51
|
Trucco V, Cabrera Mederos D, Lenardon S, Giolitti F. Geographical distribution, genetic studies and vector transmission of alfalfa enamovirus-1 infecting alfalfa crop in Argentina. Virus Genes 2020; 56:662-667. [PMID: 32691201 DOI: 10.1007/s11262-020-01783-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Alfalfa (Medicago sativa L.) growing areas of Argentina were surveyed between 2010 and 2018 to determine the geographical distribution and analyse the genetic diversity among alfalfa enamovirus-1 (AEV-1) isolates. The virus was detected in all 17 surveyed alfalfa-producing provinces, with a prevalence of 64%. The plant virus AEV-1 is widely distributed in the country, and its transmission vector has been unknown until now. Here we show that the black aphid Aphis craccivora can transmit AEV-1. The CP sequence identity among 16 AEV-1 isolates from Argentina was from 98 to 100% and from 98.9 to 100% at nucleotide and amino acid levels, respectively, indicating a low level of sequence variation among these isolates. The phylogenetic analysis based on the complete nucleotide sequence of the CP gene indicated that AEV-1 isolates are closely related and clustered in a monophyletic group. These results suggest that AEV-1 has spread very recently in Argentina. In the present study, we report the geographical distribution of AEV-1 in the main alfalfa-growing areas of Argentina and, for the first time, identify an insect vector and describe the CP gene diversity of an enamovirus worldwide.
Collapse
Affiliation(s)
- Verónica Trucco
- Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Instituto de Patología Vegetal (INTA-CIAP-IPAVE), Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola (CONICET-UFyMA), Av. 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
| | - Dariel Cabrera Mederos
- Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Instituto de Patología Vegetal (INTA-CIAP-IPAVE), Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola (CONICET-UFyMA), Av. 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina
| | - Sergio Lenardon
- Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Instituto de Patología Vegetal (INTA-CIAP-IPAVE), Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina.,Facultad de Agronomía y Veterinaria (UNRC-FAV), Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km. 601 Río Cuarto, X5804BYA, Córdoba, Argentina
| | - Fabian Giolitti
- Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Instituto de Patología Vegetal (INTA-CIAP-IPAVE), Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola (CONICET-UFyMA), Av. 11 de Septiembre 4755, X5014MGO, Córdoba, Argentina.
| |
Collapse
|
52
|
Effect of Goose Parvovirus and Duck Circovirus Coinfection in Ducks. J Vet Res 2020; 64:355-361. [PMID: 32984623 PMCID: PMC7497759 DOI: 10.2478/jvetres-2020-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/26/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Coinfection of goose parvovirus (GPV) and duck circovirus (DuCV) occurs commonly in field cases of short beak and dwarfism syndrome (SBDS). However, whether there is synergism between the two viruses in replication and pathogenicity remains undetermined. Material and Methods We established a coinfection model of GPV and DuCV in Cherry Valley ducks. Tissue samples were examined histopathologically. The viral loads in tissues were detected by qPCR, and the distribution of the virus in tissues was detected by immunohistochemistry (IHC). Results Coinfection of GPV and DuCV significantly inhibited growth and development of ducks, and caused atrophy and pallor of the immune organs and necrosis of the liver. GPV and DuCV synergistically amplified pathogenicity in coinfected ducks. In the early stage of infection, viral loads of both pathogens in coinfected ducks were significantly lower than those in monoinfected ducks (P < 0.05). With the development of the infection process, GPV and DuCV loads in coinfected ducks were significantly higher than those in monoinfected ducks (P < 0.05). Extended viral distribution in the liver, kidney, duodenum, spleen, and bursa of Fabricius was consistent with the viral load increases in GPV and DuCV coinfected ducks. Conclusion These results indicate that GPV and DuCV synergistically potentiate their replication and pathogenicity in coinfected ducks.
Collapse
|
53
|
Maurastoni M, Sá-Antunes TF, Oliveira SA, Santos AMC, Ventura JA, Fernandes PMB. A multiplex RT-PCR method to detect papaya meleira virus complex in adult pre-flowering plants. Arch Virol 2020; 165:1211-1214. [PMID: 32170392 DOI: 10.1007/s00705-020-04588-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Papaya sticky disease (PSD), which can destroy orchards, was first attributed to papaya meleira virus (PMeV). However, the discovery of papaya meleira virus 2 (PMeV2) associated with PSD plants impose the need to detect this viral complex. We developed a multiplex RT-PCR (mPCR) technique capable of detecting two viruses in a single assay from pre-flowering plant samples, which is a useful tool for early diagnosis of PSD. We also determined the limit of detection (LOD) using asymmetric plasmid dilutions of both PMeV and PMeV2, which revealed that a higher titer of one virus prevents detection of the other. Thus, this technique is an alternative method for detecting PMeV and PMeV2 in a single reaction.
