51
|
Varela-Guruceaga M, Belaidi E, Lebeau L, Aka E, Andriantsitohaina R, Giorgetti-Peraldi S, Arnaud C, Le Lay S. Intermittent Hypoxia Mediates Caveolae Disassembly That Parallels Insulin Resistance Development. Front Physiol 2020; 11:565486. [PMID: 33324235 PMCID: PMC7726350 DOI: 10.3389/fphys.2020.565486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/04/2020] [Indexed: 01/17/2023] Open
Abstract
Repetitive complete or incomplete pharyngeal collapses are leading to chronic intermittent hypoxia (CIH), a hallmark feature of obstructive sleep apnea (OSA) syndrome responsible for many metabolic disorders. In humans, an association between OSA and insulin resistance has been found independently of the degree of obesity. Based on our previous work showing that hypoxia applied to adipocytes led to cellular insulin resistance associated with caveolae flattening, we have investigated the effects of CIH on caveolae structuration in adipose tissue. Original exploratory experiences demonstrate that 6 weeks-exposure of lean mice to CIH is characterized by systemic insulin resistance and translates into adipocyte insulin signaling alterations. Chronic intermittent hypoxia also induces caveolae disassembly in white adipose tissue (WAT) illustrated by reduced plasma membrane caveolae density and enlarged caveolae width, concomitantly to WAT insulin resistance state. We show that CIH downregulates caveolar gene and protein expressions, including cavin-1, cavin-2, and EHD2, underlying molecular mechanisms responsible for such caveolae flattening. Altogether, we provide evidences for adipose tissue caveolae disassembly following CIH exposure, likely linked to cavin protein downregulation. This event may constitute the molecular basis of insulin resistance development in OSA patients.
Collapse
Affiliation(s)
- Maider Varela-Guruceaga
- INSERM UMR1063, Oxidative Stress and Metabolic Pathologies, University of Angers, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Lucie Lebeau
- INSERM UMR1063, Oxidative Stress and Metabolic Pathologies, University of Angers, SFR ICAT, Angers, France
| | - Ella Aka
- INSERM UMR1063, Oxidative Stress and Metabolic Pathologies, University of Angers, SFR ICAT, Angers, France
| | | | - Sophie Giorgetti-Peraldi
- Université Cote d'Azur, Inserm, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Claire Arnaud
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Soazig Le Lay
- INSERM UMR1063, Oxidative Stress and Metabolic Pathologies, University of Angers, SFR ICAT, Angers, France
| |
Collapse
|
52
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
53
|
Lin YS, Shen YJ, Ou PH, Lai CJ. HIF-1α-Mediated, NADPH Oxidase-Derived ROS Contributes to Laryngeal Airway Hyperreactivity Induced by Intermittent Hypoxia in Rats. Front Physiol 2020; 11:575260. [PMID: 33117193 PMCID: PMC7575773 DOI: 10.3389/fphys.2020.575260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/16/2020] [Indexed: 01/26/2023] Open
Abstract
Obstructive sleep apnea, similar to intermittent hypoxia (IH) during sleep, is associated with laryngeal airway hyperreactivity (LAH). IH-induced laryngeal oxidative stress may contribute to LAH, but the underlying mechanism remains unknown. Conscious rats were subjected to repetitive 75 s cycles of IH for 7 or 14 consecutive days. Reflex apneic responses to laryngeal provocations with chemical stimulants were measured to reflect laryngeal reflex reactivity. Compared with control rats, rats exposed to IH for 14 days, but not for 7 days, displayed enhanced apneic response to laryngeal chemical stimulants. The apneic response to chemical stimulants, but not to mechanical stimulation, was totally abolished by perineural capsaicin treatment of superior laryngeal nerves (SLNs) or by the sectioning of the SLNs, suggesting that the reflex was mediated through capsaicin-sensitive SLNs. Daily intraperitoneal administration of N-acetyl-L-cysteine [NAC, a reactive oxygen species (ROS) scavenger], apocynin (an inhibitor of NADPH oxidase) or YC-1 (an inhibitor of HIF-1α), but not their vehicles, largely attenuated this augmented apneic response in 14 days IH rats. Laryngeal lipid peroxidation (an index of oxidative stress) was elevated in 7 days IH rats and 14 days IH rats, and was abolished by any of these three pharmacologic interventions. The protein expression of HIF-1α (an index of HIF-1 activation) and p47phox subunit in the membrane fraction (an index of NADPH oxidase activation) in the laryngeal tissues increased in 14 days IH rats; the former was reduced by NAC, whereas the latter was inhibited by YC-1. These results suggest that 14 days of IH exposure may sensitize capsaicin-sensitive SLNs and result in exaggerated apneic reflex response to laryngeal chemical stimulants. This phenomenon depends on the action of HIF-1α-mediated, NADPH oxidase-derived ROS.
Collapse
Affiliation(s)
- You Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jhih Shen
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ping-Hsun Ou
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching Jung Lai
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
54
|
Guanxinshutong Alleviates Atherosclerosis by Suppressing Oxidative Stress and Proinflammation in ApoE -/- Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1219371. [PMID: 33014098 PMCID: PMC7519182 DOI: 10.1155/2020/1219371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Atherosclerosis (AS) is a chronic progressive disease related to dyslipidemia, inflammation, and oxidative stress. Guanxinshutong capsule (GXST), a traditional Chinese medicine, has been widely used in treating coronary atherosclerotic heart disease, while its mechanism actions on AS are still not to be well addressed. Our present study is aimed to examine the effect of GXST on AS and elucidate the multitarget mechanisms of GXST on AS. Network pharmacology analysis was employed to screen the multitarget mechanisms of GXST on AS. ApoE−/− mice were used to validate these effects. Circulating lipid profile and oxidative stress-related factors were measured by the Elisa kit. Furthermore, the aortic trunk and aortic root were excised for oil red O staining, histopathological and immunohistochemical analysis. We first discovered that GXST was clued to exert synergistically antiatherosclerosis properties including lipid-lowering, anti-inflammation, and antioxidation through the computational prediction based on a network pharmacology simulation. Next, the validation experiments in atherosclerosis mice provided evidence that GXST significantly reduced atherosclerotic lesions, increased collagen deposition, and attenuated LV remodeling to some extent. Mechanistically, GXST modulated lipid profile, downregulated the level of inflammatory cytokines and NF-κBp65. GXST also reduced the activity of oxidative parameter MDA and upregulated the activities of antioxidant enzymes (SOD and GSH) compared with the AS model group. In conclusion, GXST intervention might attenuate atherosclerosis by mechanisms involving reducing lipid deposition, modulating oxidative stress and inflammatory responses, but a larger controlled trial is necessary for confirmation.
