51
|
Souto C, Göethel G, Peruzzi CP, Cestonaro LV, Garcia I, Ávila DS, Eifler‐Lima V, Carmo H, Bastos MDL, Garcia SC, Arbo MD. Piperazine designer drugs elicit toxicity in the alternative in vivo model
Caenorhabditis elegans. J Appl Toxicol 2019; 40:363-372. [DOI: 10.1002/jat.3909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Caroline Souto
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Caroline Portela Peruzzi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Ingrid Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Daiana Silva Ávila
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE)Universidade Federal do Pampa (UNIPAMPA) Uruguaiana RS Brazil
| | - Vera Eifler‐Lima
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Departamento de Produção de Matéria Prima, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do Porto Porto Portugal
| | - Maria de Lurdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do Porto Porto Portugal
| | - Solange C. Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
52
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
53
|
Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. J Mol Cell Cardiol 2019; 136:102-112. [PMID: 31526813 DOI: 10.1016/j.yjmcc.2019.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
The use of recreational drugs, including new psychoactive substances (NPS), is paralleled by emergency department visits of drug users with severe cardiotoxicity. Drug-induced cardiotoxicity can be the (secondary) result of increased norepinephrine blood concentrations, but data on potential drug-induced direct effects on cardiomyocyte function are scarce. The presence of hundreds of NPS therefore calls for efficient screening models to assess direct cardiotoxicity. We investigated effects of four reference compounds (3-30 nM dofetilide, nifedipine and isoproterenol, and 1-10 μM mexiletine) and six recreational drugs (0.01-100 μM cocaine, 0.01-1000 μM amphetamine, MDMA, 4-fluoroamphetamine, α-PVP and MDPV) on cardiomyocyte function (beat rate, spike amplitude and field potential duration (FPD ≈ QT interval in ECGs)), using Pluricyte® human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes cultured on ready-to-use CardioPlate™ multi-well microelectrode arrays (mwMEAs). Moreover, the effects of exposure to recreational drugs on cell viability were assessed. Effects of reference compounds were in accordance with the literature, indicating the presence of hERG potassium (dofetilide), sodium (mexiletine) and calcium (nifedipine) channels and α-adrenergic receptors (isoproterenol). All recreational drugs decreased the spike amplitude at 10-100 μM. All amphetamine-type stimulants and α-PVP decreased the beat rate at 300 μM, while cocaine and MDPV did so at 10 μM and 30 μM, respectively. All drugs increased the FPD, however at varying concentrations. MDMA, MDPV and amphetamine affected cardiomyocyte function at concentrations relevant for human exposure, while other drugs affected cardiomyocyte function only at higher concentrations (≥ 10 μM). Cell viability was only mildly affected at concentrations well above the lowest concentrations affecting cardiomyocyte function. We demonstrate that MEA recordings of hiPSC-derived cardiomyocytes enable screening for acute, direct effects on cardiomyocyte function. Our data further indicate that tachycardia in patients exposed to recreational drugs is likely due to indirect drug effects, while prolonged repolarization periods (prolonged QTc interval) could (partly) result from direct drug effects on cardiomyocyte function.
Collapse
|
54
|
Simmler LD, Blakely RD. The SERT Met172 Mouse: An Engineered Model To Elucidate the Contributions of Serotonin Signaling to Cocaine Action. ACS Chem Neurosci 2019; 10:3053-3060. [PMID: 30817127 DOI: 10.1021/acschemneuro.9b00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cocaine abuse and addiction remain highly prevalent and, unfortunately, poorly treated. It is well-known that essential aspects of cocaine's addictive actions involve the drug's ability to block the presynaptic dopamine (DA) transporter (DAT), thereby elevating extracellular levels of DA in brain circuits that subserve reward, reinforcement, and habit. Less well appreciated are the multiple DA-independent actions of cocaine, activities that we and others believe contribute key pieces to the puzzle of cocaine addiction, treatment, and relapse. In particular, a significant body of work points to altered serotonin (5-HT) signaling as one such component, not surprising given that, relative to DAT, cocaine acts as potently to block the 5-HT transporter (SERT) as to block DAT, and thereby elevates extracellular 5-HT levels throughout the brain when reward-eliciting DA elevations occur. To elucidate the contribution of SERT antagonism to the actions of cocaine, we engineered a mouse model that significantly reduces cocaine potency at SERT without disrupting the expression or function of SERT in vivo. In this short Perspective, we review the rationale for development of the SERT Met172 model, the studies that document the pharmacological impact of the Ile172Met substitution in vitro and in vivo, and our findings with the model that demonstrate serotonergic contributions to the genetic, physiological, and behavioral actions of cocaine.