Collapse
Affiliation(s)
- Marlonni Maurastoni
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Tathiana F Sá-Antunes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Scarlett A Oliveira
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Alexandre M C Santos
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - José A Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, Epírito Santo, Brazil
| | - Patricia M B Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
54
|
Differential Accumulation of Innate- and Adaptive-Immune-Response-Derived Transcripts during Antagonism between Papaya Ringspot Virus and Papaya Mosaic Virus. Viruses 2020; 12:v12020230. [PMID: 32092910 PMCID: PMC7077339 DOI: 10.3390/v12020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Papaya ringspot virus (PRSV), a common potyvirus infecting papaya plants worldwide, can lead to either antagonism or synergism in mixed infections with Papaya mosaic virus (PapMV), a potexvirus. These two unrelated viruses produce antagonism or synergism depending on their order of infection in the plant. When PRSV is inoculated first or at the same time as PapMV, the viral interaction is synergistic. However, an antagonistic response is observed when PapMV is inoculated before PRSV. In the antagonistic condition, PRSV is deterred from the plant and its drastic effects are overcome. Here, we examine differences in gene expression by high-throughput RNA sequencing, focused on immune system pathways. We present the transcriptomic expression of single and mixed inoculations of PRSV and PapMV leading to synergism and antagonism. Upregulation of dominant and hormone-mediated resistance transcripts suggests that the innate immune system participates in synergism. In antagonism, in addition to innate immunity, upregulation of RNA interference-mediated resistance transcripts suggests that adaptive immunity is involved.
Collapse
|
55
|
Bian R, Andika IB, Pang T, Lian Z, Wei S, Niu E, Wu Y, Kondo H, Liu X, Sun L. Facilitative and synergistic interactions between fungal and plant viruses. Proc Natl Acad Sci U S A 2020; 117:3779-3788. [PMID: 32015104 PMCID: PMC7035501 DOI: 10.1073/pnas.1915996117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.
Collapse
Affiliation(s)
- Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- Key Laboratory of Integrated Pest Management on Crops In Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, 710-0046 Kurashiki, Japan
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
- Key Laboratory of Integrated Pest Management on Crops In Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, 712100 Yangling, China
| |
Collapse
|
56
|
Li C, Ito M, Kasajima I, Yoshikawa N. Estimation of the functions of viral RNA silencing suppressors by apple latent spherical virus vector. Virus Genes 2020; 56:67-77. [PMID: 31646461 DOI: 10.1007/s11262-019-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022]
Abstract
Apple latent spherical virus (ALSV) is a latent virus with wide host range of plant species. In the present study, we prepared ALSV vectors expressing RNA silencing suppressors (RSSs) from eight plant viruses: P19 of carnation Italian ring spot virus (tombusvirus), 2b of peanut stunt virus (cucumovirus), NSs of tomato spotted wilt virus (tospovirus), HC-Pro of bean yellow mosaic virus (potyvirus), γb of barley stripe mosaic virus (hordeivirus), P15 of peanut clump virus (pecluvirus), P1 of rice yellow mottle virus (sobemovirus), or P21 of beet yellows virus (closterovirus). These vectors were inoculated to Nicotiana benthamiana to investigate the effects of RSSs on the virulence and accumulation of ALSV. Among the vectors, ALSV expressing NSs (ALSV-NSs) developed severe mosaic symptoms in newly developed leaves followed by plant death. Infection of ALSV-γb induced characteristic concentric ringspot symptoms on leaves, and plants infected with ALSV-HC-Pro showed mosaic and dwarf symptoms. Infection of the other five ALSV vectors did not show symptoms. ELISA and immunoblot assay indicated that virus titer increased in leaves infected with ALSV-NSs, γb, HC-Pro, or P19. RT-qPCR indicated that the amount of ALSV in plants infected with ALSV-NSs was increased by approximately 45 times compared with that of wtALSV without expression of any RSS. When ALSV-P19, NSs, or HC-Pro was inoculated to Cucumis sativus plants, none of these ALSV vectors induced symptoms, but accumulation of ALSV in plants infected with ALSV-NSs was increased, suggesting that functions of RSSs on virulence and accumulation of ALSV depend on host species.