Collapse
|
55
|
Bourdier G, Détrait M, Bouyon S, Lemarié E, Brasseur S, Doutreleau S, Pépin J, Godin‐Ribuot D, Belaidi E, Arnaud C. Intermittent Hypoxia Triggers Early Cardiac Remodeling and Contractile Dysfunction in the Time-Course of Ischemic Cardiomyopathy in Rats. J Am Heart Assoc 2020; 9:e016369. [PMID: 32805159 PMCID: PMC7660805 DOI: 10.1161/jaha.120.016369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sleep-disordered breathing is associated with a poor prognosis (mortality) in patients with ischemic cardiomyopathy. The understanding of mechanisms linking intermittent hypoxia (IH), the key feature of sleep-disordered breathing, to ischemic cardiomyopathy progression is crucial for identifying specific actionable therapeutic targets. The aims of the present study were (1) to evaluate the impact of IH on the time course evolution of cardiac remodeling and contractile dysfunction in a rat model of ischemic cardiomyopathy; and (2) to determine the impact of IH on sympathetic activity, hypoxia inducible factor-1 activation, and endoplasmic reticulum stress in the time course of ischemic cardiomyopathy progression. METHODS AND RESULTS Ischemic cardiomyopathy was induced by a permanent ligature of the left coronary artery in male Wistar rats (rats with myocardial infarction). Rats with myocardial infarction were then exposed to either IH or normoxia for up to 12 weeks. Cardiac remodeling and function were analyzed by Sirius red and wheat germ agglutinin staining, ultrasonography, and cardiac catheterization. Sympathetic activity was evaluated by spectral analysis of blood pressure variability. Hypoxia-inducible factor-1α activation and burden of endoplasmic reticulum stress were characterized by Western blots. Long-term IH exposure precipitated cardiac remodeling (hypertrophy and interstitial fibrosis) and contractile dysfunction during the time course evolution of ischemic cardiomyopathy in rodents. Among associated mechanisms, we identified the early occurrence and persistence of sympathetic activation, associated with sustained hypoxia-inducible factor-1α expression and a delayed pro-apoptotic endoplasmic reticulum stress. CONCLUSIONS Our data provide the demonstration of the deleterious impact of IH on post-myocardial infarction remodeling and contractile dysfunction. Further studies are needed to evaluate whether targeting sympathetic nervous system or HIF-1 overactivities could limit these effects and improve management of coexisting ischemic cardiomyopathy and sleep-disordered breathing.
Collapse
Affiliation(s)
| | - Maximin Détrait
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Sophie Bouyon
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Emeline Lemarié
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | | | | | | | | | - Elise Belaidi
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Claire Arnaud
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| |
Collapse
|
56
|
Dexmedetomidine Attenuates LPS-Induced Monocyte-Endothelial Adherence via Inhibiting Cx43/PKC- α/NOX2/ROS Signaling Pathway in Monocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2930463. [PMID: 32774667 PMCID: PMC7395996 DOI: 10.1155/2020/2930463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine is widely used for sedating patients in operation rooms or intensive care units. Its protective functions against oxidative stress, inflammation reaction, and apoptosis have been widely reported. In present study, we explored the effects of dexmedetomidine on monocyte-endothelial adherence. We built lipopolysaccharide- (LPS-) induced monocyte-endothelial adherence models with U937 monocytes and human umbilical vein endothelial cells (HUVECs) and observed the effects of dexmedetomidine on U937-HUVEC adhesion. Specific siRNA was designed to knock-down Connexin43 (Cx43) expression in U937 monocytes. Gö6976, GSK2795039, and NAC were used to inhibit PKC-α, NOX2, and ROS, respectively. Then, we detected whether dexmedetomidine could downregulate Cx43 expression and its downstream PKC-α/NOX2/ROS signaling pathway activation and ultimately result in the decrease of U937-HUVEC adhesion. The results showed that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), could inhibit adhesion of molecule expression (VLA-4 and LFA-1) and U937-HUVEC adhesion. Simultaneously, it also attenuated Cx43 expression in U937 monocytes. With the downregulation of Cx43 expression, the activity of PKC-α and its related NOX2/ROS signaling pathway were reduced. Inhibiting PKC-α/NOX2/ROS signaling pathway with Gö6976, GSK2795039, and NAC, respectively, VLA-4, LFA-1 expression, and U937-HUVEC adhesion were all decreased. In summary, we concluded that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), decreased Cx43 expression in U937 monocytes and PKC-α associated with carboxyl-terminal domain of Cx43 protein. With the downregulation of PKC-α, the NOX2/ROS signaling pathway was inhibited, resulting in the decrease of VLA-4 and LFA-1 expression. Ultimately, U937-HUVEC adhesion was reduced.
