zhan S. Dynorphin A (1-8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels. Neuropeptides 2021; 89:102182. [PMID: 34298371 DOI: 10.1016/j.npep.2021.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
The contents of Dynorphin A(1-8) decreased gradually in ischemic cortices in rats and an intracerebroventricular administration of synthetic Dynorphin A(1-8) reduced the volume of cerebral infarction in our previous research. However, the specific protective mechanism is unclear and Dynorphin A(1-8) is unlikely to cross the blood-brain barrier (BBB) by noninvasive oral or intravenous administration as a macromolecule neuropeptide. In this study, intranasal administration was used to middle cerebral artery occlusion(MCAO) rats to assessed the therapeutic effects of Dynorphin A(1-8) by evaluating behavior, volume of cerebral infarct, cerebral edema ratio, histological observation. Then apoptosis neuron rate was detected by TUNEL staining. Immunohistochemical staining was carried out to explore the alteration of Bcl-2, Bax and Caspase-3. Finally, κ-opioid receptor antagonist and N-methyl-d-aspartate(NMDA) receptor antagonist were used to explore its possible mechanism. We found that MCAO rats under intranasal administration of Dynorphin A(1-8) showed better behavioral improvement, higher extent of Bcl-2, activity of SOD along with much lower level of infarction volume, brain water content, number of cell apoptosis, extent of Bax and Caspase-3, and concentration of MDA compared with those in MCAO model group and intravenous Dynorphin A(1-8) group. Administration of nor-BNI or MK-801 reversed these neuroprotective effects of intranasal Dynorphin A(1-8). In summary, Dynorphin A(1-8), with advantages of intranasal administration, could be effectively delivered to central nervous system(CNS). Dynorphin A(1-8) inhibited oxidative stress and apoptosis against cerebral ischemia/reperfusion injury, affording neuroprotection through NMDA receptor and κ-opioid receptor channels.
Collapse
Affiliation(s)
- Mengying Chen
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiaxin Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Sun
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qingling Yao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jinming Shi
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuang Du
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meijuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
55
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
56
|
Cattani D, Struyf N, Steffensen V, Bergquist J, Zamoner A, Brittebo E, Andersson M. Perinatal exposure to a glyphosate-based herbicide causes dysregulation of dynorphins and an increase of neural precursor cells in the brain of adult male rats. Toxicology 2021; 461:152922. [PMID: 34474092 DOI: 10.1016/j.tox.2021.152922] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023]
Abstract
Glyphosate, the most used herbicide worldwide, has been suggested to induce neurotoxicity and behavioral changes in rats after developmental exposure. Studies of human glyphosate intoxication have reported adverse effects on the nervous system, particularly in substantia nigra (SN). Here we used matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to study persistent changes in peptide expression in the SN of 90-day-old adult male Wistar rats. The animals were perinatally exposed to 3 % GBH (glyphosate-based herbicide) in drinking water (corresponding to 0.36 % of glyphosate) starting at gestational day 5 and continued up to postnatal day 15 (PND15). Peptides are present in the central nervous system before birth and play a critical role in the development and survival of neurons, therefore, observed neuropeptide changes could provide better understanding of the GBH-induced long term effects on SN. The results revealed 188 significantly altered mass peaks in SN of animals perinatally exposed to GBH. A significant reduction of the peak intensity (P < 0.05) of several peptides from the opioid-related dynorphin family such as dynorphin B (57 %), alpha-neoendorphin (50 %), and its endogenous metabolite des-tyrosine alpha-neoendorphin (39 %) was detected in the GBH group. Immunohistochemical analysis confirmed a decreased dynorphin expression and showed a reduction of the total area of dynorphin immunoreactive fibers in the SN of the GBH group. In addition, a small reduction of dynorphin immunoreactivity associated with non-neuronal cells was seen in the hilus of the hippocampal dentate gyrus. Perinatal exposure to GBH also induced an increase in the number of nestin-positive cells in the subgranular zone of the dentate gyrus. In conclusion, the results demonstrate long-term changes in the adult male rat SN and hippocampus following a perinatal GBH exposure suggesting that this glyphosate-based formulation may perturb critical neurodevelopmental processes.
Collapse
Affiliation(s)
- Daiane Cattani
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden; Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-970, Brazil.
| | - Nona Struyf
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Vivien Steffensen
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Box 559, 75124, Uppsala, Sweden
| | - Ariane Zamoner
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-970, Brazil
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| |
Collapse
|
57
|
Pałasz A, Della Vecchia A, Saganiak K, Worthington JJ. Neuropeptides of the human magnocellular hypothalamus. J Chem Neuroanat 2021; 117:102003. [PMID: 34280488 DOI: 10.1016/j.jchemneu.2021.102003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/30/2023]
Abstract
Hypothalamic magnocellular nuclei with their large secretory neurons are unique and phylogenetically conserved brain structures involved in the continual regulation of important homeostatic and autonomous functions in vertebrate species. Both canonical and newly identified neuropeptides have a broad spectrum of physiological activity at the hypothalamic neuronal circuit level located within the supraoptic (SON) and paraventricular (PVN) nuclei. Magnocellular neurons express a variety of receptors for neuropeptides and neurotransmitters and therefore receive numerous excitatory and inhibitory inputs from important subcortical neural areas such as limbic and brainstem populations. These unique cells are also densely innervated by axons from other hypothalamic nuclei. The vast majority of neurochemical maps pertain to animal models, mainly the rodent hypothalamus, however accumulating preliminary anatomical structural studies have revealed the presence and distribution of several neuropeptides in the human magnocellular nuclei. This review presents a novel and comprehensive evidence based evaluation of neuropeptide expression in the human SON and PVN. Collectively this review aims to cast a new, medically oriented light on hypothalamic neuroanatomy and contribute to a better understanding of the mechanisms responsible for neuropeptide-related physiology and the nature of possible neuroendocrinal interactions between local regulatory pathways.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Karolina Saganiak
- Department of Anatomy, Collegium Medicum, Jagiellonian University, ul. Kopernika 12, 31-034, Kraków, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
58
|
Cissom C, J Paris J, Shariat-Madar Z. Dynorphins in Development and Disease: Implications for Cardiovascular Disease. Curr Mol Med 2021; 20:259-274. [PMID: 31746302 DOI: 10.2174/1566524019666191028122559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
It is well-established that cardiovascular disease continues to represent a growing health problem and significant effort has been made to elucidate the underlying mechanisms. In this review, we report on past and recent high impact publications in the field of intracrine network signaling, focusing specifically on opioids and their interrelation with key modulators of the cardiovascular system and the onset of related disease. We present an overview of studies outlining the scope of cardiovascular and cerebrovascular processes that are affected by opioids, including heart function, ischemia, reperfusion, and blood flow. Specific emphasis is placed on the importance of dynorphin molecules in cerebrovascular and cardiovascular regulation. Evidence suggests that excessive or insufficient dynorphin could make an important contribution to cardiovascular physiology, yet numerous paradoxical observations frequently impede a clear understanding of the role of dynorphin. Thus, we argue that dynorphin-mediated signaling events for which an immediate regulatory effect is disputed should not be dismissed as unimportant, as they may play a role in cross-talk with other signaling networks. Finally, we consider the most recent evidence on the role of dynorphin during cardiovascular-related inflammation and on the potential value of endogenous and exogenous inhibitors of kappa-opioid receptor, a major dynorphin A receptor, to limit or prevent cardiovascular disease and its related sequelae.
Collapse
Affiliation(s)
- Cody Cissom
- William Carey College of Osteopathic Mississippi University, Medical School, Hattiesburg, Mississippi, United States
| | - Jason J Paris
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States.,Light Microscopy Core, University of Mississippi, University, Mississippi, United States
| |
Collapse
|
59
|
Nosova O, Bazov I, Karpyak V, Hallberg M, Bakalkin G. Epigenetic and Transcriptional Control of the Opioid Prodynorphine Gene: In-Depth Analysis in the Human Brain. Molecules 2021; 26:molecules26113458. [PMID: 34200173 PMCID: PMC8201134 DOI: 10.3390/molecules26113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.