Collapse
Affiliation(s)
- Chunjiang Li
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Makoto Ito
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Ichiro Kasajima
- Agri-Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan.
- Agri-Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
57
|
Pai H, Jean W, Lee Y, Chang YA, Lin N. Genome-wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis. MOLECULAR PLANT PATHOLOGY 2020; 21:188-205. [PMID: 31724809 PMCID: PMC6988431 DOI: 10.1111/mpp.12888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) are the two most prevalent viruses infecting orchids and causing economic losses worldwide. Mixed infection of CymMV and ORSV could induce intensified symptoms as early at 10 days post-inoculation in inoculated Phalaenopsis amabilis, where CymMV pathogenesis was unilaterally enhanced by ORSV. To reveal the antiviral RNA silencing activity in orchids, we characterized the viral small-interfering RNAs (vsiRNAs) from CymMV and ORSV singly or synergistically infecting P. amabilis. We also temporally classified the inoculated leaf-tip tissues and noninoculated adjacent tissues as late and early stages of infection, respectively. Regardless of early or late stage with single or double infection, CymMV and ORSV vsiRNAs were predominant in 21- and 22-nt sizes, with excess positive polarity and under-represented 5'-guanine. While CymMV vsiRNAs mainly derived from RNA-dependent RNA polymerase-coding regions, ORSV vsiRNAs encompassed the coat protein gene and 3'-untranslated region, with a specific hotspot residing in the 3'-terminal pseudoknot. With double infection, CymMV vsiRNAs increased more than 5-fold in number with increasing virus titres. Most vsiRNA features remained unchanged with double inoculation, but additional ORSV vsiRNA hotspot peaks were prominent. The potential vsiRNA-mediated regulation of the novel targets in double-infected tissues thereby provides a different view of CymMV and ORSV synergism. Hence, temporally profiled vsiRNAs from taxonomically distinct CymMV and ORSV illustrate active antiviral RNA silencing in their natural host, Phalaenopsis, during both early and late stages of infection. Our findings provide insights into offence-defence interactions among CymMV, ORSV and orchids.
Collapse
Affiliation(s)
- Hsuan Pai
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan11529
| | - Wen‐Han Jean
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan11529
| | - Yun‐Shien Lee
- Department of BiotechnologyMing Chuan UniversityTao‐YuanTaiwan33348
| | - Yao‐Chien Alex Chang
- Department of Horticulture and Landscape ArchitectureNational Taiwan UniversityTaipeiTaiwan10617
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan11529
| |
Collapse
|
58
|
Aguilar E, del Toro FJ, Figueira-Galán D, Hou W, Canto T, Tenllado F. Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria–host interactions, which are compromised under conditions of elevated temperature and CO2 levels. J Gen Virol 2020; 101:122-135. [DOI: 10.1099/jgv.0.001353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - David Figueira-Galán
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| |
Collapse
|
59
|
Tatineni S, Stewart LR, Sanfaçon H, Wang X, Navas-Castillo J, Hajimorad MR. Fundamental Aspects of Plant Viruses-An Overview on Focus Issue Articles. PHYTOPATHOLOGY 2020; 110:6-9. [PMID: 31910089 DOI: 10.1094/phyto-10-19-0404-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the importance of and rapid research progress in plant virology in recent years, this Focus Issue broadly emphasizes advances in fundamental aspects of virus infection cycles and epidemiology. This Focus Issue comprises three review articles and 18 research articles. The research articles cover broad research areas on the identification of novel viruses, the development of detection methods, reverse genetics systems and functional genomics for plant viruses, vector and seed transmission studies, viral population studies, virus-virus interactions and their effect on vector transmission, and management strategies of viral diseases. The three review articles discuss recent developments in application of prokaryotic clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) technology for plant virus resistance, mixed viral infections and their role in disease synergism and cross-protection, and viral transmission by whiteflies. The following briefly summarizes the articles appearing in this Focus Issue.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, U.S.A
| | - Lucy R Stewart
- U.S. Department of Agriculture-Agricultural Research Service, Corn, Soybean, and Wheat Quality Research Unit, Wooster, OH, U.S.A
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, U.S.A
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, 29750 Algarrobo-Costa, Málaga, Spain
| | - M Reza Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, U.S.A
| |
Collapse
|
60
|
Farber C, Bryan R, Paetzold L, Rush C, Kurouski D. Non-Invasive Characterization of Single-, Double- and Triple-Viral Diseases of Wheat With a Hand-Held Raman Spectrometer. FRONTIERS IN PLANT SCIENCE 2020; 11:01300. [PMID: 33013951 PMCID: PMC7495046 DOI: 10.3389/fpls.2020.01300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 05/10/2023]