Collapse
Affiliation(s)
- Linda D. Simmler
- Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
55
|
De-Giorgio F, Bilel S, Ossato A, Tirri M, Arfè R, Foti F, Serpelloni G, Frisoni P, Neri M, Marti M. Acute and repeated administration of MDPV increases aggressive behavior in mice: forensic implications. Int J Legal Med 2019; 133:1797-1808. [PMID: 31154497 DOI: 10.1007/s00414-019-02092-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023]
Abstract
MDPV is a synthetic cathinone illegally marketed and consumed for its psychostimulant effects, which are similar to those produced by cocaine, amphetamines, and MDMA. Clinical reports indicate that MDPV produces euphoria, increases alertness, and at high doses causes agitation, psychosis, tachycardia and hypertension, hallucinations, delirium, hyperthermia, rhabdomyolysis, and even death. In rodents, MDPV reproduces the typical physiological effects of psychostimulant drugs, demonstrating greater potency than cocaine. Nevertheless, its role in aggressive behavior has been reported but not yet experimentally confirmed. Therefore, the aim of this study was to evaluate the effects of acute and repeated MDPV (0.01-10 mg/kg i.p.) administration on aggressive behavior in mice and to compare them with those of cocaine (0.01-10 mg/kg i.p.) administration. To this purpose, the resident-intruder test in isolated mice and the spontaneous and stimulated aggressiveness tests for group-housed mice were employed. The present study shows for the first time that MDPV enhances aggressive behavior and locomotion in mice with greater potency and efficacy than cocaine treatment. Moreover, the aggressive and locomotor responses are enhanced after repeated administration, indicating that a sensitization mechanism comes into play. These results, although from preclinical investigation, are suggestive that human MDPV intake could be a problem for public health and the criminal justice system. Thus, investigation by police officers and medical staff is needed to prevent interpersonal violence induced by the consumption of synthetic cathinones.
Collapse
Affiliation(s)
- Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Andrea Ossato
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Micaela Tirri
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Ferrara, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Federica Foti
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, USA
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Matteo Marti
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Ferrara, Italy. .,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
| |
Collapse
|
56
|
Zwartsen A, Hondebrink L, Westerink RH. Changes in neuronal activity in rat primary cortical cultures induced by illicit drugs and new psychoactive substances (NPS) following prolonged exposure and washout to mimic human exposure scenarios. Neurotoxicology 2019; 74:28-39. [PMID: 31078573 DOI: 10.1016/j.neuro.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
The use of new psychoactive substances (NPS) is increasing despite associated health risks and limited pharmacological and toxicological knowledge. Information is available mainly for acute effects on specific targets like monoamine transporters and receptors. Recently, we have shown the ability of several NPS and illicit drugs to modulate neuronal activity during acute exposure. While these acute measurements provide valuable information regarding the potency and possible structure-activity relationships, an exposure scenario more representative of human exposure would increase insight and aid translation to the human situation. Therefore, we investigated the effects on neuronal activity after acute (30 min) and prolonged (5 h) exposure to amphetamine-type stimulants, cathinones, hallucinogens, piperazines and cocaine using rat primary cortical cultures grown on multi-well microelectrode arrays. To investigate the reversibility of effects, activity was also measured after a washout period of 19 h. During acute exposure, all compounds concentration-dependently decreased neuronal activity. Compared to acute exposure, prolonged exposure did not further decrease neuronal activity. Following washout, effects of 3 out of 11 drugs (methamphetamine, cocaine, and benzylpiperazine) were fully reversible, whereas effects induced by MDMA, PMMA and α-PVP were partially reversible. Neuronal activity did not recover after 19 h washout following exposure to the highest concentration of MDPV, 2C-B, 25B-NBOMe, and TFMPP. On the contrary, exposure to low concentrations of methylone, and to some extent of 2C-B, increased neuronal activity after the washout period. Hazard characterization of emerging NPS should include at least an acute exposure to determine a potency rank order. Supplementing the (acute and prolonged) exposure scenario with a washout period allows investigation of the reversibility of effects. The possibility of a neuronal network to regain activity after drug exposure appears independent of drug class or IC50 values for acute and prolonged exposure. Even though neuronal activity (partly) recovers after washout following exposure to most drugs, it is perturbing that complete recovery of neuronal activity is observed only for a minority of the tested drugs.