Collapse
Affiliation(s)
- Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | | | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| |
Collapse
|
60
|
Zhao MJ, Wang MY, Ma L, Ahmad KA, Wang YX. Bulleyaconitine A Inhibits Morphine-Induced Withdrawal Symptoms, Conditioned Place Preference, and Locomotor Sensitization Via Microglial Dynorphin A Expression. Front Pharmacol 2021; 12:620926. [PMID: 33716748 PMCID: PMC7953057 DOI: 10.3389/fphar.2021.620926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Bulleyaconitine A (BAA), a C19-diterpenoid alkaloid, has been prescribed as a nonnarcotic analgesic to treat chronic pain over four decades in China. The present study investigated its inhibition in morphine-induced withdrawal symptoms, conditioned place preference (CPP) and locomotor sensitization, and then explored the underlying mechanisms of actions. Multiple daily injections of morphine but not BAA up to 300 μg/kg/day into mice evoked naloxone-induced withdrawal symptoms (i.e., shakes, jumps, genital licks, fecal excretion and body weight loss), CPP expression, and locomotor sensitization. Single subcutaneous BAA injection (30–300 μg/kg) dose-dependently and completely attenuated morphine-induced withdrawal symptoms, with ED50 values of 74.4 and 105.8 μg/kg in shakes and body weight loss, respectively. Subcutaneous BAA (300 μg/kg) also totally alleviated morphine-induced CPP acquisition and expression and locomotor sensitization. Furthermore, subcutaneous BAA injection also specifically stimulated dynorphin A expression in microglia but not astrocytes or neurons in nucleus accumbens (NAc) and hippocampal, measured for gene and protein expression and double immunofluorescence staining. In addition, subcutaneous BAA-inhibited morphine-induced withdrawal symptoms and CPP expression were totally blocked by the microglial metabolic inhibitor minocycline, dynorphin A antiserum, or specific KOR antagonist GNTI, given intracerebroventricularly. These results, for the first time, illustrate that BAA attenuates morphine-induced withdrawal symptoms, CPP expression, and locomotor sensitization by stimulation of microglial dynorphin A expression in the brain, suggesting that BAA may be a potential candidate for treatment of opioids-induced physical dependence and addiction.
Collapse
Affiliation(s)
- Meng-Jing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mi-Ya Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
61
|
Sulis W. The Continuum Between Temperament and Mental Illness as Dynamical Phases and Transitions. Front Psychiatry 2021; 11:614982. [PMID: 33536952 PMCID: PMC7848037 DOI: 10.3389/fpsyt.2020.614982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
The full range of biopsychosocial complexity is mind-boggling, spanning a vast range of spatiotemporal scales with complicated vertical, horizontal, and diagonal feedback interactions between contributing systems. It is unlikely that such complexity can be dealt with by a single model. One approach is to focus on a narrower range of phenomena which involve fewer systems but still cover the range of spatiotemporal scales. The suggestion is to focus on the relationship between temperament in healthy individuals and mental illness, which have been conjectured to lie along a continuum of neurobehavioral regulation involving neurochemical regulatory systems (e.g., monoamine and acetylcholine, opiate receptors, neuropeptides, oxytocin), and cortical regulatory systems (e.g., prefrontal, limbic). Temperament and mental illness are quintessentially dynamical phenomena, and need to be addressed in dynamical terms. A meteorological metaphor suggests similarities between temperament and chronic mental illness and climate, between individual behaviors and weather, and acute mental illness and frontal weather events. The transition from normative temperament to chronic mental illness is analogous to climate change. This leads to the conjecture that temperament and chronic mental illness describe distinct, high level, dynamical phases. This suggests approaching biopsychosocial complexity through the study of dynamical phases, their order and control parameters, and their phase transitions. Unlike transitions in physical systems, these biopsychosocial phase transitions involve information and semiotics. The application of complex adaptive dynamical systems theory has led to a host of markers including geometrical markers (periodicity, intermittency, recurrence, chaos) and analytical markers such as fluctuation spectroscopy, scaling, entropy, recurrence time. Clinically accessible biomarkers, in particular heart rate variability and activity markers have been suggested to distinguish these dynamical phases and to signal the presence of transitional states. A particular formal model of these dynamical phases will be presented based upon the process algebra, which has been used to model information flow in complex systems. In particular it describes the dual influences of energy and information on the dynamics of complex systems. The process algebra model is well-suited for dealing with the particular dynamical features of the continuum, which include transience, contextuality, and emergence. These dynamical phases will be described using the process algebra model and implications for clinical practice will be discussed.
Collapse
Affiliation(s)
- William Sulis
- Collective Intelligence Laboratory, Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
62
|
Xu C, Fan W, Zhang Y, Loh HH, Law PY. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells 2021; 39:600-616. [PMID: 33452745 DOI: 10.1002/stem.3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Although the roles of opioid receptors in neurogenesis have been implicated in previous studies, the mechanism by which κ-opioid receptor (OPRK1) regulates adult neurogenesis remains elusive. We now demonstrate that two agonists of OPRK1, U50,488H and dynorphin A, inhibit adult neurogenesis by hindering neuronal differentiation of mouse hippocampal neural stem cells (NSCs), both in vitro and in vivo. This effect was blocked by nor-binaltorphimine (nor-BNI), a specific antagonist of OPRK1. By examining neurogenesis-related genes, we found that OPRK1 agonists were able to downregulate the expression of Pax6, Neurog2, and NeuroD1 in mouse hippocampal NSCs, in a way that Pax6 regulates the transcription of Neurog2 and Neurod1 by directly interacting with their promoters. Moreover, this effect of OPRK1 was accomplished by inducing expression of miR-7a, a miRNA that specifically targeted Pax6 by direct interaction with its 3'-UTR sequence, and thereby decreased the levels of Pax6, Neurog2, and NeuroD1, thus resulted in hindrance of neuronal differentiation of NSCs. Thus, by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression, OPRK1 agonists hinder the neuronal differentiation of NSCs and hence inhibit adult neurogenesis in mouse hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
63
|
Tejeda HA, Wang H, Flores RJ, Yarur HE. Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handb Exp Pharmacol 2021; 271:223-253. [PMID: 33580392 DOI: 10.1007/164_2021_440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cortical circuits control a plethora of behaviors, from sensation to cognition. The cortex is enriched with neuropeptides and receptors that play a role in information processing, including opioid peptides and their cognate receptors. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in the processing of sensory and motivationally-charged emotional information and is highly expressed in cortical circuits. This is important as dysregulation of DYN/KOR signaling in limbic and cortical circuits has been implicated in promoting negative affect and cognitive deficits in various neuropsychiatric disorders. However, research investigating the role of this system in controlling cortical circuits and computations therein is limited. Here, we review the (1) basic anatomy of cortical circuits, (2) anatomical architecture of the cortical DYN/KOR system, (3) functional regulation of cortical synaptic transmission and microcircuit function by the DYN/KOR system, (4) regulation of behavior by the cortical DYN/KOR system, (5) implications for the DYN/KOR system for human health and disease, and (6) future directions and unanswered questions for the field. Further work elucidating the role of the DYN/KOR system in controlling cortical information processing and associated behaviors will be of importance to increasing our understanding of principles underlying neuropeptide modulation of cortical circuits, mechanisms underlying sensation and perception, motivated and emotional behavior, and cognition. Increased emphasis in this area of study will also aid in the identification of novel ways to target the DYN/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
64
|
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:359-374. [PMID: 34225941 DOI: 10.1016/b978-0-12-820107-7.00022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
65
|