Abstract
Plant diseases can reduce crop yield by up to 100%. Therefore, timely and confirmatory diagnosis of plant diseases is strongly desired. Typical pathogen assaying methods include polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). These approaches are quite useful but are also time-consuming and destructive to the sample. Raman spectroscopy (RS) is a modern analytical technique that enables non-invasive plant disease detection. In this study, we report on Raman-based detection of wheat diseases caused by wheat streak mosaic virus (WSMV) and barley yellow dwarf virus (BYDV). Our results show that RS can be used to differentiate between healthy wheat and wheat infected by these two viruses. We also show that RS can be used to identify whether wheat is infected by these individual viruses or by a combination of WSMV and BYDV, as well as WSMV, BYDV, and Triticum mosaic virus (TriMV). We found that wheat spectra showed non-linear spectroscopic responses to coinfection by different viruses. These results suggest that RS can be used to probe pathogen-specific changes in plant metabolism. The portable nature of this approach opens the possibility of RS directly in the field for confirmatory diagnostics of viral diseases.
Collapse
Affiliation(s)
- Charles Farber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Rebecca Bryan
- Department of Plant Pathology, Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - Li Paetzold
- Department of Plant Pathology, Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - Charles Rush
- Department of Plant Pathology, Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- The Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, United States
- *Correspondence: Dmitry Kurouski,
| |
Collapse
|
61
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
62
|
Tatineni S, Sato S, Nersesian N, Alexander J, Quach T, Graybosch RA, Clemente TE. Transgenic Wheat Harboring an RNAi Element Confers Dual Resistance Against Synergistically Interacting Wheat Streak Mosaic Virus and Triticum Mosaic Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:108-122. [PMID: 31687913 DOI: 10.1094/mpmi-10-19-0275-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat (Triticum aestivum L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses. Development of dual-resistant wheat lines would provide effective control of these two viruses. In this study, a genetic resistance strategy employing an RNA interference (RNAi) approach was implemented by assembling a hairpin element composed of a 202-bp (404-bp in total) stem sequence of the NIb (replicase) gene from each of WSMV and TriMV in tandem and of an intron sequence in the loop. The derived RNAi element was cloned into a binary vector and was used to transform spring wheat genotype CB037. Phenotyping of T1 lineages across eight independent transgenic events for resistance revealed that i) two of the transgenic events provided resistance to WSMV and TriMV, ii) four events provided resistance to either WSMV or TriMV, and iii) no resistance was found in two other events. T2 populations derived from the two events classified as dual-resistant were subsequently monitored for stability of the resistance phenotype through the T4 generation. The resistance phenotype in these events was temperature-dependent, with a complete dual resistance at temperatures ≥25°C and an increasingly susceptible response at temperatures below 25°C. Northern blot hybridization of total RNA from transgenic wheat revealed that virus-specific small RNAs (vsRNAs) accumulated progressively with an increase in temperature, with no detectable levels of vsRNA accumulation at 20°C. Thus, the resistance phenotype of wheat harboring an RNAi element was correlated with accumulation of vsRNAs, and the generation of vsRNAs can be used as a molecular marker for the prediction of resistant phenotypes of transgenic plants at a specific temperature.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Shirley Sato
- Center for Biotechnology, University of Nebraska-Lincoln
| | | | | | - Truyen Quach
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln
| | | | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln
- Center for Plant Science Innovation, University of Nebraska-Lincoln
| |
Collapse
|
63
|
Domingo-Calap ML, Moreno AB, Díaz Pendón JA, Moreno A, Fereres A, López-Moya JJ. Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. PHYTOPATHOLOGY 2020; 110:174-186. [PMID: 31502517 DOI: 10.1094/phyto-04-19-0126-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Antonio Díaz Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Aranzazu Moreno
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Barcelona, Spain
| |
Collapse
|
64
|
Status and Epidemiology of Maize Lethal Necrotic Disease in Northern Tanzania. Pathogens 2019; 9:pathogens9010004. [PMID: 31861452 PMCID: PMC7168672 DOI: 10.3390/pathogens9010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n=223). Analysis of a subset (n=48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers' interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamicsin Tanzania and emphasizes the need for regional scientists to utilize farmers' awareness in managing the disease.
