51
|
Sawano T, Tsuchihashi R, Morii E, Watanabe F, Nakane K, Inagaki S. Homology analysis detects topological changes of Iba1 localization accompanied by microglial activation. Neuroscience 2017; 346:43-51. [PMID: 28077279 DOI: 10.1016/j.neuroscience.2016.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
The state of microglial activation provides important information about the central nervous system. However, a reliable index of microglial activation in histological samples has yet to be established. Here, we show that microglial activation induces topological changes of Iba1 localization that can be detected by analysis based on homology theory. Analysis of homology was applied to images of Iba1-stained tissue sections, and the 0-dimentional Betti number (b0: the number of solid components) and the 1-dimentional Betti number (b1: the number of windows surrounded by solid components) were obtained. We defined b1/b0 as the Homology Value (HV), and investigated its validity as an index of microglial activation using cerebral ischemia model mice. Microglial activation was accompanied by changes to Iba1 localization and morphology of microglial processes. In single microglial cells, the change of Iba1 localization increased b1. Conversely, thickening or retraction of microglial processes decreased b0. Consequently, microglial activation increased the HV. The HV of a tissue area increased with proximity to the ischemic core and showed a high degree of concordance with the number of microglia expressing activation makers. Furthermore, the HV of human metastatic brain tumor tissue also increased with proximity to the tumor. These results suggest that our index, based on homology theory, can be used to correctly evaluate microglial activation in various tissue images.
Collapse
Affiliation(s)
- Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryo Tsuchihashi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuaki Nakane
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
52
|
Weber MD, Godbout JP, Sheridan JF. Repeated Social Defeat, Neuroinflammation, and Behavior: Monocytes Carry the Signal. Neuropsychopharmacology 2017; 42:46-61. [PMID: 27319971 PMCID: PMC5143478 DOI: 10.1038/npp.2016.102] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that proinflammatory signaling in the brain affects mood, cognition, and behavior and is linked with the etiology of psychiatric disorders, including anxiety and depression. The purpose of this review is to focus on stress-induced bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system that converge to promote a heightened neuroinflammatory environment. These communication pathways involve sympathetic outflow from the brain to the peripheral immune system that biases hematopoietic stem cells to differentiate into a glucocorticoid-resistant and primed myeloid lineage immune cell. In conjunction, microglia-dependent neuroinflammatory events promote myeloid cell trafficking to the brain that reinforces stress-related behavior, and is argued to play a role in stress-related psychiatric disorders. We will discuss evidence implicating a key role for endothelial cells that comprise the blood-brain barrier in propagating peripheral-to-central immune communication. We will also discuss novel neuron-to-glia communication pathways involving endogenous danger signals that have recently been argued to facilitate neuroinflammation under various conditions, including stress. These findings help elucidate the complex communication that occurs in response to stress and highlight novel therapeutic targets against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael D Weber
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, 223 IBMR Building, 305 W 12th Avenue, 460 Medical Center Drive, Columbus, OH 43210, USA, Tel: 614-293-3392, Fax: 614-292-6087, E-mail:
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
53
|
Smith BL, Schmeltzer SN, Packard BA, Sah R, Herman JP. Divergent effects of repeated restraint versus chronic variable stress on prefrontal cortical immune status after LPS injection. Brain Behav Immun 2016; 57:263-270. [PMID: 27177449 PMCID: PMC5015433 DOI: 10.1016/j.bbi.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/20/2016] [Accepted: 05/08/2016] [Indexed: 11/30/2022] Open
Abstract
Previous work from our group has shown that chronic homotypic stress (repeated restraint - RR) increases microglial morphological activation in the prefrontal cortex (PFC), while chronic heterotypic stress (chronic variable stress - CVS) produces no such effect. Therefore, we hypothesized that stressor modality would also determine the susceptibility of the PFC to a subsequent inflammatory stimulus (low dose lipopolysaccharide (LPS)). We found that RR, but not CVS, increased Iba-1 soma size in the PFC after LPS injection, consistent with microglial activation. In contrast, CVS decreased gene expression of proinflammatory cytokines and Iba-1 in the PFC under baseline conditions, which were not further affected by LPS. Thus, RR appears to promote microglial responses to LPS, whereas CVS is largely immunosuppressive. The results suggest that neuroimmune changes caused by CVS may to some extent protect the PFC from subsequent inflammatory stimuli. These data suggest that modality and/or intensity of stressful experiences will be a major determinant of central inflammation and its effect on prefrontal cortex-mediated functions.