Kim DH, Kim JS, Kim J, Jeong JK, Son HS, Park SE, Jo J, Ryu SM, Kim ES, Lee SJ, Lee SI. Therapeutic Effects of Licorice and Dried Ginger Decoction on Activity-Based Anorexia in BALB/c AnNCrl Mice. Front Pharmacol 2020; 11:594706. [PMID: 33519458 PMCID: PMC7845735 DOI: 10.3389/fphar.2020.594706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Licorice and dried ginger decoction (Gancao-ganjiang-tang, LGD) is used for nausea and anorexia, accompanied by excessive sweating in Traditional Chinese Medicine. Herein, we investigated the therapeutic effects of LGD using the activity-based anorexia (ABA) in a mouse model. Six-week-old female BALB/c AnNCrl mice were orally administered LGD, water, licorice decoction, dried ginger decoction, or chronic olanzapine, and their survival, body weight, food intake, and wheel activity were compared in ABA. Additionally, dopamine concentration in brain tissues was evaluated. LGD significantly reduced the number of ABA mice reaching the drop-out criterion of fatal body weight loss. However, LGD showed no significant effects on food intake and wheel activity. We found that in the LGD group the rise of the light phase activity rate inhibited body weight loss. Licorice or dried ginger alone did not improve survival rates, they only showed longer survival periods than chronic olanzapine when combined. In addition, LGD increased the dopamine concentration in the brain. The results from the present study showed that LGD improves the survival of ABA mice and its mechanism of action might be related to the alteration of dopamine concentration in the brain.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Joong Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Jeongsang Kim
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Jong-Kil Jeong
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Hong-Seok Son
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Seong-Eun Park
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Jeakwon Jo
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Seung Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Eun-San Kim
- Jasaeng Spine and Joint Research Institute, Jasaeng Medical Foundation, Seoul, South Korea
| | - Sung-Jun Lee
- Director's Office, Jung-In Korean Medical Clinic, Seoul, South Korea
| | - Soong-In Lee
- Department of Oriental Medicine, College of Oriental Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
66
|
Spinocerebellar ataxia type 23 (SCA23): a review. J Neurol 2020; 268:4630-4645. [PMID: 33175256 DOI: 10.1007/s00415-020-10297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Collapse
|
67
|
Smeets CJLM, Ma KY, Fisher SE, Verbeek DS. Cerebellar developmental deficits underlie neurodegenerative disorder spinocerebellar ataxia type 23. Brain Pathol 2020; 31:239-252. [PMID: 33043513 PMCID: PMC7983976 DOI: 10.1111/bpa.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/10/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022] Open
Abstract
Spinocerebellar ataxia type 23 (SCA23) is a late‐onset neurodegenerative disorder characterized by slowly progressive gait and limb ataxia, for which there is no therapy available. It is caused by pathogenic variants in PDYN, which encodes prodynorphin (PDYN). PDYN is processed into the opioid peptides α‐neoendorphin and dynorphins (Dyn) A and B; inhibitory neurotransmitters that function in pain signaling, stress‐induced responses and addiction. Variants causing SCA23 mostly affect Dyn A, leading to loss of secondary structure and increased peptide stability. PDYNR212W mice express human PDYN containing the SCA23 variant p.R212W. These mice show progressive motor deficits from 3 months of age, climbing fiber (CF) deficits from 3 months of age, and Purkinje cell (PC) loss from 12 months of age. A mouse model for SCA1 showed similar CF deficits, and a recent study found additional developmental abnormalities, namely increased GABAergic interneuron connectivity and non‐cell autonomous disruption of PC function. As SCA23 mice show a similar pathology to SCA1 mice in adulthood, we hypothesized that SCA23 may also follow SCA1 pathology during development. Examining PDYNR212W cerebella during development, we uncovered developmental deficits from 2 weeks of age, namely a reduced number of GABAergic synapses on PC soma, possibly leading to the observed delay in early phase CF elimination between 2 and 3 weeks of age. Furthermore, CFs did not reach terminal height, leaving proximal PC dendrites open to be occupied by parallel fibers (PFs). The observed increase in vGlut1 protein—a marker for PF‐PC synapses—indicates that PFs indeed take over CF territory and have increased connectivity with PCs. Additionally, we detected altered expression of several critical Ca2+ channel subunits, potentially contributing to altered Ca2+ transients in PDYNR212W cerebella. These findings indicate that developmental abnormalities contribute to the SCA23 pathology and uncover a developmental role for PDYN in the cerebellum.
Collapse
Affiliation(s)
- Cleo J L M Smeets
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Kai Yu Ma
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Simon E Fisher
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
68
|
Moustafa SR, Al-Rawi KF, Stoyanov D, Al-Dujaili AH, Supasitthumrong T, Al-Hakeim HK, Maes M. The Endogenous Opioid System in Schizophrenia and Treatment Resistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleukin-6. Diagnostics (Basel) 2020; 10:633. [PMID: 32858974 PMCID: PMC7554941 DOI: 10.3390/diagnostics10090633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS) plays a key role in schizophrenia (SCZ) and treatment resistant SCZ. There are only a few data on immune and endogenous opioid system (EOS) interactions in SCZ and treatment resistant SCZ. METHODS we examined serum β-endorphin, endomorphin-2 (EM2), mu-opioid (MOR) and kappa-opioid (KOR) receptors, and interleukin (IL)-6 and IL-10 in 60 non responders to treatment (NRTT), 55 partial RTT (PRTT) and 43 normal controls. RESULTS serum EM2, KOR, MOR, IL-6 and IL-10 were significantly increased in SCZ as compared with controls. β-endorphin, EM2, MOR and IL-6 were significantly higher in NRTT than in PRTT. There were significant correlations between IL-6, on the one hand, and β-endorphin, EM2, KOR, and MOR, on the other, while IL-10 was significantly correlated with MOR only. A large part of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation and formal thought disorders was explained by the combined effects of EM2 and MOR with or without IL-6 while increased KOR was significantly associated with all symptom dimensions. Increased MOR, KOR, EM2 and IL-6 were also associated with neurocognitive impairments including in episodic, semantic and working memory and executive functions. CONCLUSION the EOS contributes to SCZ symptomatology, neurocognitive impairments and a non-response to treatment. In SCZ, EOS peptides/receptors may exert CIRS functions, whereas increased KOR levels may contribute to the pathophysiology of SCZ and EM2 and KOR to a non-response to treatment.
Collapse
Affiliation(s)
- Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil 44001, Iraq;
| | | | - Drozdstoi Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
| | | | | | | | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10110, Thailand;
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
69
|
Şenormancı G, Turan Ç, Çelik SK, Çelik A, Edgünlü TG, Akbaş D, Akca ASD, Şenormancı Ö. Prodynorphin (PDYN) gene polymorphisms in Turkish patients with methamphetamine use disorder, changes in PDYN serum levels in withdrawal and the relationship between PDYN, temperament and depression. J Ethn Subst Abuse 2020; 21:522-537. [PMID: 32597371 DOI: 10.1080/15332640.2020.1785361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim of the study is to compare prodynorphin (PDYN) rs1997794, rs1022563, rs6045819, rs2235749 polymorphisms in individuals with methamphetamine use disorder (MD) to that of healthy controls (HC), and to investigate the differences in serum PDYN levels in methamphetamine withdrawal. It is also aimed to explore the temperament characteristics and depression and their relationship with PDYN polymorphisms and PDYN serum levels in MD group. PDYN gene and serum levels were studied in 134 patients with MD and 97 HC. Patients with MD were administered Beck Depression Inventory (BDI) and Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire (TEMPS-A). For rs1022563 polymorphism, TT and CT genotype frequency and T allele frequency were significantly higher in the MD group than the frequencies in HC. It was found that rs2235749 polymorphism AA genotype was associated with increased risk of MD. PDYN rs1997794 CT genotypes had significantly higher scores of TEMPS-A irritable than CC genotypes and PDYN rs1022563 CC genotypes had significantly higher scores of TEMPS-A irritable than TT genotypes. PDYN levels among persons with MD were significantly higher than among the HC group when the withdrawal level increased and withdrawal symptoms improved. During the period in which the withdrawal level increased, there was a negative correlation between PDYN level and BDI and a positive relationship between PDYN level and TEMPS-A hyperthymic. It may be beneficial to screen temperament characteristics associated with increased risk of addiction in patients with MD and develop interventions based on temperament characteristics and the effects of PDYN.
Collapse
Affiliation(s)
- Güliz Şenormancı
- University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Çetin Turan
- University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | | | - Aycan Çelik
- Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | | | - Dilek Akbaş
- Muğla Sıtkı Koçman University, Muğla, Turkey
| | | | - Ömer Şenormancı
- University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
70
|
Remnestål J, Öijerstedt L, Ullgren A, Olofsson J, Bergström S, Kultima K, Ingelsson M, Kilander L, Uhlén M, Månberg A, Graff C, Nilsson P. Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers. Transl Neurodegener 2020; 9:27. [PMID: 32576262 PMCID: PMC7310563 DOI: 10.1186/s40035-020-00198-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers. METHODS Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD, n = 16) and progressive primary aphasia (PPA, n = 13), as well as presymptomatic mutation carriers (PMC, n = 16) and non-carriers (NC, n = 8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer's disease and 18 healthy controls. RESULTS We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort. CONCLUSION In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.