Collapse
|
57
|
Moulin S, Arnaud C, Bouyon S, Pépin JL, Godin-Ribuot D, Belaidi E. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury. Ther Adv Chronic Dis 2020; 11:2040622320922104. [PMID: 32637058 PMCID: PMC7315663 DOI: 10.1177/2040622320922104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Chronic intermittent hypoxia (IH), the hallmark feature of obstructive sleep apnoea syndrome, contributes to infarct size enhancement after myocardial ischemia–reperfusion (I/R). Curcumin (Curc), the natural pigment of Curcuma longa, has been demonstrated to be beneficial in the context of myocardial injury. In this study, we assessed the effects of Curc on the maladaptive cardiac response to IH, and particularly on IH-induced hypoxia inducible factor-1 (HIF-1) expression, oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis. Methods: Swiss/SV129 mice were exposed to normoxia or IH (21–5% FiO2, 60 s cycles, 8 h per day, for 21 days) and treated orally with Curc (100 mg kg−1
day−1, oral gavage) or its vehicle. Mice were then either euthanised for heart sampling in order to perform biochemical and histological analysis, or subjected to an in vivo ischemia-reperfusion protocol in order to measure infarct size. Results: IH increased nuclear HIF-1α expression and superoxide anion (O2.–) production as well as nuclear factor kappa B (NF-kB) p65, glucose-regulated protein (Grp78) and C/EBP homologous protein (CHOP) expression. IH also induced apoptosis and increased infarct size after I/R . The IH-induced HIF-1 activation, oxidative stress, inflammation, ER stress and apoptosis were abolished by chronic Curc treatment. Curc also significantly decreased infarct size only in mice exposed to IH. Conclusion: Curc prevents IH-induced myocardial cell death signalling. Curc might be used as a combined therapy with continuous positive airway pressure in sleep apnoea patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Sophie Moulin
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Claire Arnaud
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Sophie Bouyon
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France / Centre Hospitalier Universitaire des Alpes, Grenoble F38042, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Elise Belaidi
- University Grenoble Alpes, Grenoble, France INSERM, U1042, Grenoble, France
| |
Collapse
|
58
|
Recent advances in the management of secondary hypertension—obstructive sleep apnea. Hypertens Res 2020; 43:1338-1343. [DOI: 10.1038/s41440-020-0494-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
|
59
|
Wang M, Xie Z, Xu J, Feng Z. TWEAK/Fn14 axis in respiratory diseases. Clin Chim Acta 2020; 509:139-148. [PMID: 32526219 DOI: 10.1016/j.cca.2020.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a well known multifunctional cytokine extensively distributed in cell types and tissues. Accumulating evidence has shown that TWEAK binding to the receptor factor-inducible 14 (Fn14) participates in diverse pathologic processes including cell proliferation and death, angiogenesis, carcinogenesis and inflammation. Interestingly, alterations of intracellular signaling cascades are correlated to the development of respiratory disease. Recently, a several lines of evidence suggests that TWEAK in lung tissues are closely associated with these signaling pathways. In this review, we explore if TWEAK could provide a novel therapeutic strategy for managing respiratory disease in general and pulmonary arterial hypertension (PAH), obstructive sleep apnea syndrome (OSAS), asthma, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC), specifically.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jin Xu
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha 410219, Hunan, China.
| | - Zhuyu Feng
- Department of Critical Care Medicine, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China.
| |
Collapse
|
60
|
Sun X, Lu Q, Yegambaram M, Kumar S, Qu N, Srivastava A, Wang T, Fineman JR, Black SM. TGF-β1 attenuates mitochondrial bioenergetics in pulmonary arterial endothelial cells via the disruption of carnitine homeostasis. Redox Biol 2020; 36:101593. [PMID: 32554303 PMCID: PMC7303661 DOI: 10.1016/j.redox.2020.101593] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta-1 (TGF-β1) signaling is increased and mitochondrial function is decreased in multiple models of pulmonary hypertension (PH) including lambs with increased pulmonary blood flow (PBF) and pressure (Shunt). However, the potential link between TGF-β1 and the loss of mitochondrial function has not been investigated and was the focus of our investigations. Our data indicate that exposure of pulmonary arterial endothelial cells (PAEC) to TGF-β1 disrupted mitochondrial function as determined by enhanced mitochondrial ROS generation, decreased mitochondrial membrane potential, and disrupted mitochondrial bioenergetics. These events resulted in a decrease in cellular ATP levels, decreased hsp90/eNOS interactions and attenuated shear-mediated NO release. TGF-β1 induced mitochondrial dysfunction was linked to a nitration-mediated activation of Akt1 and the subsequent mitochondrial translocation of endothelial NO synthase (eNOS) resulting in the nitration of carnitine acetyl transferase (CrAT) and the disruption of carnitine homeostasis. The increase in Akt1 nitration correlated with increased NADPH oxidase activity associated with increased levels of p47phox, p67phox, and Rac1. The increase in NADPH oxidase was associated with a decrease in peroxisome proliferator-activated receptor type gamma (PPARγ) and the PPARγ antagonist, GW9662, was able to mimic the disruptive effect of TGF-β1 on mitochondrial bioenergetics. Together, our studies reveal for the first time, that TGF-β1 can disrupt mitochondrial function through the disruption of cellular carnitine homeostasis and suggest that stimulating carinitine homeostasis may be an avenue to treat pulmonary vascular disease.
Collapse
Affiliation(s)
- Xutong Sun
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Qing Lu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Manivannan Yegambaram
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Sanjiv Kumar
- Center for Blood Disorders, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ning Qu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Anup Srivastava
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Ting Wang
- Department of Internal Medicine University of Arizona, Phoenix, AZ, 85004, The Department of Pediatrics and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey R Fineman
- Department of Internal Medicine University of Arizona, Phoenix, AZ, 85004, The Department of Pediatrics and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
61
|
Revealing the Common Mechanisms of Scutellarin in Angina Pectoris and Ischemic Stroke Treatment via a Network Pharmacology Approach. Chin J Integr Med 2020; 27:62-69. [PMID: 32447519 DOI: 10.1007/s11655-020-2716-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the shared mechanisms of scutellarin in angina pectoris (AP) and ischemic stroke (IS) treatment. METHODS A network pharmacology approach was used to detect the potential mechanisms of scutellarin in AP and IS treatment by target prediction, protein-protein interaction (PPI) data collection, network construction, network analysis, and enrichment analysis. Furthermore, molecular docking simulation was employed to analyze the interaction between scutellarin and core targets. RESULTS Two networks were established, including a disease-target network and a PPI network of scutellarin targets against AP and IS. Network analysis showed that 14 targets, namely, AKT1, VEGFA, JUN, ALB, MTOR, ESR1, MAPK8, HSP90AA1, NOS3, SERPINE1, FGA, F2, FOXO3, and STAT1, might be the therapeutic targets of scutellarin in AP and IS. Among them, NOS3 and F2 were recognized as the core targets. Additionally, molecular docking simulation confifirmed that scutellarin exhibited a relatively high potential for binding to the active sites of NOS3 and F2. Furthermore, enrichment analysis indicated that scutellarin might exert a therapeutic role in both AP and IS by regulating several important pathways, such as coagulation cascades, mitogen-activated protein kinase (MAPK) signaling pathway, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, Toll-like receptor signaling pathway, hypoxia inducible factor-1 (HIF-1) signaling pathway, forkhead box O (FoxO) signaling pathway, tumor necrosis factor (TNF) signaling pathway, adipocytokine signaling pathway, insulin signaling pathway, insulin resistance, and estrogen signaling pathway. CONCLUSIONS The shared underlying mechanisms of scutellarin on AP and IS treatment might be strongly associated with its vasorelaxant, anticoagulant, anti-inflammatory, and antioxidative effects as well as its effect on improving lipid metabolism.