Collapse
Affiliation(s)
- Anne Zwartsen
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Remco Hs Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
57
|
Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT). Toxicology 2019; 422:69-75. [PMID: 31009648 DOI: 10.1016/j.tox.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 01/04/2023]
Abstract
Many psychoactive substances affect the human dopamine (DA) reuptake transporter (hDAT). Polymorphisms in the encoding gene could affect the functionality of the transporter and consequently alter effects of psychotropic and recreational drugs. Recently, a T356 M single nucleotide polymorphism in the human SLC6A3 gene was described, which resulted in functional impairments of DA uptake. Therefore, we investigated the effects of 10 psychoactive substances (0.01-1000 μM)) on DA uptake in human embryonic kidney (HEK) 293 cells transiently overexpressing wildtype (WT) or T356 M hDAT. Our data shows that T356 M hDAT has a 3 times lower Vmax and a 3 times higher Km compared to WT hDAT. Additionally, all psychoactive substances inhibited DA uptake by T356 M and WT hDAT. The DA reuptake inhibitors (methylphenidate, cocaine, and bupropion) inhibited DA uptake by WT hDAT most potently, followed by amphetamine-type stimulants [4-fluoroamphetamine (4-FA), amphetamine and MDMA], selective serotonin reuptake inhibitors (SSRI; fluoxetine and citalopram) and arylcyclohexylamines [methoxetamine (MXE) and ketamine]. Compared to DA uptake by WT hDAT, bupropion, methylphenidate, cocaine, and MXE less potently inhibited DA uptake by T356 M hDAT, while citalopram more potently inhibited uptake. The differences in IC50 values between T356 M and WT hDAT were considerable (3-45 fold). As such, the presence of this polymorphism could affect treatment efficiency with these substances as well as susceptibly for toxicity and addiction for individuals carrying this polymorphism.
Collapse
|
58
|
Steele TWE, Eltit JM. Using Ca 2+-channel biosensors to profile amphetamines and cathinones at monoamine transporters: electro-engineering cells to detect potential new psychoactive substances. Psychopharmacology (Berl) 2019; 236:973-988. [PMID: 30448989 PMCID: PMC6525079 DOI: 10.1007/s00213-018-5103-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND The appearance of stimulant-class new psychoactive substances (NPS) is a frequent and significant problem in our society. Cathinone variants are often sold illegally as 3,4-methylenedioxy methamphetamine ("ecstasy") or disguised for legal sale using misleading names such as "bath salts" and carry the risk of promoting disruptive mental states, addiction, and fatal overdose. The principal targets of these recreational drugs are monoamine transporters expressed in catecholaminergic and serotonergic neurons. Some transporter ligands can be transported into cells, where they can promote a massive release of neurotransmitters through reverse transport, and others can block uptake. A ligand's dopamine vs. serotonin transporter selectivity, potency, and activity as a substrate or blocker can help elucidate the abuse liability and subjective effects of a drug. OBJECTIVES Here, we describe the discovery, development, and validation of an emerging methodology for compound activity assessment at monoamine transporters. KEY FINDINGS Substrates generate inward electrical currents through transporters and can depolarize the plasma membrane, whereas blockers work as a "cork in a bottle" and function as antagonists. Voltage-gated Ca2+ channels were co-expressed with monoamine transporters in cultured cells and used to measure fluctuations of the membrane electrical potential. In this system, substrates of monoamine transporters produce reliable dose-dependent Ca2+ signals, while blockers hinder them. DISCUSSION This system constitutes a novel use of voltage-gated Ca2+ channels as biosensors for the purpose of characterizing ligand activity at monoamine transporters using fluorimetry. This approach in combination with in vivo evaluations of drugs' abuse-related effects is a powerful strategy for anticipating potential stimulant-class NPS.