Collapse
Affiliation(s)
- Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Linn Öijerstedt
- Swedish FTD Initiative, Stockholm, Sweden.,Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64, Solna, Sweden.,Unit for hereditary dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Abbe Ullgren
- Swedish FTD Initiative, Stockholm, Sweden.,Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64, Solna, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Caroline Graff
- Swedish FTD Initiative, Stockholm, Sweden. .,Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64, Solna, Sweden. .,Unit for hereditary dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden. .,Swedish FTD Initiative, Stockholm, Sweden.
| |
Collapse
|
71
|
van Steenoven I, Koel-Simmelink MJA, Vergouw LJM, Tijms BM, Piersma SR, Pham TV, Bridel C, Ferri GL, Cocco C, Noli B, Worley PF, Xiao MF, Xu D, Oeckl P, Otto M, van der Flier WM, de Jong FJ, Jimenez CR, Lemstra AW, Teunissen CE. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol Neurodegener 2020; 15:36. [PMID: 32552841 PMCID: PMC7301448 DOI: 10.1186/s13024-020-00388-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of dementia with Lewy bodies (DLB) is challenging, largely due to a lack of diagnostic tools. Cerebrospinal fluid (CSF) biomarkers have been proven useful in Alzheimer's disease (AD) diagnosis. Here, we aimed to identify novel CSF biomarkers for DLB using a high-throughput proteomic approach. METHODS We applied liquid chromatography/tandem mass spectrometry with label-free quantification to identify biomarker candidates to individual CSF samples from a well-characterized cohort comprising patients with DLB (n = 20) and controls (n = 20). Validation was performed using (1) the identical proteomic workflow in an independent cohort (n = 30), (2) proteomic data from patients with related neurodegenerative diseases (n = 149) and (3) orthogonal techniques in an extended cohort consisting of DLB patients and controls (n = 76). Additionally, we utilized random forest analysis to identify the subset of candidate markers that best distinguished DLB from all other groups. RESULTS In total, we identified 1995 proteins. In the discovery cohort, 69 proteins were differentially expressed in DLB compared to controls (p < 0.05). Independent cohort replication confirmed VGF, SCG2, NPTX2, NPTXR, PDYN and PCSK1N as candidate biomarkers for DLB. The downregulation of the candidate biomarkers was somewhat more pronounced in DLB in comparison with related neurodegenerative diseases. Using random forest analysis, we identified a panel of VGF, SCG2 and PDYN to best differentiate between DLB and other clinical groups (accuracy: 0.82 (95%CI: 0.75-0.89)). Moreover, we confirmed the decrease of VGF and NPTX2 in DLB by ELISA and SRM methods. Low CSF levels of all biomarker candidates, except PCSK1N, were associated with more pronounced cognitive decline (0.37 < r < 0.56, all p < 0.01). CONCLUSION We identified and validated six novel CSF biomarkers for DLB. These biomarkers, particularly when used as a panel, show promise to improve diagnostic accuracy and strengthen the importance of synaptic dysfunction in the pathophysiology of DLB.
Collapse
Affiliation(s)
- Inger van Steenoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Marleen J. A. Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonie J. M. Vergouw
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thang V. Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Claire Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gian-Luca Ferri
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Barbara Noli
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Hartman K, Mielczarek P, Smoluch M, Silberring J. Inhibitors of neuropeptide peptidases engaged in pain and drug dependence. Neuropharmacology 2020; 175:108137. [PMID: 32526240 DOI: 10.1016/j.neuropharm.2020.108137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022]
Abstract
Owing to a broad spectrum of functions performed by neuropeptides, this class of signaling molecules attracts an increasing interest. One of the key steps in the regulation of biological activity of neuropeptides is proteolytic conversion or degradation by proteinases that change or terminate biological activity of native peptides. These enzymes, in turn, are regulated by inhibitors, which play integral role in controlling many metabolic pathways. Thus, the search for selective inhibitors and detailed knowledge on the mechanisms of binding of these substances to enzymes, could be of importance for designing new pharmacological approaches. The aim of this review is to summarize the current knowledge on the inhibitors of enzymes that convert selected groups of neuropeptides, such as dynorphins, enkephalins, substance P and NPFF fragments. The importance of these substances in pathophysiological processes involved in pain and drug addiction, have been discussed. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Kinga Hartman
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Przemyslaw Mielczarek
- Polish Academy of Sciences, Maj Institute of Pharmacology, Laboratory of Proteomics and Mass Spectrometry, Smetna 12, 31-343, Krakow, Poland.
| | - Marek Smoluch
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jerzy Silberring
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
73
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
74
|
In major depression, increased kappa and mu opioid receptor levels are associated with immune activation. Acta Neuropsychiatr 2020; 32:99-108. [PMID: 31753054 DOI: 10.1017/neu.2019.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was carried out to delineate differences between major depressive disorder (MDD) and healthy controls in dynorphin and kappa opioid receptor (KOR) levels in association with changes in the β-endorphin - mu opioid receptor (MOR) and immune-inflammatory system. METHODS The present study examines dynorphin, KOR, β-endorphin, MOR, interleukin (IL)-6 and IL-10 in 60 drug-free male participants with MDD and 30 age-matched healthy males. RESULTS Serum dynorphin, KOR, β-endorphin and MOR are significantly higher in MDD as compared to controls. The increases in the dynorphin/KOR system and β-endorphin/MOR system are significantly intercorrelated and are both strongly associated with increased IL-6 and IL-10 levels. Dynorphin, β-endorphin, KOR and both cytokines showed a good diagnostic performance for MDD versus controls with a bootstrapped (n = 2000) area under the receiver operating curve of 0.972. The dynorphin/KOR system is significantly decreased in depression with comorbid nicotine dependence. CONCLUSION Our findings suggest that, in MDD, immune activation is associated with a simultaneous activation of dynorphin/KOR and β-endorphin/MOR signaling and that these opioid systems may participate in the pathophysiology of depression by (a) exerting immune-regulatory activities attenuating the primary immune response and (b) modulating reward responses and mood as well as emotional and behavioural responses to stress.
Collapse
|
75
|
Liu L, Xu Y, Dai H, Tan S, Mao X, Chen Z. Dynorphin activation of kappa opioid receptor promotes microglial polarization toward M2 phenotype via TLR4/NF-κB pathway. Cell Biosci 2020; 10:42. [PMID: 32206297 PMCID: PMC7079364 DOI: 10.1186/s13578-020-00387-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background Microglia-mediated neuroinflammation is associated with epilepsy. Switching microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype represents a novel therapeutic strategy for mitigating epileptogenesis. We previously found that dynorphins protected against epilepsy via activation of kappa opioid receptor (KOR). Here, this study aims to investigate the role and the mechanism of dynorphin in regulating microglial polarization. Methods A pilocarpine-induced rat model of epilepsy was established and lipopolysaccharide (LPS)-activated BV-2 microglial cells were used as an inflammatory model to explore the mechanism of dynorphin regulating microglial polarization. Results Overexpression of the dynorphin precursor protein prodynorphin (PDYN) alleviated the pilocarpine-induced neuronal apoptosis, promoted microglial polarization to the M2 phenotype, and inhibited pilocarpine-induced Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway in the hippocampi of epileptic rats. Dynorphin activation of KOR promoted microglial M2 polarization via inhibiting TLR4/NF-κB pathway in LPS-stimulated BV-2 microglial cells. Moreover, dynorphin/KOR regulated microglial M2 polarization inhibited apoptosis of the primary mouse hippocampal neurons. Conclusion In conclusion, dynorphin activation of KOR promotes microglia polarization toward M2 phenotype via inhibiting TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Lin Liu
- 1Department of Pediatrics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, ChangshaHunan, 410013 China
| | - Yingtong Xu
- 1Department of Pediatrics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, ChangshaHunan, 410013 China
| | - Hongmei Dai
- 1Department of Pediatrics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, ChangshaHunan, 410013 China
| | - Shan Tan
- 1Department of Pediatrics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, ChangshaHunan, 410013 China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, ChangshaHunan, 410008 China
| | - Zhiheng Chen
- 1Department of Pediatrics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, ChangshaHunan, 410013 China
| |
Collapse
|
76
|
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.
