51
|
Briand F, Brousseau E, Maupoint J, Dubroca C, Costard C, Breyner N, Burcelin R, Sulpice T. Liraglutide shows superior cardiometabolic benefits than lorcaserin in a novel free choice diet-induced obese rat model. Eur J Pharmacol 2020; 882:173316. [DOI: 10.1016/j.ejphar.2020.173316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
|
52
|
Tong J, Meyer JH, Boileau I, Ang LC, Fletcher PJ, Furukawa Y, Kish SJ. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology (Berl) 2020; 237:2661-2671. [PMID: 32494974 PMCID: PMC7502513 DOI: 10.1007/s00213-020-05562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE The long-held speculation that the brain serotonin system mediates some behavioral effects of the psychostimulant cocaine is supported in part by the high affinity of cocaine for the serotonin transporter (SERT) and by reports that the serotonin transporter (SERT), estimated by SERT binding, is increased in brain of human chronic cocaine users. Excessive SERT activity and consequent synaptic serotonin deficiency might cause a behavioral (e.g., mood) abnormality in chronic users of the drug. OBJECTIVE AND METHODS Previous studies focused on changes in SERT binding, which might not necessarily reflect changes in SERT protein. Therefore, we compared levels of SERT protein, using a quantitative Western blot procedure, in autopsied brain (striatum, cerebral cortices) of chronic human cocaine users (n = 9), who all tested positive for the drug/metabolite in brain, to those in control subjects (n = 15) and, as a separate drug of abuse group, in chronic heroin users (n = 11). RESULTS We found no significant difference in protein levels of SERT or the serotonin synthesizing enzyme tryptophan hydroxylase-2 among the control and drug abuse groups. In the cocaine users, no significant correlations were observed between SERT and brain levels of cocaine plus metabolites, or with levels of serotonin or its metabolite 5-hydroxyindoleacetic acid. CONCLUSION Our postmortem data suggest that a robust increase in striatal/cerebral cortical SERT protein is not a common characteristic of chronic, human cocaine users.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada. .,Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Jeffrey H. Meyer
- Brain Health Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Paul J. Fletcher
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Post Graduate University of Juntendo, Tokyo, Japan
| | - Stephen J. Kish
- Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
53
|
Di Giovanni G, Bharatiya R, Puginier E, Ramos M, De Deurwaerdère S, Chagraoui A, De Deurwaerdère P. Lorcaserin Alters Serotonin and Noradrenaline Tissue Content and Their Interaction With Dopamine in the Rat Brain. Front Pharmacol 2020; 11:962. [PMID: 32714188 PMCID: PMC7344148 DOI: 10.3389/fphar.2020.00962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Lorcaserin is a preferential serotonin2C receptor (5-HT2CR) agonist effective to treat obesity that has also recently been proposed to treat addiction and epilepsy. Central dopamine (DA) mechanisms are likely involved in the lorcaserin mechanism of action, but other monoamines 5-HT and noradrenaline (NA) contents or their interaction with DA might account for its effects. Here we showed that lorcaserin at 3, but not 0.3 mg/kg enhanced 5-HT content in the insular cortex, the core of the nucleus accumbens, and ventral hypothalamus. Without affecting the metabolite 5-hydroxy indole acetic acid, lorcaserin reduced the indirect index of 5-HT turnover in the hippocampus, substantia nigra, and habenula. Lorcaserin at 3 mg/kg increased NA content in the orbitofrontal cortex, the central amygdala (also at 0.3 mg/kg), the ventral hypothalamus, and the shell of the nucleus accumbens. A correlative analysis of the tissue contents between pairs of brain regions revealed that 0.3 mg/kg lorcaserin enhanced the number of correlations for 5-HT, its metabolism, and NA to a lower extent. The correlation profiles were very different between saline, 0.3 and 3 mg/kg lorcaserin. Lorcaserin enhanced the correlations established between NA or 5-HT at 0.3 and 3 mg/kg and reduced the number of correlations established between the index of the turnover for DA and 5-HT. These results show that lorcaserin modulates the biochemistry of NA and 5-HT systems in a subset of brain regions. Qualitatively, they reveal, oppositely to the DA changes, that lorcaserin at 0.3, but not 3 mg/kg, enhanced the number of correlations of 5-HT content between brain regions.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,School of Biosciences, Neuroscience Division, Cardiff University, Cardiff, United Kingdom