Collapse
|
62
|
Zhu T, Chiacchia S, Kameny RJ, Garcia De Herreros A, Gong W, Raff GW, Boehme JB, Maltepe E, Lasheras JC, Black SM, Datar SA, Fineman JR. Mechanical forces alter endothelin-1 signaling: comparative ovine models of congenital heart disease. Pulm Circ 2020; 10:2045894020922118. [PMID: 32489641 PMCID: PMC7238833 DOI: 10.1177/2045894020922118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022] Open
Abstract
The risk and progression of pulmonary vascular disease in patients with congenital heart disease is dependent on the hemodynamics associated with different lesions. However, the underlying mechanisms are not understood. Endothelin-1 is a potent vasoconstrictor that plays a key role in the pathology of pulmonary vascular disease. We utilized two ovine models of congenital heart disease: (1) fetal aortopulmonary graft placement (shunt), resulting in increased flow and pressure; and (2) fetal ligation of the left pulmonary artery resulting in increased flow and normal pressure to the right lung, to investigate the hypothesis that high pressure and flow, but not flow alone, upregulates endothelin-1 signaling. Lung tissue and pulmonary arterial endothelial cells were harvested from control, shunt, and the right lung of left pulmonary artery lambs at 3–7 weeks of age. We found that lung preproendothelin-1 mRNA and protein expression were increased in shunt lambs compared to controls. Preproendothelin-1 mRNA expression was modestly increased, and protein was unchanged in left pulmonary artery lambs. These changes resulted in increased lung endothelin-1 levels in shunt lambs, while left pulmonary artery levels were similar to controls. Pulmonary arterial endothelial cells exposed to increased shear stress decreased endothelin-1 levels by five-fold, while cyclic stretch increased levels by 1.5-fold. These data suggest that pressure or an additive effect of pressure and flow, rather than increased flow alone, is the principal driver of increased endothelin signaling in congenital heart disease. Defining the molecular drivers of the pathobiology of pulmonary vascular disease due to differing mechanical forces will allow for a more targeted therapeutic approach.
Collapse
Affiliation(s)
- Terry Zhu
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Samuel Chiacchia
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rebecca J Kameny
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Wenhui Gong
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Gary W Raff
- Department of Surgery, University of California, Davis, CA, USA
| | - Jason B Boehme
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Juan C Lasheras
- Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA These authors contributed equally
| |
Collapse
|
63
|
Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis 2020; 113:350-358. [DOI: 10.1016/j.acvd.2020.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
|
64
|
Moulin S, Thomas A, Arnaud C, Arzt M, Wagner S, Maier LS, Pépin JL, Godin-Ribuot D, Gaucher J, Belaidi E. Cooperation Between Hypoxia-Inducible Factor 1α and Activating Transcription Factor 4 in Sleep Apnea-Mediated Myocardial Injury. Can J Cardiol 2020; 36:936-940. [PMID: 32387037 DOI: 10.1016/j.cjca.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) occurring during sleep apnea amplifies infarct size owing to ischemia-reperfusion. CIH activates hypoxia-inducible factor 1 (HIF-1) and activating transcription factor 4 (ATF4). However, whether HIF-1 and ATF4 interact to promote cardiomyocyte death remains unexplored. For the first time, we observed that in myocardium from apneic patients, CCAAT enhancer-binding protein homologous protein (CHOP) expression is increased and HIF-1α expression is correlated with sleep apnea severity. In mice, single-allele deletion of HIF-1α prevents CIH increase in CHOP expression and infarct size. We uncovered a physical interaction between HIF-1α and ATF4 in CIH that may represent a novel cardiomyocyte death complex.
Collapse
Affiliation(s)
- Sophie Moulin
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Amandine Thomas
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Claire Arnaud
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Jean-Louis Pépin
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France; Centre Hospitalier Universitaire des Alpes, Grenoble, France
| | - Diane Godin-Ribuot
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Jonathan Gaucher
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Elise Belaidi
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France.
| |
Collapse
|
65
|
Hypoxia-Induced ROS Contribute to Myoblast Pyroptosis during Obstructive Sleep Apnea via the NF- κB/HIF-1 α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4596368. [PMID: 31885794 PMCID: PMC6927050 DOI: 10.1155/2019/4596368] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia caused by upper airway collapse is a main cause of excessive oxidative stress and systemic inflammation in obstructive sleep apnea (OSA) patients. Increased reactive oxygen species (ROS) and inflammatory responses affect cell survival and ultimately contribute to tissue injury. In the present study, we proposed that the induction of ROS by hypoxia, as an intrinsic stress, activates myoblast pyroptosis in OSA. We found increased cell death and abnormal expression of pyroptosis markers in the skeletal muscle of OSA mice. In vitro studies showed hypoxia-induced pyroptotic death of C2C12 myoblasts, as evidenced by the activation of caspase-1 and gasdermin D (GSDMD). Hypoxia induced ROS overproduction and accumulation in myoblasts. More importantly, applying N-acetylcysteine (NAC), an ROS scavenger, rescued cell swelling, downregulated the inflammatory response, and prevented pyroptotic death in hypoxia-cultured myoblasts. Hypoxia stimulation promoted NF-κB P65 phosphorylation and HIF-1α nuclear translocation. Moreover, hypoxia increased the nuclear level of cleaved caspase-1 and GSDMD. NAC inhibited hypoxia-induced variations in the HIF-1α and NF-κB signaling pathway. Taken together, our results determined that hypoxia-induced ROS contribute to myoblast pyroptosis. Therefore, our findings suggest that ROS may be a potential therapeutic target for ameliorating hypoxia-induced cell death and tissue injury, especially in OSA and hypoxia-related diseases.