Collapse
|
77
|
Ghule A, Rácz I, Bilkei-Gorzo A, Leidmaa E, Sieburg M, Zimmer A. Modulation of feeding behavior and metabolism by dynorphin. Sci Rep 2020; 10:3821. [PMID: 32123224 PMCID: PMC7052232 DOI: 10.1038/s41598-020-60518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
The neuronal regulation of metabolic and behavioral responses to different diets and feeding regimens is an important research area. Herein, we investigated if the opioid peptide dynorphin modulates feeding behavior and metabolism. Mice lacking dynorphin peptides (KO) were exposed to either a normal diet (ND) or a high-fat diet (HFD) for a period of 12 weeks. Additionally, mice had either time-restricted (TR) or ad libitum (AL) access to food. Body weight, food intake and blood glucose levels were monitored throughout the 12-week feeding schedule. Brain samples were analyzed by immunohistochemistry to detect changes in the expression levels of hypothalamic peptides. As expected, animals on HFD or having AL access to food gained more weight than mice on ND or having TR access. Unexpectedly, KO females on TR HFD as well as KO males on AL ND or AL HFD demonstrated a significantly increased body weight gain compared to the respective WT groups. The calorie intake differed only marginally between the genotypes: a significant difference was present in the female ND AL group, where dynorphin KO mice ate more than WT mice. Although female KO mice on a TR feeding regimen consumed a similar amount of food as WT controls, they displayed significantly higher levels of blood glucose. We observed significantly reduced levels of hypothalamic orexigenic peptides neuropeptide Y (NPY) and orexin-A in KO mice. This decrease became particularly pronounced in the HFD groups and under AL condition. The kappa opiod receptor (KOR) levels were higher after HFD compared to ND feeding in the ventral pallidum of WT mice. We hypothesize that HFD enhances dynorphin signaling in this hedonic center to maintain energy homeostasis, therefore KO mice have a more pronounced phenotype in the HFD condition due to the lack of it. Our data suggest that dynorphin modulates metabolic changes associated with TR feeding regimen and HFD consumption. We conclude that the lack of dynorphin causes uncoupling between energy intake and body weight gain in mice; KO mice maintained on HFD become overweight despite their normal food intake. Thus, using kappa opioid receptor agonists against obesity could be considered as a potential treatment strategy.
Collapse
Affiliation(s)
- Aishwarya Ghule
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ildiko Rácz
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neurodegenerative Diseases & Geriatric Psychiatry University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Este Leidmaa
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Meike Sieburg
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany.,Aarhus University, Department of Biomedicine/DANDRITE Capogna group, Ole Worms Alé 6, 8000, Aarhus C, Denmark
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
78
|
Varlinskaya EI, Johnson JM, Przybysz KR, Deak T, Diaz MR. Adolescent forced swim stress increases social anxiety-like behaviors and alters kappa opioid receptor function in the basolateral amygdala of male rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109812. [PMID: 31707090 PMCID: PMC6920550 DOI: 10.1016/j.pnpbp.2019.109812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Adolescence is a developmental period marked by robust neural alterations and heightened vulnerability to stress, a factor that is highly associated with increased risk for emotional processing deficits, such as anxiety. Stress-induced upregulation of the dynorphin/kappa opioid receptor (DYN/KOP) system is thought to, in part, underlie the negative affect associated with stress. The basolateral amygdala (BLA) is a key structure involved in anxiety, and neuromodulatory systems, such as the DYN/KOP system, can 1) regulate BLA neural activity in an age-dependent manner in stress-naïve animals and 2) underlie stress-induced anxiety in adults. However, the role of the DYN/KOP system in modulating stress-induced anxiety in adolescents is unknown. To test this, we examined the impact of an acute, 2-day forced swim stress (FSS - 10 min each day) on adolescent (~postnatal day (P) 35) and adult Sprague-Dawley rats (~P70), followed by behavioral, molecular and electrophysiological assessment 24 h following FSS. Adolescent males, but not adult males or females of either age, demonstrated social anxiety-like behavioral alterations indexed via significantly reduced social investigation and preference when tested 24 h following FSS. Conversely, adult males exhibited increased social preference. While there were no FSS-induced changes in expression of genes related to the DYN/KOP system in the BLA, these behavioral alterations were associated with alterations in BLA KOP function. Specifically, while GABA transmission in BLA pyramidal neurons from non-stressed adolescent males responded variably (potentiated, suppressed, or was unchanged) to the KOP agonist, U69593, U69593 significantly inhibited BLA GABA transmission in the majority of neurons from stressed adolescent males, consistent with the observed anxiogenic phenotype in stressed adolescent males. This is the first study to demonstrate stress-induced alterations in BLA KOP function that may contribute to stress-induced social anxiety in adolescent males. Importantly, these findings provide evidence for potential KOP-dependent mechanisms that may contribute to pathophysiological interactions with subsequent stress challenges.
Collapse
Affiliation(s)
- E I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - J M Johnson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - K R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - T Deak
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - M R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States.
| |
Collapse
|
79
|
Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020; 1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Ream Al-Hasani
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, Department of Anesthesiology Washington University in St. Louis, Center for Clinical Pharmacology, Washington University School of Medicine & St. Louis College of Pharmacy 660 S.Euclid, Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
80
|
Shahkarami K, Vousooghi N, Golab F, Mohsenzadeh A, Baharvand P, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Zarrindast MR. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend 2019; 205:107638. [PMID: 31710992 DOI: 10.1016/j.drugalcdep.2019.107638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dynorphin (DYN)/kappa opioid receptor (KOR) system plays an important role in the development of addiction, and dysregulation of this system could lead to abnormal activity in the reward pathway. It has been reported that the expression state of the neurotransmitters and their receptors in the brain is reflected in peripheral blood lymphocytes (PBLs). METHODS We have evaluated the PBLs and plasma samples of four groups: 1) subjects with severe opioid use disorder (SOD), 2) methadone-maintenance treated (MMT) individuals, 3) long-term abstinent subjects having former SOD, and 4) healthy control subjects (n = 20 in each group). The mRNA expression level of preprodynorphin (pPDYN) and KOR in PBLs has been evaluated by real-time PCR. Peptide expression of PDYN in PBLs has been studied by western blot, and DYN concentration in plasma has been measured by ELISA. RESULTS The relative expression level of the pPDYN mRNA and PDYN peptide in PBLs were significantly up-regulated in SOD, MMT, and abstinent groups compared to control subjects. No significant difference was found in the plasma DYN concentration between study groups. The expression level of the KOR mRNA in PBLs was significantly decreased in all three study groups compared to the control subjects. CONCLUSION the expression changes in the DYN/KOR system after chronic exposure to opioids, including methadone, seems to be stable and does not return to normal levels even after 12 months abstinence. These long-time and permanent changes in PBLs may serve as a biomarker and footprint of SOD development in the periphery.
Collapse
Affiliation(s)
- Kourosh Shahkarami
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
81
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L, Verbeek DS, Mulder J, Rajkowska G, Sheedy D, Kril J, Sun X, Syvänen AC, Yakovleva T, Bakalkin G. Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain. Cereb Cortex 2019; 28:3129-3142. [PMID: 28968778 DOI: 10.1093/cercor/bhx181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mumtaz Malik Taqi
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Faculty of Medicine, NORMENT, University of Oslo, Oslo, Norway
| | - Lada Stålhandske
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna Sheedy
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Jillian Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Xueguang Sun
- Zymo Research Corporation, 17062 Murphy Avenue, Irvine, CA, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
82
|
Schattauer SS, Bedini A, Summers F, Reilly-Treat A, Andrews MM, Land BB, Chavkin C. Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation. J Biol Chem 2019; 294:16884-16896. [PMID: 31575661 PMCID: PMC6851317 DOI: 10.1074/jbc.ra119.009592] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Indexed: 01/14/2023] Open
Abstract
Activation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) by the Gi/o protein-coupled κ opioid receptor (KOR), μ opioid, and D2 dopamine receptors stimulates peroxiredoxin 6 (PRDX6)-mediated production of reactive oxygen species (ROS). ROS production by KOR-inactivating antagonists norbinaltorphimine (norBNI) and JDTic blocks Gαi protein activation, but the signaling mechanisms and consequences of JNK activation by KOR agonists remain uncharacterized. Binding of arrestins to KOR causes desensitization of G protein signaling and acts as a scaffold to initiate MAPK activation. Here, we found that the KOR agonists U50,488 and dynorphin B stimulated biphasic JNK activation with an early arrestin-independent phase, requiring the small G protein RAC family small GTPase 1 (RAC1) and protein kinase C (PKC), and a later arrestin-scaffolded phase, requiring RAC1 and Ras homolog family member (RHO) kinase. JNK activation by U50,488 and dynorphin B also stimulated PRDX6-dependent ROS production but with an inverted U-shaped dose-response relationship. KOR agonist-induced ROS generation resulted from the early arrestin-independent phase of JNK activation, and this ROS response was suppressed by arrestin-dependent activation of the MAPK p38. The apparent balance between p38 MAPK and JNK/ROS signaling has important physiological implications for understanding of dynorphin activities during the stress response. To visualize these activities, we monitored KOR agonist-mediated activation of ROS in transfected live cells by two fluorescent sensors, CellROX Green and HyPerRed. These findings establish an important aspect of opioid receptor signaling and suggest that ROS induction may be part of the physiological response to KOR activation.