Collapse
Affiliation(s)
- Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, 1101 E Marshall St. Rm# 3-038H, Richmond, VA, 23298, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, 1101 E Marshall St. Rm# 3-038H, Richmond, VA, 23298, USA.
| |
Collapse
|
59
|
Kuypers KPC, De Sousa Fernandes Perna EB, Theunissen EL, Toennes SW, Mason NL, Hutten NRPW, Ramaekers JG. A First-in-Man Study with 4-Fluoroamphetamine Demonstrates it Produces a Mild Psychedelic State. J Psychoactive Drugs 2019; 51:225-235. [DOI: 10.1080/02791072.2019.1569286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K. P. C. Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - E. B. De Sousa Fernandes Perna
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - E. L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - S. W. Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - N. L. Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - N. R. P. W. Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - J. G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
60
|
Vizeli P, Liechti ME. No Influence of Dopamine System Gene Variations on Acute Effects of MDMA. Front Psychiatry 2019; 10:755. [PMID: 31708815 PMCID: PMC6821788 DOI: 10.3389/fpsyt.2019.00755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a recreational substance also investigated as medication for posttraumatic stress disorder. Dopamine (DA) system stimulation likely contributes to the acute mood effects of amphetamines, including MDMA. Genetic variants, such as single-nucleotide polymorphisms (SNPs), and polymorphic regions of the DA system genes may in part explain interindividual differences in the acute responses to MDMA in humans. We characterized the effects of common genetic variants within genes coding for key players in the DA system including the dopamine D2 receptor (DRD2/ANKK1 rs1800497, DRD2 rs6277, and rs107959), the dopamine transporter (DAT1 rs28363170, rs3836790, rs6347, rs11133767, rs11564774, rs460000, and rs463379), and dopamine D4 receptor [DRD4, variable-number tandem repeat (VNTR)] on the subjective and autonomic response to MDMA (125 mg) in pooled data from randomized, placebo-controlled, crossover studies in a total of 149 healthy subjects. Plasma concentrations of MDMA were used as covariate in the analysis to control for individual pharmacokinetic (metabolic and weight) differences. None of the tested genetic polymorphisms within the DA system altered effects of MDMA when adjusting for multiple comparisons. Genetic variations in genes coding for players of the DA system are unlikely to explain interindividual variations in the acute effects of MDMA in humans.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
61
|
Dolder PC, de Sousa Fernandes Perna EB, Mason NL, Hutten NRPW, Toennes SW, Theunissen EL, Ramaekers JG, Kuypers KPC. Independent elevation of peripheral oxytocin concentrations and reduction in cognitive empathy during 4-fluoroamphetamine intoxication. Hum Psychopharmacol 2018; 33:e2680. [PMID: 30357914 DOI: 10.1002/hup.2680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES 4-Fluoroamphetamine (4-FA) is a novel psychoactive substance with a pharmacological profile and reported subjective effects (e.g., empathy) intermediate between 3,4-methylenedioxymethamphetamine (MDMA) and amphetamine. Studies have shown that MDMA and amphetamine increase emotional empathy without affecting cognitive empathy; MDMA simultaneously leads to elevated levels of oxytocin, unrelated to its behavioral effects. The aim of the present study was to assess the reported enhancement of empathy by 4-FA, to assess its effects on oxytocin, and to test potential associations between both. METHODS Twelve healthy poly-drug users were included in a double-blind placebo-controlled two-way crossover study. Treatments were 4-FA (100 mg) and placebo; empathy was assessed by means of the multifaceted empathy test, and blood samples were taken before and after treatment administration to determine oxytocin concentrations. RESULTS 4-FA reduced cognitive empathy, whereas emotional empathy was left unaffected. One hour after treatment, plasma oxytocin levels were significantly increased compared with placebo. Behavioral and hormonal effects were unrelated. CONCLUSION Although 4-FA shares its pharmacological mechanism with MDMA and amphetamine, current findings seem to indicate that it affects empathy differently. The 4-FA-induced increase in oxytocin levels was independent of behavioral effects, which confirms previous findings that drug-induced effects on peripheral oxytocin levels are not associated with empathy.