Collapse
Affiliation(s)
- Brittany L Smith
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience, United States.
| | - Sarah N Schmeltzer
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience, United States
| | - Benjamin A Packard
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience, United States
| | - Renu Sah
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience, United States
| | - James P Herman
- University of Cincinnati, Department of Psychiatry & Behavioral Neuroscience, United States
| |
Collapse
|
54
|
Costa-Ferreira W, Vieira JO, Almeida J, Gomes-de-Souza L, Crestani CC. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors. Front Pharmacol 2016; 7:262. [PMID: 27588004 PMCID: PMC4988975 DOI: 10.3389/fphar.2016.00262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/04/2016] [Indexed: 01/26/2023] Open
Abstract
Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jonas O Vieira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jeferson Almeida
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Lucas Gomes-de-Souza
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| |
Collapse
|
55
|
Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2016; 38:637-658. [PMID: 26442697 DOI: 10.1016/j.tins.2015.08.001] [Citation(s) in RCA: 622] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
Despite decades of intensive research, the biological mechanisms that causally underlie depression are still unclear, and therefore the development of novel effective antidepressant treatments is hindered. Recent studies indicate that impairment of the normal structure and function of microglia, caused by either intense inflammatory activation (e.g., following infections, trauma, stroke, short-term stress, autoimmune or neurodegenerative diseases) or by decline and senescence of these cells (e.g., during aging, Alzheimer's disease, or chronic unpredictable stress exposure), can lead to depression and associated impairments in neuroplasticity and neurogenesis. Accordingly, some forms of depression can be considered as a microglial disease (microgliopathy), which should be treated by a personalized medical approach using microglial inhibitors or stimulators depending on the microglial status of the depressed patient.
Collapse
Affiliation(s)
- Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel.
| | - Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
56
|
Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, Biber K. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun 2016; 55:126-137. [PMID: 26576722 DOI: 10.1016/j.bbi.2015.11.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Microglia are suggested to be involved in several neuropsychiatric diseases. Indeed changes in microglia morphology have been reported in different mouse models of depression. A crucial regulatory system for microglia function is the well-defined CX3C axis. Thus, we aimed to clarify the role of microglia and CX3CR1 in depressive behavior by subjecting CX3CR1-deficient mice to a particular chronic despair model (CDM) paradigm known to exhibit face validity to major depressive disorder. In wild-type mice we observed the development of chronic depressive-like behavior after 5days of repetitive swim stress. 3D-reconstructions of Iba-1-labeled microglia in the dentate molecular layer revealed that behavioral effects were associated with changes in microglia morphology towards a state of hyper-ramification. Chronic treatment with the anti-depressant venlafaxine ameliorated depression-like behavior and restored microglia morphology. In contrast, CX3CR1 deficient mice showed a clear resistance to either (i) stress-induced depressive-like behavior, (ii) changes in microglia morphology and (iii) antidepressant treatment. Our data point towards a role of hyper-ramified microglia in the etiology of chronic depression. The lack of effects in CX3CR1 deficient mice suggests that microglia hyper-ramification is controlled by neuron-microglia signaling via the CX3C axis. However, it remains to be elucidated how hyper-ramified microglia contribute to depressive-like behavior.
Collapse
Affiliation(s)
- Sabine Hellwig
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany.
| | - Simone Brioschi
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Sandra Dieni
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Lars Frings
- Centre of Geriatrics and Gerontology, University Hospital Freiburg, Freiburg, Germany; Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Annette Masuch
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Blank
- Department of Neuropathology, University Hospital Freiburg, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany; Department for Neuroscience, University Medical Center Groningen, University of Groningen, Netherlands.
| |
Collapse
|
57
|
Crestani CC. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type. Front Physiol 2016; 7:251. [PMID: 27445843 PMCID: PMC4919347 DOI: 10.3389/fphys.2016.00251] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023] Open
Abstract
Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress.