Collapse
Affiliation(s)
- Selena S Schattauer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Irnerio, 48-40126 Bologna, Italy
| | - Floyd Summers
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Aiden Reilly-Treat
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Mackenzie M Andrews
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
- Department of Bioengineering, University of Washington College of Engineering, Seattle, Washington 98195
| | - Benjamin B Land
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Charles Chavkin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
83
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
84
|
Clark SD, Abi-Dargham A. The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence. Biol Psychiatry 2019; 86:502-511. [PMID: 31376930 DOI: 10.1016/j.biopsych.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 05/05/2019] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a debilitating mental illness that affects approximately 1% of the world's population. Despite much research in its neurobiology to aid in developing new treatments, little progress has been made. One system that has not received adequate attention is the kappa opioid system and its potential role in the emergence of symptoms, as well as its therapeutic potential. Here we present an overview of the kappa system and review various lines of evidence derived from clinical studies for dynorphin and kappa opioid receptor involvement in the pathology of both the positive and negative symptoms of schizophrenia. This overview includes evidence for the psychotomimetic effects of kappa opioid receptor agonists in healthy volunteers and their reversal by the pan-opioid antagonists naloxone and naltrexone and evidence for a therapeutic benefit in schizophrenia for 4 pan-opioid antagonists. We describe the interactions between kappa opioid receptors and the dopaminergic pathways that are disrupted in schizophrenia and the histologic evidence suggesting abnormal kappa opioid receptor signaling in schizophrenia. We conclude by discussing future directions.
Collapse
Affiliation(s)
- Samuel David Clark
- Columbia University Medical Center, New York; Terran Biosciences Inc., New York.
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
85
|
Agostinho AS, Mietzsch M, Zangrandi L, Kmiec I, Mutti A, Kraus L, Fidzinski P, Schneider UC, Holtkamp M, Heilbronn R, Schwarzer C. Dynorphin-based "release on demand" gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol Med 2019; 11:e9963. [PMID: 31486590 PMCID: PMC6783645 DOI: 10.15252/emmm.201809963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Focal epilepsy represents one of the most common chronic CNS diseases. The high incidence of drug resistance, devastating comorbidities, and insufficient responsiveness to surgery pose unmet medical challenges. In the quest of novel, disease-modifying treatment strategies of neuropeptides represent promising candidates. Here, we provide the "proof of concept" that gene therapy by adeno-associated virus (AAV) vector transduction of preprodynorphin into the epileptogenic focus of well-accepted mouse and rat models for temporal lobe epilepsy leads to suppression of seizures over months. The debilitating long-term decline of spatial learning and memory is prevented. In human hippocampal slices obtained from epilepsy surgery, dynorphins suppressed seizure-like activity, suggestive of a high potential for clinical translation. AAV-delivered preprodynorphin expression is focally and neuronally restricted and release is dependent on high-frequency stimulation, as it occurs at the onset of seizures. The novel format of "release on demand" dynorphin delivery is viewed as a key to prevent habituation and to minimize the risk of adverse effects, leading to long-term suppression of seizures and of their devastating sequel.
Collapse
Affiliation(s)
| | - Mario Mietzsch
- Institute of VirologyCampus Benjamin Franklin, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Luca Zangrandi
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Iwona Kmiec
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Anna Mutti
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Larissa Kraus
- Department of NeurologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Epilepsy‐Center Berlin‐BrandenburgBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Pawel Fidzinski
- Department of NeurologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Epilepsy‐Center Berlin‐BrandenburgBerlinGermany
| | - Ulf C Schneider
- Department of NeurosurgeryCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Martin Holtkamp
- Department of NeurologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Epilepsy‐Center Berlin‐BrandenburgBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Regine Heilbronn
- Institute of VirologyCampus Benjamin Franklin, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | | |
Collapse
|
86
|
Wang CW, Ma M, Lu WG, Luo RQ. Association between prodynorphin gene polymorphisms and opioid dependence susceptibility: a meta-analysis. BMC Psychiatry 2019; 19:281. [PMID: 31510971 PMCID: PMC6737717 DOI: 10.1186/s12888-019-2272-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prodynorphin (PDYN) gene polymorphisms have been linked with opioid dependence (OD) with conflicting outcomes, the aim of this study is to synthesize the existing evidence of the association between PDYN polymorphisms and OD susceptibility. METHODS Four databases including PubMed, EMBASE, Web of Science, and Wanfang were retrieved for relevant studies before August, 2018. All identified studies were evaluated using predetermined inclusion and exclusion criteria. Summary odds ratio (OR) and 95% confidence interval (95%CI) were calculated to appraise the association. Statistical analysis was performed using RevMan 5.3 software. RESULTS A total of seven case-control studies with 3129 cases and 3289 controls were recruited in the meta-analysis. For rs910080, rs1997794, rs1022563, and rs2235749 polymorphisms of PDYN gene, there were six, four, five, and four studies eventually included, respectively. The findings indicated that rs910080 polymorphism was significantly correlated with OD among Asian population under allelic model (A vs. G, OR = 1.30, 95% CI 1.04-1.62, P = 0.02, FDR = 0.05) and dominant model (AA+AG vs. GG, OR = 1.25, 95% CI 1.04-1.51, P = 0.02, FDR = 0.05). However, rs1022563, rs1997794 and rs2235749 polymorphisms did not appear to associate with OD susceptibility. CONCLUSIONS There existed a significant association between rs1022563 polymorphism and OD among Asian population. As the included studies were not adequate to guarantee a robust and convincing conclusion, future studies with larger sample size among more ethnicities are recommended.
Collapse
Affiliation(s)
- Chang-wang Wang
- Department of Psychiatry, Wuchang Hospital, South Luoshi Avenue 505#, Hongshan District, Wuhan, 430070 China
| | - Min Ma
- grid.413247.7Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Wei-guang Lu
- Department of Psychiatry, Wuchang Hospital, South Luoshi Avenue 505#, Hongshan District, Wuhan, 430070 China
| | - Ru-qin Luo
- Department of Psychiatry, Wuchang Hospital, South Luoshi Avenue 505#, Hongshan District, Wuhan, 430070 China
| |
Collapse
|
87
|
Molecular, Morphological, and Functional Characterization of Corticotropin-Releasing Factor Receptor 1-Expressing Neurons in the Central Nucleus of the Amygdala. eNeuro 2019; 6:ENEURO.0087-19.2019. [PMID: 31167849 PMCID: PMC6584068 DOI: 10.1523/eneuro.0087-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/12/2019] [Accepted: 05/25/2019] [Indexed: 01/28/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is a brain region implicated in anxiety, stress-related disorders and the reinforcing effects of drugs of abuse. Corticotropin-releasing factor (CRF, Crh) acting at cognate type 1 receptors (CRF1, Crhr1) modulates inhibitory and excitatory synaptic transmission in the CeA. Here, we used CRF1:GFP reporter mice to characterize the morphological, neurochemical and electrophysiological properties of CRF1-expressing (CRF1+) and CRF1-non-expressing (CRF1-) neurons in the CeA. We assessed these two neuronal populations for distinctions in the expression of GABAergic subpopulation markers and neuropeptides, dendritic spine density and morphology, and excitatory transmission. We observed that CeA CRF1+ neurons are GABAergic but do not segregate with calbindin (CB), calretinin (CR), parvalbumin (PV), or protein kinase C-δ (PKCδ). Among the neuropeptides analyzed, Penk and Sst had the highest percentage of co-expression with Crhr1 in both the medial and lateral CeA subdivisions. Additionally, CeA CRF1+ neurons had a lower density of dendritic spines, which was offset by a higher proportion of mature spines compared to neighboring CRF1- neurons. Accordingly, there was no difference in basal spontaneous glutamatergic transmission between the two populations. Application of CRF increased overall vesicular glutamate release onto both CRF1+ and CRF1- neurons and does not affect amplitude or kinetics of EPSCs in either population. These novel data highlight important differences in the neurochemical make-up and morphology of CRF1+ compared to CRF1- neurons, which may have important implications for the transduction of CRF signaling in the CeA.