| | - Rahul Bharatiya
- Centre National de la Recherche Scientifique, UMR CNRS 5287, Bordeaux, France.,Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Emilie Puginier
- Centre National de la Recherche Scientifique, UMR CNRS 5287, Bordeaux, France
| | - Marta Ramos
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Abdeslam Chagraoui
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France.,Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | | |
Collapse
|
54
|
Sharp T, Barnes NM. Central 5-HT receptors and their function; present and future. Neuropharmacology 2020; 177:108155. [PMID: 32522572 DOI: 10.1016/j.neuropharm.2020.108155] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Since our review of central 5-HT receptors and their function twenty years ago, no new 5-HT receptor has been discovered and there is little evidence that this situation will change in the near future. Nevertheless, over this time significant progress has been made in our understanding of the properties of these receptors and in the clinical translation of this information, and some of these developments are highlighted herein. Such highlights include extensive mapping of 5-HT receptors in both animal and human brain, culminating in readily-accessible brain atlases of 5-HT receptor distribution, as well as emerging data on how 5-HT receptors are distributed within complex neural circuits. Also, a range of important pharmacological and genetic tools have been developed that allow selective 5-HT receptor manipulation, in cells through to whole organism models. Moreover, unexpected complexity in 5-HT receptor function has been identified including agonist-dependent signalling that goes beyond the pharmacology of canonical 5-HT receptor signalling pathways set down in the 1980s and 1990s. This new knowledge of 5-HT signalling has been extended by the discovery of combined signalling of 5-HT and co-released neurotransmitters, especially glutamate. Another important advance has been the progression of a large number of 5-HT ligands through to experimental medicine studies and clinical trials, and some such agents have already become prescribed therapeutic drugs. Much more needs to be discovered and understood by 5-HT neuropharmacologists, not least how the diverse signalling effects of so many 5-HT receptor types interact with complex neural circuits to generate neurophysiological changes which ultimately lead to altered cognitions and behaviour. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Trevor Sharp
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Nicholas M Barnes
- Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
55
|
Management of Oxaliplatin-Induced Peripheral Sensory Neuropathy. Cancers (Basel) 2020; 12:cancers12061370. [PMID: 32471028 PMCID: PMC7352541 DOI: 10.3390/cancers12061370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe and potentially permanent side effect of cancer treatment affecting the majority of oxaliplatin-treated patients, mostly with the onset of acute symptoms, but also with the establishment of a chronic sensory loss that is supposed to be due to dorsal root ganglia neuron damage. The pathogenesis of acute as well as chronic OIPN is still not completely known, and this is a limitation in the identification of effective strategies to prevent or limit their occurrence. Despite intense investigation at the preclinical and clinical levels, no treatment can be suggested for the prevention of OIPN, and only limited evidence for the efficacy of duloxetine in the treatment setting has been provided. In this review, ongoing neuroprotection clinical trials in oxaliplatin-treated patients will be analyzed with particular attention paid to the hypothesis leading to the study, to the trial strengths and weaknesses, and to the outcome measures proposed to test the efficacy of the therapeutic approach. It can be concluded that (1) prevention and treatment of OIPN still remains an important and unmet clinical need, (2) further, high-quality research is mandatory in order to achieve reliable and effective results, and (3) dose and schedule modification of OHP-based chemotherapy is currently the most effective approach to limit the severity of OIPN.