Collapse
|
66
|
Explorating the Involvement of Plasma Sestrin2 in Obstructive Sleep Apnea. Can Respir J 2019; 2019:2047674. [PMID: 31781313 PMCID: PMC6874949 DOI: 10.1155/2019/2047674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
Obstructive sleep apnea (OSA) can lead to serious complications such as coronary heart disease and hypertension due to oxidative stress. Sestrin2 expression is upregulated under conditions of oxidative stress. This study aimed to explore whether Sestrin2 was involved in OSA. OSA and healthy control subjects were recruited and matched with age, gender, and body mass index (BMI). Plasma Sestrin2 levels were measured and compared. A multivariate stepwise regression model was used to detect the relationship between Sestrin2 and other variable factors. The Sestrin2 levels were compared between before and after four weeks treatment by nasal continuous positive airway pressure (nCPAP) in severe OSA patients. Fifty-seven subjects were divided into two groups: control group (39.33 ± 9.40 years, n = 21) and OSA group (38.81 ± 7.84 years, n = 36). Plasma Sestrin2 levels increased in the OSA group (control group 2.06 ± 1.76 ng/mL, OSA group 4.16 ± 2.37 ng/mL; P = 0.001). Sestrin2 levels decreased after four-week nCPAP treatment (pre-nCPAP 5.21 ± 2.32 ng/mL, post-nCPAP 4.01 ± 1.54 ng/mL; P = 0.004). Sestrin2 was positively correlated with apnea/hypopnea index (AHI) oxygen desaturation index, while negatively correlated with mean oxygen saturation. Moreover, these correlations remained unchanged after adjusting for gender, age, waist-to-hip ratio, and body mass index. Multiple regression analysis showed that there was an association between Sestrin2 and AHI. Our findings suggest that Sestrin2 is involved in OSA. The increase of plasma Sestrin2 is directly related to the severity of OSA. To some extent, Sestrin2 may be useful for determining the severity of OSA and monitoring the effect of CPAP. In addition, since some complications of OSA such as coronary heart disease and diabetes are usually related with oxidative stress, the role of Sestrin2 in those OSA complications needs further study.
Collapse
|
67
|
Luo CM, Feng J, Zhang J, Gao C, Cao JY, Zhou GL, Jiang YJ, Jin XQ, Yang MS, Pan JY, Wang AL. 1,25-Vitamin D3 protects against cooking oil fumes-derived PM2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:249-256. [PMID: 31054378 DOI: 10.1016/j.ecoenv.2019.04.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The functional role of 1,25-vitamin D3 in cooking oil fumes (COFs)-derived PM2.5-induced cell damage is largely unexplored. The present study investigated the protective role of 1,25-vitamin D3 against cell injury by possible involvement of JAK/STAT and NF-κB signaling pathways in cardiomyocytes. Cell viability was measured using CCK-8 assay, and cell apoptosis was analyzed by flow cytometry, qRT-PCR and Western blot in cultured rat neonatal cardiomyocytes treated with 1,25-vitamin D3 and COFs-derived PM2.5. Expressions of JAK/STAT and NF-κB signaling pathway were measured by Western blot. The results suggested that treatment with COFs-derived PM2.5 significantly decreased cell viability and increased apoptosis and oxidative stress in cultured rat neonatal cardiomyocytes. 1,25-vitamin D3 pretreatment alleviated the cell injury by increasing cell viability and decreasing apoptosis in the cardiomyocytes. 1,25-vitamin D3 pretreatment also decreased the ROS level and inflammation in the cardiomyocytes. Furthermore, 1,25-vitamin D3 pretreatment alleviated COFs-derived PM2.5-evoked elevation of JAK/STAT and NF-κB signaling pathways. Our study showed that 1,25-vitamin D3 pretreatment protected cardiomyocytes from COFs-derived PM2.5-induced injury by decreasing ROS, apoptosis and inflammation level via activations of the JAK/STAT and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Chun-Miao Luo
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, HeFei, Anhui, China; Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Jun Feng
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Jing Zhang
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Chao Gao
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Ji-Yu Cao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, HeFei, Anhui, China; The Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, HeFei, Anhui, China
| | - Gao-Liang Zhou
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Yong-Jing Jiang
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Xiao-Qing Jin
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Meng-Si Yang
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Jian-Yuan Pan
- Department of Cardiology, The Second People Hospital of Hefei, HeFei, Anhui, China
| | - Ai-Ling Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, HeFei, Anhui, China.
| |
Collapse
|
68
|
Song Z, Ma J, Lu Y, Zhou C, Zhao T, Ai X, Wei X, Lin J, Wang W, Yan W, Jiao P. The protective role of the MKP-5-JNK/P38 pathway in glucolipotoxicity-induced islet β-cell dysfunction and apoptosis. Exp Cell Res 2019; 382:111467. [DOI: 10.1016/j.yexcr.2019.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
69
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)-induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1-dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
70
|
Epigenetics: A Potential Mechanism Involved in the Pathogenesis of Various Adverse Consequences of Obstructive Sleep Apnea. Int J Mol Sci 2019; 20:ijms20122937. [PMID: 31208080 PMCID: PMC6627863 DOI: 10.3390/ijms20122937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable phenotypic changes which do not involve alterations in the DNA sequence, including histone modifications, non-coding RNAs, and DNA methylation. Recently, much attention has been paid to the role of hypoxia-mediated epigenetic regulation in cancer, pulmonary hypertension, adaptation to high altitude, and cardiorenal disease. In contrast to sustained hypoxia, chronic intermittent hypoxia with re-oxygenation (IHR) plays a major role in the pathogenesis of various adverse consequences of obstructive sleep apnea (OSA), resembling ischemia re-perfusion injury. Nevertheless, the role of epigenetics in the pathogenesis of OSA is currently underexplored. This review proposes that epigenetic processes are involved in the development of various adverse consequences of OSA by influencing adaptive potential and phenotypic variability under conditions of chronic IHR. Improved understanding of the interaction between genetic and environmental factors through epigenetic regulations holds great value to give deeper insight into the mechanisms underlying IHR-related low-grade inflammation, oxidative stress, and sympathetic hyperactivity, and clarify their implications for biomedical research.