Collapse
Affiliation(s)
- Patrick C Dolder
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elizabeth B de Sousa Fernandes Perna
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | | | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
62
|
Kuypers KPC, de Sousa Fernandes Perna EB, Dolder PC, Toennes SW, Theunissen EL, Mason NL, Hutten NRPW, Ramaekers JG. Drug liking and wanting, not impulsive action or reflection is increased by 4-fluoroamphetamine. Psychopharmacology (Berl) 2018; 235:2349-2356. [PMID: 29855660 PMCID: PMC6061712 DOI: 10.1007/s00213-018-4931-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND New psychoactive substances (NPS) are chemical analogues designed to mimic the effects of various classic recreational drugs of abuse including MDMA, LSD, and cannabis. NPS use is associated with concern about the acute and longer-term effects particular substances might have, with abuse and addiction as potential consequences. Impulsivity and sensitivity to the rewarding effects of drugs have been considered as risk factors for drug abuse. In light of the popularity of 4-fluoroamphetamine (4-FA), it is important to assess whether 4-FA can lead to subjective drug liking and wanting, and impulsive behavior, all factors contributing to the abuse likelihood of a substance. METHODS A placebo-controlled 2-way crossover study in 12 healthy poly-drug using participants was conducted to test subjective and behavioral effects of 4-FA (100 mg). 4-FA concentrations were determined in serum up to 12 h after administration and two impulsivity tasks and two drug experience questionnaires assessing drug liking and wanting, and good and bad drug effect, were administered between 1 and 11 h post-administration. RESULTS Findings showed that 4-FA did not affect impulsive behavior. Self-ratings of drug liking and wanting and good drug effect were increased 1 h after administration; this effect was absent 11 h after drug intake. DISCUSSION AND CONCLUSION To conclude, 4-FA (single dose) increased self-rated liking and wanting, which is known to contribute to the abuse likelihood of a substance; however, it left another factor impulsive behavior unaffected. It has to be noted that the current picture is limited and might change with increased sample size, and/or different 4-FA doses. CLINICAL TRIAL REGISTRATION Trial acronym: 4-FA. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6164 . Registration number: NTR6164 (Dutch clinical trial registry number).
Collapse
Affiliation(s)
- K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - E B de Sousa Fernandes Perna
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - P C Dolder
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - S W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - E L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
63
|
de Sousa Fernandes Perna EB, Theunissen EL, Dolder PC, Mason NL, Hutten NRPW, Toennes SW, Kuypers KPC, Ramaekers JG. Safety Profile and Neurocognitive Function Following Acute 4-Fluoroamphetamine (4-FA) Administration in Humans. Front Pharmacol 2018; 9:713. [PMID: 30050434 PMCID: PMC6052735 DOI: 10.3389/fphar.2018.00713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023] Open
Abstract
Availability of novel psychoactive substances (NPS) exponentially increased over the last years. Risk evaluations of NPS are hampered by the lack of pharmacological studies in humans on health parameters. The aim of the present study was to evaluate safety and neurocognitive function of healthy volunteers (N = 12) who received single doses of 100 and 150 mg 4-fluoroamphetamine (4-FA), a phenethylamine that has been associated with severe cardiovascular and cerebrovascular complications. The study was set-up as a placebo controlled, within subject, phase 1 trial as it was the first to administer 4-FA to humans under controlled conditions. Overall, 4-FA produced a strong elevation in blood pressure up until 4–5 h after administration that was followed by a sustained increase in heart rate. After an interim review of safety data from five participants, a decision was taken to cancel administration of 150 mg. We subsequently obtained complete datasets for placebo and 100 mg 4-FA treatments only. Effects of 4-FA on mood and neurocognitive function were most distinct at 1 h post drug and included significant elevations of vigor, friendliness, elation, arousal, positive mood, as well as improvements in attention and motor performance. Negative affect was also reported as time progressed in the acute phase and even more so during the subacute phase. Overall, the influence of 4-FA on vital signs, mood, and neurocognition was similar to that observed with other stimulants. Present findings confirm clinical observations of acute toxicity among 4-FA users and warrant warnings about potential health risks associated with 4-FA use.