Collapse
|
65
|
Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses. Viruses 2019; 11:v11121153. [PMID: 31847125 PMCID: PMC6950130 DOI: 10.3390/v11121153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
Co-infection of plant hosts by two or more viruses is common in agricultural crops and natural plant communities. A variety of models have been used to investigate the dynamics of co-infection which track only the disease status of infected and co-infected plants, and which do not explicitly track the density of inoculative vectors. Much less attention has been paid to the role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic and antagonistic interactions. In this investigation, a general epidemiological model is formulated for one vector species and one plant species with potential co-infection in the host plant by two viruses. The basic reproduction number provides conditions for successful invasion of a single virus. We derive a new invasion threshold which provides conditions for successful invasion of a second virus. These two thresholds highlight some key epidemiological parameters important in vector transmission. To illustrate the flexibility of our model, we examine numerically two special cases of viral invasion. In the first case, one virus species depends on an autonomous virus for its successful transmission and in the second case, both viruses are unable to invade alone but can co-infect the host plant when prevalence is high.
Collapse
|
66
|
Hamelin FM, Allen LJS, Bokil VA, Gross LJ, Hilker FM, Jeger MJ, Manore CA, Power AG, Rúa MA, Cunniffe NJ. Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biol 2019; 17:e3000551. [PMID: 31794547 PMCID: PMC6890165 DOI: 10.1371/journal.pbio.3000551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models. If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts can be obtained by simply multiplying the individual prevalences. However, even simple epidemiological models show this to be untrue. This study develops new tests for interaction between pathogens that account for this surprising lack of statistical independence.
Collapse
Affiliation(s)
- Frédéric M. Hamelin
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Linda J. S. Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States of America
| | - Vrushali A. Bokil
- Department of Mathematics, Oregon State University, Corvallis, Oregon, United States of America
| | - Louis J. Gross
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Frank M. Hilker
- Institute of Environmental Systems Research, School of Mathematics and Computer Science, Osnabrück University, Osnabrück, Germany
| | - Michael J. Jeger
- Centre for Environmental Policy, Imperial College London, Ascot, United Kingdom
| | - Carrie A. Manore
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alison G. Power
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Megan A. Rúa
- Department of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Chowda-Reddy RV, Palmer N, Edme S, Sarath G, Kovacs F, Yuen G, Mitchell R, Tatineni S. A Two-Amino Acid Difference in the Coat Protein of Satellite panicum mosaic virus Isolates Is Responsible for Differential Synergistic Interactions with Panicum mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:479-490. [PMID: 30379112 DOI: 10.1094/mpmi-09-18-0247-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Panicum mosaic virus (PMV) (genus Panicovirus, family Tombusviridae) and its molecular parasite, Satellite panicum mosaic virus (SPMV), synergistically interact in coinfected proso and pearl millet (Panicum miliaceum L.) plants resulting in a severe symptom phenotype. In this study, we examined synergistic interactions between the isolates of PMV and SPMV by using PMV-NE, PMV85, SPMV-KS, and SPMV-Type as interacting partner viruses in different combinations. Coinfection of proso millet plants by PMV-NE and SPMV-KS elicited severe mosaic, chlorosis, stunting, and eventual plant death compared with moderate mosaic, chlorotic streaks, and stunting by PMV85 and SPMV-Type. In reciprocal combinations, coinfection of proso millet by either isolate of PMV with SPMV-KS but not with SPMV-Type elicited severe disease synergism, suggesting that SPMV-KS was the main contributor for efficient synergistic interaction with PMV isolates. Coinfection of proso millet plants by either isolate of PMV and SPMV-KS or SPMV-Type caused increased accumulation of coat protein (CP) and genomic RNA copies of PMV, compared with infections by individual PMV isolates. Additionally, CP and genomic RNA copies of SPMV-KS accumulated at substantially higher levels, compared with SMPV-Type in coinfected proso millet plants with either isolate of PMV. Hybrid viruses between SPMV-KS and SPMV-Type revealed that SPMV isolates harboring a CP fragment with four differing amino acids at positions 18, 35, 59, and 98 were responsible for differential synergistic interactions with PMV in proso millet plants. Mutation of amino acid residues at these positions in different combinations in SPMV-KS, similar to those as in SPMV-Type or vice-versa, revealed that A35 and R98 in SPMV-KS CP play critical roles in enhanced synergistic interactions with PMV isolates. Taken together, these data suggest that the two distinct amino acids at positions 35 and 98 in the CP of SPMV-KS and SPMV-Type are involved in the differential synergistic interactions with the helper viruses.