Collapse
|
71
|
Morand J, Briançon-Marjollet A, Lemarie E, Gonthier B, Arnaud J, Korichneva I, Godin-Ribuot D. Zinc deficiency promotes endothelin secretion and endothelial cell migration through nuclear hypoxia-inducible factor-1 translocation. Am J Physiol Cell Physiol 2019; 317:C270-C276. [PMID: 31116583 DOI: 10.1152/ajpcell.00460.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zinc is involved in the expression and function of various transcription factors, including the hypoxia-inducible factor-1 (HIF-1). HIF-1 and its target gene endothelin-1 (ET-1) are activated by intermittent hypoxia (IH), one of the main consequences of obstructive sleep apnea (OSA), and both play a key role in the cardiovascular consequences of IH. Because OSA and IH are associated with zinc deficiency, we investigated the effect of zinc deficiency caused by chelation on the HIF-1/ET-1 pathway and its functional consequences in endothelial cells. Primary human microvascular endothelial cells (HMVEC) were incubated with submicromolar doses of the zinc-specific membrane-permeable chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylene diamine (TPEN, 0.5 µM) or ET-1 (0.01 µM) with or without bosentan, a dual ET-1-receptor antagonist. HIF-1α expression was silenced by transfection with specific siRNA. Nuclear HIF-1 content was assessed by immunofluorescence microscopy and Western blot. Migratory capacity of HMVEC was evaluated with a wound-healing scratch assay. Zinc chelation by TPEN exposure induced the translocation of the cytosolic HIF-1α subunit of HIF-1 to the nucleus as well as an HIF-1-mediated ET-1 secretion by HMVEC. Incubation with either TPEN or ET-1 increased endothelial wound-healing capacity. Both HIF-1α silencing or bosentan abolished this effect. Altogether, these results suggest that zinc deficiency upregulates ET-1 signaling through HIF-1 activation and stimulates endothelial cell migration, suggesting an important role of zinc in the vascular consequences of IH and OSA mediated by HIF-1-ET- signaling.
Collapse
Affiliation(s)
- Jessica Morand
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | | | - Emeline Lemarie
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Brigitte Gonthier
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| | - Josiane Arnaud
- CHUGA, Biochimie Hormonale et nutritionnelle, Grenoble, France.,Université Grenoble Alpes, INSERM, Grenoble, France
| | - Irina Korichneva
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France.,Faculty of Pharmacology and Medicine, University of Picardie Jules Verne, Amiens, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, INSERM, CHU Grenoble Alpes, Laboratoire HP2, Grenoble, France
| |
Collapse
|
72
|
Minovès M, Pépin JL, Godin-Ribuot D. Targeting intermittent hypoxia downstream pathways for biomarker discovery and new treatment perspectives in cutaneous melanoma. Eur Respir J 2019; 53:53/2/1802444. [PMID: 30769330 DOI: 10.1183/13993003.02444-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Mélanie Minovès
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| |
Collapse
|
73
|
Liu W, Zhang W, Wang T, Wu J, Zhong X, Gao K, Liu Y, He X, Zhou Y, Wang H, Zeng H. Obstructive sleep apnea syndrome promotes the progression of aortic dissection via a ROS- HIF-1α-MMPs associated pathway. Int J Biol Sci 2019; 15:2774-2782. [PMID: 31853217 PMCID: PMC6909961 DOI: 10.7150/ijbs.34888] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/20/2019] [Indexed: 01/25/2023] Open
Abstract
Aims: Obstructive sleep apnea syndrome (OSAS) has been increasingly recognized as an independent risk factor for aortic dissection (AD) and it is strongly associated with the extent of intermittent hypoxia and re-oxygenation (IH). This study aimed to clarify role of ROS- HIF-1α-MMPs pathway in the pathogenesis of AD and whether the HIF-1α inhibitor attenuates AD formation. Methods and results: 8-week-old male ApoE-/- mice were given β-aminopropionitrile at a concentration of 0.1 % for 3 weeks and infused via osmotic mini pumps with either saline or 2,500 ng/min/kg angiotensin II (Ang II) for 2 weeks. To mimic the OSAS, one group was exposed to IH, which consisted of alternating cycles of 20.9% O2/8% O2 FiO2 (30 episodes per hour) with 20 s at the nadir FiO2 during the 12-h light phase, 2 weeks before Ang II infusion. After Ang II infusion, we assessed remodeling in the aorta by echocardiography, histological and immunohistochemical analysis. IH treatment resulted in significant enlargement of the luminal area, destruction of the media, marked thickening of the adventitia, higher incidence of AD formation and lower survival rate in compared with the Ang II only group. Moreover, IH exposure markedly increased the aortic ROS production and subsequent HIF-1α expression, which in turn promoted the expressions of VEGF, MMP2 and MMP9 and finally leading to the progression of AD. Besides, in vitro study confirmed that IH induced HIF-1α expression plays an important role in the induction of MMPs and that is regulated by the PI3K/AKT/FRAP pathway. Intriguingly, a selective HIF-1α inhibitor KC7F2 could significantly ameliorate IH exposure induced aforementioned deleterious effects in vitro and in vivo.Conclusion: OSAS induced IH can promote the occurrence and progression of AD via a ROS- HIF-1α-MMPs associated pathway. The selective HIF-1α inhibitor KC7F2 could be a novel therapeutic agent for AD patient with OSAS.