Collapse
|
88
|
Borroto-Escuela DO, Fuxe K. On the G Protein-Coupled Receptor Neuromodulation of the Claustrum. Neurochem Res 2019; 45:5-15. [PMID: 31172348 PMCID: PMC6942600 DOI: 10.1007/s11064-019-02822-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors modulate the synaptic glutamate and GABA transmission of the claustrum. The work focused on the transmitter–receptor relationships in the claustral catecholamine system and receptor–receptor interactions between kappa opioid receptors (KOR) and SomatostatinR2 (SSTR2) in claustrum. Methods used involved immunohistochemistry and in situ proximity ligation assay (PLA) using confocal microscopy. Double immunolabeling studies on dopamine (DA) D1 receptor (D1R) and tyrosine hydroxylase (TH) immunoreactivities (IR) demonstrated that D1R IR existed in almost all claustral and dorsal endopiriform nucleus (DEn) nerve cell bodies, known as glutamate projection neurons, and D4R IR in large numbers of nerve cell bodies of the claustrum and DEn. However, only a low to moderate density of TH IR nerve terminals was observed in the DEn versus de few scattered TH IR terminals found in the claustrum. These results indicated that DA D1R and D4R transmission in the rat operated via long distance DA volume transmission in the rat claustrum and DEn to modulate claustral-sensory cortical glutamate transmission. Large numbers of these glutamate projection neurons also expressed KOR and SSTR2 which formed KOR-SSTR2 heteroreceptor complexes using PLA. Such receptor–receptor interactions can finetune the activity of the glutamate claustral-sensory cortex projections from inhibition to enhancement of their sensory cortex signaling. This can give the sensory cortical regions significant help in deciding on the salience to be given to various incoming sensory stimuli.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden. .,Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca' le Suore 2, 61029, Urbino, Italy. .,Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100, Yaguajay, Cuba. .,Biomedicum, Solnavagen 9, 17177, Stockholm, Sweden.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden.
| |
Collapse
|
89
|
Placzek MS, Schroeder FA, Che T, Wey HY, Neelamegam R, Wang C, Roth BL, Hooker JM. Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging. ACS Chem Neurosci 2019; 10:384-395. [PMID: 30212182 DOI: 10.1021/acschemneuro.8b00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kappa opioid receptor (KOR) modulation has been pursued in many conceptual frameworks for the treatment of human pain, depression, and anxiety. As such, several imaging tools have been developed to characterize the density of KORs in the human brain and its occupancy by exogenous drug-like compounds. While exploring the pharmacology of KOR tool compounds using positron emission tomography (PET), we observed discrepancies in the apparent competition binding as measured by changes in binding potential (BPND, binding potential with respect to non-displaceable uptake). This prompted us to systematically look at the relationships between baseline BPND maps for three common KOR PET radioligands, the antagonists [11C]LY2795050 and [11C]LY2459989, and the agonist [11C]GR103545. We then measured changes in BPND using kappa antagonists (naloxone, naltrexone, LY2795050, JDTic, nor-BNI), and found BPND was affected similarly between [11C]GR103545 and [11C]LY2459989. Longitudinal PET studies with nor-BNI and JDTic were also examined, and we observed a persistent decrease in [11C]GR103545 BPND up to 25 days after drug administration for both nor-BNI and JDTic. Kappa agonists were also administered, and butorphan and GR89696 (racemic GR103545) impacted binding to comparable levels between the two radiotracers. Of greatest significance, kappa agonists salvinorin A and U-50488 caused dramatic reductions in [11C]GR103545 BPND but did not change [11C]LY2459989 binding. This discrepancy was further examined in dose-response studies with each radiotracer as well as in vitro binding experiments.
Collapse
Affiliation(s)
- Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
90
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
91
|
Dai H, Wang P, Mao H, Mao X, Tan S, Chen Z. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway. Cell Cycle 2019; 18:226-237. [PMID: 30595095 PMCID: PMC6343729 DOI: 10.1080/15384101.2018.1562286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022] Open
Abstract
Dynorphins act as endogenous anticonvulsants via activation of kappa opioid receptor (KOR). However, the mechanism underlying the anticonvulsant role remains elusive. This study aims to investigate whether the potential protection of KOR activation by dynorphin against epilepsy was associated with the regulation of PI3K/Akt/Nrf2/HO-1 pathway. Here, a pilocarpine-induced rat model of epilepsy and Mg2+-free-induced epileptiform hippocampal neurons were established. Decreased prodynorphin (PDYN) expression, suppressed PI3K/Akt pathway, and activated Nrf2/HO-1 pathway were observed in rat epileptiform hippocampal tissues and in vitro neurons. Furthermore, dynorphin activation of KOR alleviated in vitro seizure-like neuron injury via activation of PI3K/Akt/Nrf2/HO-1 pathway. Further in vivo investigation revealed that PDYN overexpression by intra-hippocampus injection of PDYN-overexpressing lentiviruses decreased hippocampal neuronal apoptosis and serum levels of inflammatory cytokines and malondialdehyde (MDA) content, and increased serum superoxide dismutase (SOD) level, in pilocarpine-induced epileptic rats. The protection of PDYN in vivo was associated with the activation of PI3K/Akt/Nrf2/HO-1 pathway. In conclusion, dynorphin activation of KOR protects against epilepsy and seizure-induced brain injury, which is associated with activation of the PI3K/Akt/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hongmei Dai
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peipei Wang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huafang Mao
- Department of Child Hygiene, Maternal and Child Health Hospital of Longhua District of Shenzhen City, ShenZhen, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Shan Tan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
92
|
Coluzzi F, Billeci D, Maggi M, Corona G. Testosterone deficiency in non-cancer opioid-treated patients. J Endocrinol Invest 2018; 41:1377-1388. [PMID: 30343356 PMCID: PMC6244554 DOI: 10.1007/s40618-018-0964-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE The use of opioids in patients with chronic non-cancer pain is common and can be associated with opioid-induced androgen deficiency (OPIAD) in men. This review aims to evaluate the current literature regarding the prevalence, clinical consequence and management of OPIAD. METHODS A database search was performed in Medline, Embase and Cochrane using terms such as "analgesics", "opioids" and "testosterone". Relevant literature from January 1969 to March 2018 was evaluated. RESULTS The prevalence of patients with OPIAD ranges from 19 to 86%, depending on the criteria for diagnosis of hypogonadism. The opioid-induced suppression of gonadotropin-releasing and luteinizing hormones represents the main important pathogenetic mechanisms. OPIAD has significant negative clinical consequences on sexual function, mood, bone density and body composition. In addition, OPIAD can also impair pain control leading to hyperalgesia, which can contribute to sexual dysfunction and mood impairment. CONCLUSIONS OPIAD is a common adverse effect of opioid treatment and contributes to sexual dysfunction, impairs pain relief and reduces overall quality of life. The evaluation of serum testosterone levels should be considered in male chronic opioid users and the decision to initiate testosterone treatment should be based on the clinical profile of individuals, in consultation with the patient.
Collapse
Affiliation(s)
- F Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - D Billeci
- Neurosurgical Department, ULSS2 Treviso Hospital, University of Padua, Treviso, Italy
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences, Sexual Medicine and Andrology Unit, University of Florence, Florence, Italy
| | - G Corona
- Endocrinology Unit, Medical Department, Azienda Usl di Bologna, Maggiore-Bellaria Hospital, Largo Nigrisoli 2, 40133, Bologna, Italy.
| |
Collapse
|
93
|
Age as a factor in stress and alcohol interactions: A critical role for the kappa opioid system. Alcohol 2018; 72:9-18. [PMID: 30322483 DOI: 10.1016/j.alcohol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
The endogenous kappa opioid system has primarily been shown to be involved with a state of dysphoria and aversion. Stress and exposure to drugs of abuse, particularly alcohol, can produce similar states of unease and anxiety, implicating the kappa opioid system as a target of stress and alcohol. Numerous behavioral studies have demonstrated reduced sensitivity to manipulations of the kappa opioid system in early life relative to adulthood, and recent reports have shown that the kappa opioid system is functionally different across ontogeny. Given the global rise in early-life stress and alcohol consumption, understanding how the kappa opioid system responds and adapts to stress and/or alcohol exposure differently in early life and adulthood is imperative. Therefore, the objective of this review is to highlight and discuss studies examining the impact of early-life stress and/or alcohol on the kappa opioid system, with focus on the documented neuroadaptations that may contribute to future vulnerability to stress and/or increase the risk of relapse. We first provide a brief summary of the importance of studying the effects of stress and alcohol during early life (prenatal, neonatal/juvenile, and adolescence). We then discuss the literature on the effects of stress or alcohol during early life and adulthood on the kappa opioid system. Finally, we discuss the few studies that have shown interactions between stress and alcohol on the kappa opioid system and provide some discussion about the need for studies investigating the development of the kappa opioid system.