Collapse
|
56
|
Suppression of cocaine relapse-like behaviors upon pimavanserin and lorcaserin co-administration. Neuropharmacology 2020; 168:108009. [DOI: 10.1016/j.neuropharm.2020.108009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
|
57
|
Higgins GA, Brown M, St John J, MacMillan C, Silenieks LB, Thevarkunnel S. Effects of 5-HT 2C receptor modulation and the NA reuptake inhibitor atomoxetine in tests of compulsive and impulsive behaviour. Neuropharmacology 2020; 170:108064. [PMID: 32222404 DOI: 10.1016/j.neuropharm.2020.108064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Drug repositioning has gained strategic value as a reaction to high attrition rates of new drugs as they pass through the clinical development process. The 5-HT2C receptor agonist lorcaserin (Belviq®), and the selective NA reuptake inhibitor atomoxetine (Strattera®) represent two drugs FDA approved for obesity and ADHD respectively. Although both drugs are of differing pharmacological class, each share a property of regulating impulsive behaviours in preclinical studies, and thus represent candidates for consideration in clinical conditions labelled as 'impulsive-compulsive disorders'. The present studies investigated both drugs, as well as the highly selective 5-HT2C agonist CP-809101 in two tests of compulsive action: schedule-induced polydipsia (SIP) and increased perseverative [PSV] (and premature [PREM]) responses emitted during an extended ITI 5-choice task. While lorcaserin (0.06-0.6 mg/kg), CP-809101 (0.1-1 mg/kg) and atomoxetine (0.1-1 mg/kg) each reduced both PREM and PSV measures in the 5-choice task, at equivalent doses only lorcaserin and CP-809101 affected excessive water intake in the SIP task, atomoxetine (0.1-2 mg/kg) was essentially ineffective. Further evidence supporting a role of the 5-HT2C receptor as an important regulator of impulsive-compulsive behaviours, the selective antagonist SB-242084 produced the opposing effects to lorcaserin, i.e promoting both impulsive and compulsive behaviours. The profile of atomoxetine may suggest differences in the nature of compulsive action measured either as non-regulatory drinking in the SIP task, and PSV responses made in a 5-choice task. These studies support the consideration of 5-HT2C receptor agonists, typified by lorcaserin, and atomoxetine as potential treatments for clinical conditions categorised as 'impulsive-compulsive disorders'. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Guy A Higgins
- InterVivo Solutions Inc., PO Box 248, Fergus, ON, N1M 1N0, Canada; Dept Pharmacology & Toxicology, U. Toronto, Toronto, ON M5S 4K2, Canada.
| | - Matt Brown
- InterVivo Solutions Inc., PO Box 248, Fergus, ON, N1M 1N0, Canada
| | - Jessica St John
- InterVivo Solutions Inc., PO Box 248, Fergus, ON, N1M 1N0, Canada
| | - Cam MacMillan
- InterVivo Solutions Inc., PO Box 248, Fergus, ON, N1M 1N0, Canada
| | - Leo B Silenieks
- InterVivo Solutions Inc., PO Box 248, Fergus, ON, N1M 1N0, Canada
| | | |
Collapse
|
58
|
Effects of lorcaserin on oxycodone self-administration and subjective responses in participants with opioid use disorder. Drug Alcohol Depend 2020; 208:107859. [PMID: 31980285 PMCID: PMC7063580 DOI: 10.1016/j.drugalcdep.2020.107859] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lorcaserin, a high-affinity 5-HT2C receptor agonist approved for treating obesity, decreased self-administration of oxycodone and cue-induced reinstatement of drug-seeking behavior in preclinical studies. The current investigation is the first clinical trial to evaluate the ability of lorcaserin to alter the reinforcing and subjective effects of oxycodone. METHODS In this 7-week inpatient trial, 12 non-treatment-seeking volunteers (11 males) with moderate-to-severe opioid use disorder were detoxified from opioids. In a randomized cross-over fashion, participants were first stabilized on lorcaserin (10 mg BID) or placebo (0 mg BID). Participants underwent a two-week testing period during which the reinforcing and subjective effects of intranasal oxycodone were examined in verbal choice, cue-exposure, and progressive-ratio choice sessions. The two testing weeks were identical with the exception that during the first week, active oxycodone (10 mg) was available during verbal choice (self-administration) sessions, and during the second week placebo oxycodone was available. Subsequently, participants were stabilized on the other medication condition (placebo or lorcaserin) and underwent the same testing procedures again. RESULTS Lorcaserin did not alter oxycodone self-administration. However, lorcaserin had a trend to increase "wanting heroin" when oxycodone was available, and to accentuate oxycodone-induced miosis. CONCLUSION Under the current experimental conditions, lorcaserin at a dose of 10 mg BID did not reliably decrease the abuse liability of oxycodone, even though the study was sufficiently powered (≥80 %) to detect clinically meaningful differences in the main outcome variables between the placebo and active lorcaserin condition. Future research could explore a wider dose range of lorcaserin and oxycodone.
Collapse
|
59
|
Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P. Serotonin in Animal Cognition and Behavior. Int J Mol Sci 2020; 21:ijms21051649. [PMID: 32121267 PMCID: PMC7084567 DOI: 10.3390/ijms21051649] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Rahul Bharatiya
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy
| | - Grégory Barrière
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Jean-Paul Delbecque
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Nouhaila Bouguiyoud
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- School of Biosciences, Neuroscience Division, Cardiff University, Cardiff CF24 4HQ, UK
| | - Daniel Cattaert
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| | - Philippe De Deurwaerdère
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| |
Collapse
|