Collapse
Affiliation(s)
- Wanjun Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Jinhua Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Kun Gao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Yujian Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Xingwei He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
- ✉ Corresponding author: Hongjie Wang, , Tel. +86-27-8369-3794, Fax: +86-27-8366-3186; Hesong Zeng, , Tel. +86-27-8369-2850, Fax: +86-27-8366-3186
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
- ✉ Corresponding author: Hongjie Wang, , Tel. +86-27-8369-3794, Fax: +86-27-8366-3186; Hesong Zeng, , Tel. +86-27-8369-2850, Fax: +86-27-8366-3186
| |
Collapse
|
74
|
Gan W, Zhang MX, Wang JX, Fu YP, Huang JL, Yi Y, Jing CY, Fan J, Zhou J, Qiu SJ. Prognostic impact of lactic dehydrogenase to albumin ratio in hepatocellular carcinoma patients with Child-Pugh I who underwent curative resection: a prognostic nomogram study. Cancer Manag Res 2018; 10:5383-5394. [PMID: 30464634 PMCID: PMC6225921 DOI: 10.2147/cmar.s176317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Radical resection is the treatment of choice for hepatocellular carcinoma (HCC). However, even with this treatment, HCC prognosis and the efficacy of current predictive models for such patients remain unsatisfactory. Here, we describe an accurate and easy-to-use prognostic index for patients with HCC who have undergone curative resection. Methods The study population comprised of 1,041 patients with HCC who underwent curative resection at Zhongshan Hospital. This population was reduced to 768 patients who were treated in 2012 analyzed as the training cohort and 273 patients treated in 2007 who were used as a validation cohort. Results The lactic dehydrogenase to albumin ratio (LAR) was identified as a significant prognostic index for both overall survival and recurrence-free survival in two independent cohorts. The optimal cutoff value for LAR was determined to be 5.5. The C-index of LAR was superior to other inflammatory scores and serum parameters. This biomarker was also shown to be a stable predictive index in the validation cohort. The new nomogram combining LAR with the Barcelona Clinic Liver Cancer staging system had an improved ability to discriminate overall survival and recurrence-free survival. Nomogram predictions were consistent with observations based on calibration and decisive curve analysis in both independent cohorts. Conclusion LAR is a novel, convenient, reliable, and accurate prognostic predictor in patients with HCC undergoing curative resection. Our results suggest the recommendation of LAR to be used in routine clinical practice.
Collapse
Affiliation(s)
- Wei Gan
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Mei-Xia Zhang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China, .,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Jia-Xing Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi-Peng Fu
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Jin-Long Huang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Yong Yi
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Chu-Yu Jing
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Jia Fan
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Jian Zhou
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China,
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People's Republic of China, .,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China,
| |
Collapse
|
75
|
Hunyor I, Cook KM. Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol Regul Integr Comp Physiol 2018; 315:R669-R687. [PMID: 29995459 DOI: 10.1152/ajpregu.00036.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is common and linked to a variety of poor health outcomes. A key modulator of this disease is nocturnal intermittent hypoxia. There is striking epidemiological evidence that patients with OSA have higher rates of cancer and cancer mortality. Small-animal models demonstrate an important role for systemic intermittent hypoxia in tumor growth and metastasis, yet the underlying mechanisms are poorly understood. Emerging data indicate that intermittent hypoxia activates the hypoxic response and inflammatory pathways in a manner distinct from chronic hypoxia. However, there is significant heterogeneity in published methods for modeling hypoxic conditions, which are often lacking in physiological relevance. This is particularly important for studying key transcriptional mediators of the hypoxic and inflammatory responses such as hypoxia-inducible factor (HIF) and NF-κB. The relationship between HIF, the molecular clock, and circadian rhythm may also contribute to cancer risk in OSA. Building accurate in vitro models of intermittent hypoxia reflective of OSA is challenging but necessary to better elucidate underlying molecular pathways.
Collapse
Affiliation(s)
- Imre Hunyor
- Department of Cardiology, Royal Prince Alfred Hospital , Sydney, New South Wales , Australia.,Faculty of Medicine and Health, University of Sydney School of Medicine , Sydney, New South Wales , Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, University of Sydney School of Medicine , Sydney, New South Wales , Australia.,Charles Perkins Centre, University of Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
76
|
Almendros I, Martínez-García MÁ, Campos-Rodríguez F, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Nagore E, Martorell-Calatayud A, Hernández Blasco L, Bañuls Roca J, Chiner Vives E, Sánchez-de-la-Torre A, Abad-Capa J, Montserrat JM, Pérez-Gil A, Cabriada-Nuño V, Cano-Pumarega I, Corral-Peñafiel J, Diaz-Cambriles T, Mediano O, Dalmau-Arias J, Farré R, Gozal D. Intermittent Hypoxia Is Associated With High Hypoxia Inducible Factor-1α but Not High Vascular Endothelial Growth Factor Cell Expression in Tumors of Cutaneous Melanoma Patients. Front Neurol 2018; 9:272. [PMID: 29755400 PMCID: PMC5932170 DOI: 10.3389/fneur.2018.00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
Epidemiological associations linking between obstructive sleep apnea and poorer solid malignant tumor outcomes have recently emerged. Putative pathways proposed to explain that these associations have included enhanced hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) cell expression in the tumor and altered immune functions via intermittent hypoxia (IH). Here, we examined relationships between HIF-1α and VEGF expression and nocturnal IH in cutaneous melanoma (CM) tumor samples. Prospectively recruited patients with CM tumor samples were included and underwent overnight polygraphy. General clinical features, apnea–hypopnea index (AHI), desaturation index (DI4%), and CM characteristics were recorded. Histochemical assessments of VEGF and HIF-1α were performed, and the percentage of positive cells (0, <25, 25–50, 51–75, >75%) was blindly tabulated for VEGF expression, and as 0, 0–5.9, 6.0–10.0, >10.0% for HIF-1α expression, respectively. Cases with HIF-1α expression >6% (high expression) were compared with those <6%, and VEGF expression >75% of cells was compared with those with <75%. 376 patients were included. High expression of VEGF and HIF-1α were seen in 88.8 and 4.2% of samples, respectively. High expression of VEGF was only associated with increasing age. However, high expression of HIF-1α was significantly associated with age, Breslow index, AHI, and DI4%. Logistic regression showed that DI4% [OR 1.03 (95% CI: 1.01–1.06)] and Breslow index [OR 1.28 (95% CI: 1.18–1.46)], but not AHI, remained independently associated with the presence of high HIF-1α expression. Thus, IH emerges as an independent risk factor for higher HIF-1α expression in CM tumors and is inferentially linked to worse clinical CM prognostic indicators.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Erica Riveiro-Falkenbach