Collapse
|
94
|
Varlinskaya EI, Spear LP, Diaz MR. Stress alters social behavior and sensitivity to pharmacological activation of kappa opioid receptors in an age-specific manner in Sprague Dawley rats. Neurobiol Stress 2018; 9:124-132. [PMID: 30450378 PMCID: PMC6234253 DOI: 10.1016/j.ynstr.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/23/2022] Open
Abstract
The dynorphin/kappa opioid receptor (DYN/KOR) system has been identified as a primary target of stress due to behavioral effects, such as dysphoria, aversion, and anxiety-like alterations that result from activation of this system. Numerous adaptations in the DYN/KOR system have also been identified in response to stress. However, whereas most studies examining the function of the DYN/KOR system have been conducted in adult rodents, there is growing evidence suggesting that this system is ontogenetically regulated. Likewise, the outcome of exposure to stress also differs across ontogeny. Based on these developmental similarities, the objective of this study was to systematically test effects of a selective KOR agonist, U-62066, on various aspects of social behavior across ontogeny in non-stressed male and female rats as well as in males and females with a prior history of repeated exposure to restraint (90 min/day, 5 exposures). We found that the social consequences of repeated restraint differed as a function of age: juvenile stress produced substantial increases in play fighting, whereas adolescent and adult stress resulted in decreases in social investigation and social preference. The KOR agonist U-62066 dose-dependently reduced social behaviors in non-stressed adults, producing social avoidance at the highest dose tested, while younger animals displayed reduced sensitivity to this socially suppressing effect of U-62066. Interestingly, in stressed animals, the socially suppressing effects of the KOR agonist were blunted at all ages, with juveniles and adolescents exhibiting increased social preference in response to certain doses of U-62066. Taken together, these findings support the hypothesis that the DYN/KOR system changes with age and differentially responds and adapts to stress across development.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY13902, United States
| | - Linda Patia Spear
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY13902, United States
| |
Collapse
|
95
|
Choi MR, Chun JW, Kwak SM, Bang SH, Jin YB, Lee Y, Kim HN, Chang KT, Chai YG, Lee SR, Kim DJ. Effects of acute and chronic methamphetamine administration on cynomolgus monkey hippocampus structure and cellular transcriptome. Toxicol Appl Pharmacol 2018; 355:68-79. [DOI: 10.1016/j.taap.2018.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
|
96
|
Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018; 9:720. [PMID: 30210441 PMCID: PMC6121102 DOI: 10.3389/fneur.2018.00720] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023] Open
Abstract
The long-lasting vulnerability to relapse remains the main challenge for the successful treatment of drug addiction. Neural systems that are involved in processing natural rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug exposure may be responsible for maladaptive, compulsive, and addictive behavior. The orexin (Orx) system participates in regulating numerous physiological processes, including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse. The Orx system is differentially recruited by drugs and natural rewards. Specifically, we found that the Orx system is more engaged by drugs than by non-drugs, such as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine (COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic recruitment of Orx cells was greater in rats that were tested with the COC S+ vs. SCM S+, indicating of a preferential role for the Orx system in perseverative, compulsive-like COC seeking and not behavior that is motivated by palatable food. Accumulating evidence indicates that the paraventricular nucleus of the thalamus (PVT), which receives major Orx projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn), and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and motivation. To fully understand the physiological and behavioral roles of Orx transmission in the PVT, one important consideration is that Orx neurons that project to the PVT may co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the PVT, in addition to the VTA. The present review discusses recent findings that suggest the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a highly palatable food reward.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
97
|
Liu JJ, Sharma K, Zangrandi L, Chen C, Humphrey SJ, Chiu YT, Spetea M, Liu-Chen LY, Schwarzer C, Mann M. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science 2018; 360:360/6395/eaao4927. [PMID: 29930108 DOI: 10.1126/science.aao4927] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
A systems view of G protein-coupled receptor (GPCR) signaling in its native environment is central to the development of GPCR therapeutics with fewer side effects. Using the kappa opioid receptor (KOR) as a model, we employed high-throughput phosphoproteomics to investigate signaling induced by structurally diverse agonists in five mouse brain regions. Quantification of 50,000 different phosphosites provided a systems view of KOR in vivo signaling, revealing novel mechanisms of drug action. Thus, we discovered enrichment of the mechanistic target of rapamycin (mTOR) pathway by U-50,488H, an agonist causing aversion, which is a typical KOR-mediated side effect. Consequently, mTOR inhibition during KOR activation abolished aversion while preserving beneficial antinociceptive and anticonvulsant effects. Our results establish high-throughput phosphoproteomics as a general strategy to investigate GPCR in vivo signaling, enabling prediction and modulation of behavioral outcomes.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Kirti Sharma
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sean J Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
98
|
Trofimova I. Functionality versus dimensionality in psychological taxonomies, and a puzzle of emotional valence. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170167. [PMID: 29483351 PMCID: PMC5832691 DOI: 10.1098/rstb.2017.0167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
This paper applies evolutionary and functional constructivism approaches to the discussion of psychological taxonomies, as implemented in the neurochemical model Functional Ensemble of Temperament (FET). FET asserts that neurochemical systems developed in evolution to regulate functional-dynamical aspects of construction of actions: orientation, selection (integration), energetic maintenance, and management of automatic behavioural elements. As an example, the paper reviews the neurochemical mechanisms of interlocking between emotional dispositions and performance capacities. Research shows that there are no specific neurophysiological systems of positive or negative affect, and that emotional valence is rather an integrative product of many brain systems during estimations of needs and the capacities required to satisfy these needs. The interlocking between emotional valence and functional aspects of performance appears to be only partial since all monoamine and opioid receptor systems play important roles in non-emotional aspects of behaviour, in addition to emotionality. This suggests that the Positive/Negative Affect framework for DSM/ICD classifications of mental disorders oversimplifies the structure of non-emotionality symptoms of these disorders. Contingent dynamical relationships between neurochemical systems cannot be represented by linear statistical models searching for independent dimensions (such as factor analysis); nevertheless, these relationships should be reflected in psychological and psychiatric taxonomies.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Irina Trofimova
- CILab, Department of Psychiatry and Behavioral Neurosciences, McMaster University, 92 Bowman Street, Hamilton, Ontario, Canada L8S 2T6
- OISE, Department of Applied Psychology & Human Development, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
99
|
Dynorphin Counteracts Orexin in the Paraventricular Nucleus of the Thalamus: Cellular and Behavioral Evidence. Neuropsychopharmacology 2018; 43:1010-1020. [PMID: 29052613 PMCID: PMC5854806 DOI: 10.1038/npp.2017.250] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 11/08/2022]
Abstract
The orexin (Orx) system plays a critical role in drug addiction and reward-related behaviors. The dynorphin (Dyn) system promotes depressive-like behavior and plays a key role in the aversive effects of stress. Orx and Dyn are co-released and have opposing functions in reward and motivation in the ventral tegmental area (VTA). Previous studies suggested that OrxA transmission in the posterior paraventricular nucleus of the thalamus (pPVT) participates in cocaine-seeking behavior. This study determined whether Orx and Dyn interact in the pPVT. Using the brain slice preparation for cellular recordings, superfusion of DynA onto pPVT neurons decreased the frequency of spontaneous and miniature excitatory postsynaptic currents (s/mEPSCs). OrxA increased the frequency of sEPSCs but had no effect on mEPSCs, suggesting a network-driven effect of OrxA. The amplitudes of s/mEPSCs were unaffected by the peptides, indicating a presynaptic action on glutamate release. Augmentation of OrxA-induced glutamate release was reversed by DynA. Utilizing a behavioral approach, separate groups of male Wistar rats were trained to self-administer cocaine or sweetened condensed milk (SCM). After extinction, rats received intra-pPVT administration of OrxA±DynA±the κ-opioid receptor antagonist nor-binaltorphimine (NorBNI) under extinction conditions. OrxA reinstated cocaine- and SCM-seeking behavior, with a greater effect in cocaine animals. DynA blocked OrxA-induced cocaine seeking but not SCM seeking. NorBNI did not induce or potentiate cocaine-seeking behavior induced by OrxA but reversed DynA effect. This indicates that the κ-opioid system in the pPVT counteracts OrxA-induced cocaine seeking, suggesting a novel therapeutic target to prevent cocaine relapse.
Collapse
|
100
|
The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29541797 DOI: 10.1007/s00005-018-0510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.
Collapse
|