Collapse
Affiliation(s)
- Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Araraquara, Brasil
| |
Collapse
|
58
|
Choi JH, Jang M, Kim EJ, Kim H, Ye SK, Cho IH. Oriental Medicine Woohwangchungsimwon Attenuates Kainic Acid-Induced Seizures and Neuronal Cell Death in the Hippocampus. Rejuvenation Res 2016; 19:394-405. [PMID: 26981959 DOI: 10.1089/rej.2015.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Woohwangchungsimwon (WCW) is an oriental medicine that has been extensively prescribed in Asia to patients with apoplexy, high blood pressure, acute/chronic convulsion, and so on. However, the potential therapeutic value of WCW in treating the pathologic brain has not yet been fully investigated. In the present study, we evaluated whether WCW has beneficial effects on kainic acid (KA)-induced excitotoxicity. An intraperitoneal injection of KA (40 mg/kg) and an intracerebroventricular injection of KA (0.2 μg) produced typical seizure behavior and neuronal cell death in the CA1 and CA3 pyramidal layers of the hippocampus, respectively. However, the systemic administration of WCW significantly attenuated the seizure behavior and neuronal cell death. WCW was found to exert the best protective effect when it was administrated 2 hours before a KA injection. Moreover, this WCW-induced neuroprotection was accompanied by a reduction in microglia activation and tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxyganase-2 in the hippocampus. These results suggest that WCW has therapeutic potential to suppress KA-induced pathogenesis in the brain by inhibiting inflammation.
Collapse
Affiliation(s)
- Jong Hee Choi
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Minhee Jang
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Eun-Jeong Kim
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Hocheol Kim
- 2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,3 Department of Herbology, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,4 Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Sang-Kyu Ye
- 5 Department of Pharmacology, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Ik-Hyun Cho
- 1 Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,2 Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea.,4 Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
59
|
Bollinger JL, Bergeon Burns CM, Wellman CL. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav Immun 2016; 52:88-97. [PMID: 26441134 PMCID: PMC4909118 DOI: 10.1016/j.bbi.2015.10.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States
| | - Christine M Bergeon Burns
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States
| | - Cara L Wellman
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
60
|
Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 2016; 233:1637-50. [PMID: 26847047 PMCID: PMC4828495 DOI: 10.1007/s00213-016-4218-9] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023]
Abstract
RATIONALE Psychosocial stressors are a well-documented risk factor for mental illness. Neuroinflammation, in particular elevated microglial activity, has been proposed to mediate this association. A number of preclinical studies have investigated the effect of stress on microglial activity. However, these have not been systematically reviewed before. OBJECTIVES This study aims to systematically review the effects of stress on microglia, as indexed by the histological microglial marker ionised calcium binding adaptor molecule 1 (Iba-1), and consider the implications of these for the role of stress in the development of mental disorders. METHODS A systematic review was undertaken using pre-defined search criteria on PubMed and EMBASE. Inclusion and data extraction was agreed by two independent researchers after review of abstracts and full text. RESULTS Eighteen studies met the inclusion criteria. These used seven different psychosocial stressors, including chronic restraint, social isolation and repeated social defeat in gerbils, mice and/or rats. The hippocampus (11/18 studies) and prefrontal cortex (13/18 studies) were the most frequently studied areas. Within the hippocampus, increased Iba-1 levels of between 20 and 200 % were reported by all 11 studies; however, one study found this to be a duration-dependent effect. Of those examining the prefrontal cortex, ∼75 % found psychosocial stress resulted in elevated Iba-1 activity. Elevations were also consistently seen in the nucleus accumbens, and under some stress conditions in the amygdala and paraventricular nucleus. CONCLUSIONS There is consistent evidence that a range of psychosocial stressors lead to elevated microglial activity in the hippocampus and good evidence that this is also the case in other brain regions. These effects were seen with early-life/prenatal stress, as well as stressors in adulthood. We consider these findings in terms of the two-hit hypothesis, which proposes that early-life stress primes microglia, leading to a potentiated response to subsequent stress. The implications for understanding the pathoaetiology of mental disorders and the development of new treatments are also considered.