- Pathology Department, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, CIBERONC, Madrid, Spain
| | - José L Rodríguez-Peralto
- Pathology Department, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, CIBERONC, Madrid, Spain
| | - Eduardo Nagore
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Luis Hernández Blasco
- Respiratory Department, ISABIAL, Hospital Gral, Univ. Alicante, Alicante, Spain.,Departamento Medicina Clinica, Univ. Miguel Hernandez, Elche, Spain
| | - Jose Bañuls Roca
- Respiratory Department, ISABIAL, Hospital Gral, Univ. Alicante, Alicante, Spain.,Departamento Medicina Clinica, Univ. Miguel Hernandez, Elche, Spain
| | | | - Alicia Sánchez-de-la-Torre
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Jorge Abad-Capa
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Germans Trias i Pujol, Centro de investigacion Biomedica, Madrid, Spain
| | - Josep Maria Montserrat
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | | | | | | | - Jaime Corral-Peñafiel
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Universitario S. Pedro Alcántara, Cáceres, Spain
| | | | - Olga Mediano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Universitario de Guadalajara, CIBER de enfermedades respiratorias, Madrid, Spain
| | - Joan Dalmau-Arias
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
77
|
Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio). BIOMED RESEARCH INTERNATIONAL 2018; 2017:2352594. [PMID: 28691017 PMCID: PMC5485310 DOI: 10.1155/2017/2352594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio. The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.
Collapse
|
78
|
Morand J, Arnaud C, Pepin JL, Godin-Ribuot D. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep 2018; 8:2997. [PMID: 29445096 PMCID: PMC5813022 DOI: 10.1038/s41598-018-21064-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
We investigated the effects of intermittent hypoxia (IH), such as that encountered in severe obstructive sleep apnea (OSA) patients, on the development and severity of myocardial ischemia-related ventricular arrhythmias. Rats were exposed to 14 days of IH (30 s at 5%O2 and 30 s at 21%O2, 8 h·day−1) or normoxia (N, similar air-air cycles) and submitted to a 30-min coronary ligature. Arterial blood pressure (BP) and ECG were recorded for power spectral analysis, ECG interval measurement and arrhythmia quantification. Left ventricular monophasic action potential duration (APD) and expression of L-type calcium (LTCC) and transient receptor potential (TRPC) channels were assessed in adjacent epicardial and endocardial sites. Chronic IH enhanced the incidence of ischemic arrhythmias, in particular ventricular fibrillation (66.7% vs. 33.3% in N rats, p < 0.05). IH also increased BP and plasma norepinephine levels along with increased low-frequency (LF), decreased high-frequency (HF) and increased LF/HF ratio of heart rate and BP variability. IH prolonged QTc and Tpeak-to-Tend intervals, increased the ventricular APD gradient and upregulated endocardial but not epicardial LTCC, TRPC1 and TRPC6 (p < 0.05). Chronic IH, is a major risk factor for sudden cardiac death upon myocardial ischemia through sympathoactivation and alterations in ventricular repolarization, transmural APD gradient and endocardial calcium channel expression.
Collapse
Affiliation(s)
- Jessica Morand
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000, Grenoble, France
| | - Claire Arnaud
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000, Grenoble, France
| | - Jean-Louis Pepin
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000, Grenoble, France
| | - Diane Godin-Ribuot
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000, Grenoble, France.
| |
Collapse
|
79
|
Gautier-Veyret E, Pépin JL, Stanke-Labesque F. Which place of pharmacological approaches beyond continuous positive airway pressure to treat vascular disease related to obstructive sleep apnea? Pharmacol Ther 2017; 186:45-59. [PMID: 29277633 DOI: 10.1016/j.pharmthera.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent episodes of partial or complete upper airway obstruction, occurring during sleep, leading to chronic intermittent hypoxia (IH), which harms the cardiovascular system. OSA is associated with both functional and structural vascular alterations that contribute to an increased prevalence of fatal and non-fatal cardiovascular events. OSA is a heterogeneous disease with respect to the severity of hypoxia, the presence of daytime symptoms, obesity, and cardiovascular comorbidities. Various clusters of OSA phenotypes have been described leading to more highly personalized treatment. The aim of this review is to describe the various therapeutic strategies including continuous positive airway pressure (CPAP), oral appliances, surgery, weight loss, and especially pharmacological interventions that have been evaluated to reduce vascular alterations in both OSA patients and preclinical animal models. Conventional therapies, predominantly CPAP, have a limited impact on vascular alterations in the presence of co-morbidities. A better knowledge of pharmacological therapies targeting IH-induced vascular alterations will facilitate the use of combined therapies and is crucial for designing clinical trials in well-defined OSA phenotypes.
Collapse
Affiliation(s)
- Elodie Gautier-Veyret
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France.
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
| | - Françoise Stanke-Labesque
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
| |
Collapse
|
80
|
Physiopathologie du syndrome d’apnées-hypopnées obstructives du sommeil et de ses conséquences cardio-métaboliques. Presse Med 2017; 46:395-403. [DOI: 10.1016/j.lpm.2016.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
|
81
|
Hurst JH. William Kaelin, Peter Ratcliffe, and Gregg Semenza receive the 2016 Albert Lasker Basic Medical Research Award. J Clin Invest 2016; 126:3628-3638. [PMID: 27620538 DOI: 10.1172/jci90055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|