Collapse
Affiliation(s)
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Patrick C Dolder
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
64
|
Zwartsen A, Hondebrink L, Westerink RH. Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). Neurotoxicology 2018; 66:87-97. [PMID: 29572046 DOI: 10.1016/j.neuro.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
While the prevalence and the use of new psychoactive substances (NPS) is steadily increasing, data on pharmacological, toxicological and clinical effects is limited. Considering the large number of NPS available, there is a clear need for efficient in vitro screening techniques that capture multiple mechanisms of action. Neuronal cultures grown on multi-well microelectrode arrays (mwMEAs) have previously proven suitable for neurotoxicity screening of chemicals, pharmaceuticals and (illicit) drugs. We therefore used rat primary cortical cultures grown on mwMEA plates to investigate the effects of eight NPS (PMMA, α-PVP, methylone, MDPV, 2C-B, 25B-NBOMe, BZP and TFMPP) and two 'classic' illicit drugs (cocaine, methamphetamine) on spontaneous neuronal activity. All tested drugs rapidly and concentration-dependently decreased the weighted mean firing rate (wMFR) and the weighted mean burst rate (wMBR) during a 30 min acute exposure. Of the 'classic' drugs, cocaine most potently inhibited the wMFR (IC50 9.8 μM), whereas methamphetamine and the structurally-related NPS PMMA were much less potent (IC50 100 μM and IC50 112 μM, respectively). Of the cathinones, MDPV and α-PVP showed comparable IC50 values (29 μM and 21 μM, respectively), although methylone was 10-fold less potent (IC50 235 μM). Comparable 10-fold differences in potency were also observed between the hallucinogenic phenethylamines 2C-B (IC50 27 μM) and 25B-NBOMe (IC50 2.4 μM), and between the piperazine derivatives BZP (IC50 161 μM) and TFMPP (IC50 19 μM). All drugs also inhibited the wMBR and concentration-response curves for wMBR and wMFR were comparable. For most drugs, IC50 values are close to the estimated human brain concentrations following recreational doses of these drugs, highlighting the importance of this efficient in vitro screening approach for classification and prioritization of emerging NPS. Moreover, the wide range of IC50 values observed for these and previously tested drugs of abuse, both within and between different classes of NPS, indicates that additional investigation of structure-activity relationships could aid future risk assessment of emerging NPS.
Collapse
Affiliation(s)
- Anne Zwartsen
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remco Hs Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
65
|
Wallach J, Brandt SD. 1,2-Diarylethylamine- and Ketamine-Based New Psychoactive Substances. Handb Exp Pharmacol 2018; 252:305-352. [PMID: 30196446 DOI: 10.1007/164_2018_148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While phencyclidine (PCP) and ketamine remain the most well-studied and widely known dissociative drugs, a number of other agents have appeared since the late 1950s and early 1960s, when the pharmacological potential of this class was first realized. For example, hundreds of compounds have been pursued as part of legitimate research efforts to explore these agents. Some of these found their way out of the research labs and onto illicit markets of the 1960s and following decades as PCP analogs. Other "illicit analogs" apparently never appeared in the scientific literature prior to their existence on clandestine markets, thus originating as novel innovations in the minds of clandestine chemists and their colleagues. Like so much else in this world, new technologies changed this dynamic. In the 1990s individuals separated by vast geographical distances could now communicate nearly instantaneously with ease through the Internet. Some individuals used this newly found opportunity to discuss the chemistry and psychoactive effects of dissociative drugs as well as to collaborate on the design and development of novel dissociative compounds. Similar to modern pharmaceutical companies and academic researchers, these seekers tinkered with the structure of their leads pursuing goals such as improved duration of action, analgesic effects, and reduced toxicity. Whether all these goals were achieved for any individual compound remains to be seen, but their creations have been let out of the bag and are now materialized as defined compositions of matter. Moreover, these creations now exist not only in and of themselves but live on further as permutations into various novel analogs and derivatives. In some cases these compounds have made their way to academic labs where potential clinical applications have been identified. These compounds reached wider distribution when other individuals picked up on these discussions and began to market them as "research chemicals" or "legal highs". The result is a continuously evolving game that is being played between legislatures, law enforcement, and research chemical market players. Two structurally distinct classes that have appeared as dissociative-based new psychoactive substances (NPS) are the 1,2-diarylethylamines and β-keto-arylcyclohexylamines. Examples of the former include diphenidine and various analogs such as fluorolintane and N-ethyl-lanicemine, and examples of the latter are analogs of ketamine such as methoxetamine, deschloroketamine, and 2-fluoro-2-deschloroketamine. The subject of this chapter is the introduction to some of the dissociative NPS from these classes and their known pharmacology that have emerged on the market in recent years.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|