Collapse
|
61
|
Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression. Curr Top Behav Neurosci 2016; 31:155-172. [PMID: 27352390 DOI: 10.1007/7854_2016_25] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.
Collapse
|
62
|
Abstract
OBJECTIVE This study investigated the physiological and somatic changes evoked by daily exposure to the same type of stressor (homotypic) or different aversive stressor stimuli (heterotypic) in adolescent and adult rats, with a focus on cardiovascular function. The long-term effects of stress exposure during adolescence were also investigated longitudinally. METHODS Male Wistar rats were exposed to repeated restraint stress (RRS, homotypic) or chronic variable stress (CVS, heterotypic). RESULTS Adrenal hypertrophy, thymus involution, and elevated plasma glucocorticoid were observed only in adolescent animals, whereas reduction in body weight was caused by both stress regimens in adults. CVS increased mean arterial pressure (adolescent: p = .001; adult: p = .005) and heart rate (HR; adolescent: p = .020; adult: p = .011) regardless of the age, whereas RRS increased blood pressure selectively in adults (p = .001). Rest tachycardia evoked by CVS was associated with increased cardiac sympathetic activity in adults, whereas a decreased cardiac parasympathetic activity was observed in adolescent animals. Changes in cardiovascular function and cardiac autonomic activity evoked by both CVS and RRS were followed by alterations in baroreflex activity and vascular reactivity to vasoconstrictor and vasodilator agents in adolescent adult animals. Except for the circulating glucocorticoid change, all alterations observed during adolescence were reversed in adulthood. CONCLUSIONS These findings suggest a stress vulnerability of adolescents to somatic and neuroendocrine effects regardless of stress regimen. Our results indicated an age-stress type-specific influence in stress-evoked cardiovascular/autonomic changes. Data suggest minimal consequences in adulthood of stress during adolescence.
Collapse
|
63
|
Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 2015; 8:447. [PMID: 25653581 PMCID: PMC4300916 DOI: 10.3389/fnins.2014.00447] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTSPsychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses.
Collapse
Affiliation(s)
- Eric S Wohleb
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Daniel B McKim
- Division of Biosciences, The Ohio State University College of Dentistry Columbus, OH, USA ; Department of Neuroscience, The Ohio State University College of Medicine Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University College of Dentistry Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA ; Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University College of Medicine Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA ; Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine Columbus, OH, USA
| |
Collapse
|
64
|
Liu M, Li J, Dai P, Zhao F, Zheng G, Jing J, Wang J, Luo W, Chen J. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress 2015; 18:96-106. [PMID: 25472821 DOI: 10.3109/10253890.2014.995085] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances.
Collapse
Affiliation(s)
- Mingchao Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University , Xi'an , China and
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Duarte JO, Planeta CS, Crestani CC. Immediate and long-term effects of psychological stress during adolescence in cardiovascular function: comparison of homotypic vs heterotypic stress regimens. Int J Dev Neurosci 2014; 40:52-9. [PMID: 25450529 DOI: 10.1016/j.ijdevneu.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022] Open
Abstract
Adolescence has been proposed as an ontogenic period of vulnerability to stress. Nevertheless, the impact of stressful events during adolescence in cardiovascular activity is poorly understood. Therefore, the purpose of this study was to investigate the immediate and long-lasting effects of exposure to stressful events during adolescence in cardiovascular function of rats. To this end, we compared the impact of 10-days exposure to two chronic stress protocols: the repeated restraint stress (RRS, homotypic) and chronic variable stress (CVS, heterotypic). Independent groups of animals were tested 24h (immediate) or three weeks (long-lasting) following completion of stress period. Exposure to CVS, but not RRS, during adolescence increased basal HR values without affecting arterial pressure, which was followed by augmented power of oscillatory component at low frequency (sympathetic-related) of the pulse interval (PI). RRS enhanced variance of the PI with an increase in the power of both low and high (parasympathetic-related) frequency components. RRS also increased the baroreflex gain. Neither RRS nor CVS affected systolic arterial pressure variability. The RRS-evoked changes in PI variability were long-lasting and persisted into adulthood while all alterations evoked by the CVS were reversed in adulthood. These findings indicate a stress type-specific influence in immediate and long-term effects of stress during adolescence in cardiovascular function. While immediate changes in cardiovascular function were mainly observed following CVS, long-lasting autonomic consequences in adulthood were observed only in animals exposed to RRS during adolescence.
