51
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
52
|
Wang K, Duan Y, Duan W, Yu Y, Zheng N, Hu J, He J, Chen H, Liang M. Bibliometric Insights in Genetic Factors of Substance-Related Disorders: Intellectual Developments, Turning Points, and Emerging Trends. Front Psychiatry 2021; 12:620489. [PMID: 34135780 PMCID: PMC8200466 DOI: 10.3389/fpsyt.2021.620489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Substance-related disorders are a group of medical conditions that affect a person's brain and behavior and lead to an inability to control the use of legal or illegal drug(s) or medication. Substance-related disorder is a serious public health and society problem worldwide. Genetic factors have been proven to have an important role. Researchers have carried out a lot of work in this field, and a large number of research results have been published in academic journals around the world. However, there are few overviews of research progress, presentation, and development trends in this field. In this study, a total of 636 articles related to genetic factors of substance-related disorders were retrieved from the Web of Science (WoS) database from 1997 to 2018, and the scientific literatures were analyzed by bibliometrics. The study found that the United States (US) has maintained a leading position in the field of research, with many core institutions and plenty of high-quality research results. Alcohol use disorder is still the most concerning issue in this field. Over the past 20 years, new techniques such as genome-wide association study (GWAS) based on high-throughput sequencing technology have replaced family studies, twin studies, and retrospective studies in this field. We believe that it is urgent to study the genetic factors of substance-related disorders, which can greatly deepen the understanding of the pathogenesis of substance-related disorders and may provide potential targets for precise treatment of such diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zheng
- Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jin Hu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Haihong Chen
- School of Health Policy and Management, Nanjing Medical University, Nanjing, China
| | - Man Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
53
|
Abdullah CS, Aishwarya R, Alam S, Morshed M, Remex NS, Nitu S, Kolluru GK, Traylor J, Miriyala S, Panchatcharam M, Hartman B, King J, Bhuiyan MAN, Chandran S, Woolard MD, Yu X, Goeders NE, Dominic P, Arnold CL, Stokes K, Kevil CG, Orr AW, Bhuiyan MS. Methamphetamine induces cardiomyopathy by Sigmar1 inhibition-dependent impairment of mitochondrial dynamics and function. Commun Biol 2020; 3:682. [PMID: 33203971 PMCID: PMC7673131 DOI: 10.1038/s42003-020-01408-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methamphetamine-associated cardiomyopathy is the leading cause of death linked with illicit drug use. Here we show that Sigmar1 is a therapeutic target for methamphetamine-associated cardiomyopathy and defined the molecular mechanisms using autopsy samples of human hearts, and a mouse model of "binge and crash" methamphetamine administration. Sigmar1 expression is significantly decreased in the hearts of human methamphetamine users and those of "binge and crash" methamphetamine-treated mice. The hearts of methamphetamine users also show signs of cardiomyopathy, including cellular injury, fibrosis, and enlargement of the heart. In addition, mice expose to "binge and crash" methamphetamine develop cardiac hypertrophy, fibrotic remodeling, and mitochondrial dysfunction leading to contractile dysfunction. Methamphetamine treatment inhibits Sigmar1, resulting in inactivation of the cAMP response element-binding protein (CREB), decreased expression of mitochondrial fission 1 protein (FIS1), and ultimately alteration of mitochondrial dynamics and function. Therefore, Sigmar1 is a viable therapeutic agent for protection against methamphetamine-associated cardiomyopathy.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sumitra Miriyala
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Manikandan Panchatcharam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | | | - Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Paari Dominic
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Connie L Arnold
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Karen Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
54
|
Srinivasan V, Korhonen L, Lindholm D. The Unfolded Protein Response and Autophagy as Drug Targets in Neuropsychiatric Disorders. Front Cell Neurosci 2020; 14:554548. [PMID: 33132844 PMCID: PMC7550790 DOI: 10.3389/fncel.2020.554548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Neurons are polarized in structure with a cytoplasmic compartment extending into dendrites and a long axon that terminates at the synapse. The high level of compartmentalization imposes specific challenges for protein quality control in neurons making them vulnerable to disturbances that may lead to neurological dysfunctions including neuropsychiatric diseases. Synapse and dendrites undergo structural modulations regulated by neuronal activity involve key proteins requiring strict control of their turnover rates and degradation pathways. Recent advances in the study of the unfolded protein response (UPR) and autophagy processes have brought novel insights into the specific roles of these processes in neuronal physiology and synaptic signaling. In this review, we highlight recent data and concepts about UPR and autophagy in neuropsychiatric disorders and synaptic plasticity including a brief outline of possible therapeutic approaches to influence UPR and autophagy signaling in these diseases.
Collapse
Affiliation(s)
- Vignesh Srinivasan
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Laura Korhonen
- Department of Biochemical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.,Department of Child and Adolescent Psychiatry, Region Östergötland, Linköping, Sweden
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| |
Collapse
|
55
|
Lu S, Liao L, Zhang B, Yan W, Chen L, Yan H, Guo L, Lu S, Xiong K, Yan J. Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochem Int 2019; 131:104540. [PMID: 31470038 DOI: 10.1016/j.neuint.2019.104540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Shuang Lu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Lvshuang Liao
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Bing Zhang
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Weitao Yan
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Limin Guo
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Shanshan Lu
- Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Kun Xiong
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China.
| |
Collapse
|
56
|
Derouiche L, Massotte D. G protein-coupled receptor heteromers are key players in substance use disorder. Neurosci Biobehav Rev 2018; 106:73-90. [PMID: 30278192 DOI: 10.1016/j.neubiorev.2018.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCR) represent the largest family of membrane proteins in the human genome. Physical association between two different GPCRs is linked to functional interactions which generates a novel entity, called heteromer, with specific ligand binding and signaling properties. Heteromerization is increasingly recognized to take place in the mesocorticolimbic pathway and to contribute to various aspects related to substance use disorder. This review focuses on heteromers identified in brain areas relevant to drug addiction. We report changes at the molecular and cellular levels that establish specific functional impact and highlight behavioral outcome in preclinical models. Finally, we briefly discuss selective targeting of native heteromers as an innovative therapeutic option.
Collapse
Affiliation(s)
- Lyes Derouiche
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212, 5 rue Blaise Pascal, F-67000 Strasbourg, France.
| |
Collapse
|