Collapse
Affiliation(s)
- Josiane O Duarte
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Cleopatra S Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
66
|
Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2014; 14:1262-76. [PMID: 24020974 PMCID: PMC3788324 DOI: 10.2174/13894501113149990208] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
Traditionally, microglia have been considered to act as macrophages of the central nervous system. While this concept still remains true it is also becoming increasingly apparent that microglia are involved in a host of non-immunological activities, such as monitoring synaptic function and maintaining synaptic integrity. It has also become apparent that microglia are exquisitely sensitive to perturbation by environmental challenges. The aim of the current review is to critically examine the now substantial literature that has developed around the ability of acute, sub-chronic and chronic stressors to alter microglial structure and function. The vast majority of studies have demonstrated that stress promotes significant structural remodelling of microglia, and can enhance the release of pro-inflammatory cytokines from microglia. Mechanistically, many of these effects appear to be driven by traditional stress-linked signalling molecules, namely corticosterone and norepinephrine. The specific effects of these signalling molecules are, however, complex as they can exert both inhibitory and suppressive effects on microglia depending upon the duration and intensity of exposure. Importantly, research has now shown that these stress-induced microglial alterations, rather than being epiphenomena, have broader behavioural implications, with the available evidence implicating microglia in directly regulating certain aspects of cognitive function and emotional regulation.
Collapse
Affiliation(s)
- Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
67
|
Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N. Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 2014; 11:12. [PMID: 24447857 PMCID: PMC3906907 DOI: 10.1186/1742-2094-11-12] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/10/2014] [Indexed: 11/16/2022] Open
Abstract
Background Microglia can adopt different morphologies, ranging from a highly ramified to an amoeboid-like phenotype. Although morphological properties of microglia have been described in rodents, little is known about their fine features in humans. The aim of this study was to characterize the morphometric properties of human microglia in gray and white matter of dorsal anterior cingulate cortex (dACC), a region implicated in behavioral adaptation to neuroinflammation. These properties were compared to those of murine microglia in order to gain a better appreciation of the differences displayed by these cells across species. Methods Postmortem dACC samples were analyzed from 11 individuals having died suddenly without any history of neuroinflammatory, neurodegenerative, nor psychiatric illness. Tissues were sectioned and immunostained for the macrophage marker Ionized calcium binding adaptor molecule 1 (IBA1). Randomly selected IBA1-immunoreactive (IBA1-IR) cells displaying features corresponding to commonly accepted microglial phenotypes (ramified, primed, reactive, amoeboid) were reconstructed in 3D and all aspects of their morphologies quantified using the Neurolucida software. The relative abundance of each morphological phenotype was also assessed. Furthermore, adult mouse brains were similarly immunostained, and IBA1-IR cells in cingulate cortex were compared to those scrutinized in human dACC. Results In human cortical gray and white matter, all microglial phenotypes were observed in significant proportions. Compared to ramified, primed microglia presented an average 2.5 fold increase in cell body size, with almost no differences in branching patterns. When compared to the primed microglia, which projected an average of six primary processes, the reactive and amoeboid phenotypes displayed fewer processes and branching points, or no processes at all. In contrast, the majority of microglial cells in adult mouse cortex were highly ramified. This was also the case following a postmortem interval of 43 hours. Interestingly, the morphology of ramified microglia was strikingly similar between species. Conclusions This study provides fundamental information on the morphological features of microglia in the normal adult human cerebral cortex. These morphometric data will be useful for future studies of microglial morphology in various illnesses. Furthermore, this first direct comparison of human and mouse microglia reveals that these brain cells are morphologically similar across species, suggesting highly conserved functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Naguib Mechawar
- McGill Group for Suicide Studies, 6875 LaSalle Blvd, Verdun, Québec H4H 1R3, Canada.
| |
Collapse
|