Collapse
Affiliation(s)
- R V Chowda-Reddy
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Nathan Palmer
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Serge Edme
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Gautam Sarath
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Frank Kovacs
- 3 Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, U.S.A.; and
| | - Gary Yuen
- 4 Department of Plant Pathology, University of Nebraska-Lincoln
| | - Robert Mitchell
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Satyanarayana Tatineni
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- 4 Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
68
|
Tatineni S, Alexander J, Gupta AK, French R. Asymmetry in Synergistic Interaction Between Wheat streak mosaic virus and Triticum mosaic virus in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:336-350. [PMID: 30106671 DOI: 10.1094/mpmi-07-18-0189-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), distinct members in the family Potyviridae, are economically important wheat-infecting viruses in the Great Plains region. Previously, we reported that coinfection of wheat by WSMV and TriMV caused disease synergism with increased concentration of both viruses. The mechanisms of synergistic interaction between WSMV and TriMV and the effects of prior infection of wheat by either of these "synergistically interacting partner" (SIP) viruses on the establishment of local and systemic infection by the other SIP virus are not known. In this study, using fluorescent protein-tagged viruses, we found that prior infection of wheat by WSMV or TriMV negatively affected the onset and size of local foci elicited by subsequent SIP virus infection compared with those in buffer-inoculated wheat. These data revealed that prior infection of wheat by an SIP virus has no measurable advantage for another SIP virus on the initiation of infection and cell-to-cell movement. In TriMV-infected wheat, WSMV exhibited accelerated long-distance movement and increased accumulation of genomic RNAs compared with those in buffer-inoculated wheat, indicating that TriMV-encoded proteins complemented WSMV for efficient systemic infection. In contrast, TriMV displayed delayed systemic infection in WSMV-infected wheat, with fewer genomic RNA copies in early stages of infection compared with those in buffer-inoculated wheat. However, during late stages of infection, TriMV accumulation in WSMV-infected wheat increased rapidly with accelerated long-distance movement compared with those in buffer-inoculated wheat. Taken together, these data suggest that interactions between synergistically interacting WSMV and TriMV are asymmetrical; thus, successful establishment of synergistic interaction between unrelated viruses will depend on the order of infection of plants by SIP viruses.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- 1 United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology and
| | - Jeff Alexander
- 1 United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology and
| | - Adarsh K Gupta
- 2 Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583, U.S.A
| | - Roy French
- 1 United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology and
| |
Collapse
|
69
|
Alves-Freitas DMT, Pinheiro-Lima B, Faria JC, Lacorte C, Ribeiro SG, Melo FL. Double-Stranded RNA High-Throughput Sequencing Reveals a New Cytorhabdovirus in a Bean Golden Mosaic Virus-Resistant Common Bean Transgenic Line. Viruses 2019; 11:E90. [PMID: 30669683 PMCID: PMC6357046 DOI: 10.3390/v11010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Using double-strand RNA (dsRNA) high-throughput sequencing, we identified five RNA viruses in a bean golden mosaic virus (BGMV)-resistant common bean transgenic line with symptoms of viral infection. Four of the identified viruses had already been described as infecting common bean (cowpea mild mottle virus, bean rugose mosaic virus, Phaseolus vulgaris alphaendornavirus 1, and Phaseolus vulgaris alphaendornavirus 2) and one is a putative new plant rhabdovirus (genus Cytorhabdovirus), tentatively named bean-associated cytorhabdovirus (BaCV). The BaCV genome presented all five open reading frames (ORFs) found in most rhabdoviruses: nucleoprotein (N) (ORF1) (451 amino acids, aa), phosphoprotein (P) (ORF2) (445 aa), matrix (M) (ORF4) (287 aa), glycoprotein (G) (ORF5) (520 aa), and an RNA-dependent RNA polymerase (L) (ORF6) (114 aa), as well as a putative movement protein (P3) (ORF3) (189 aa) and the hypothetical small protein P4. The predicted BaCV proteins were compared to homologous proteins from the closest cytorhabdoviruses, and a low level of sequence identity (15⁻39%) was observed. The phylogenetic analysis shows that BaCV clustered with yerba mate chlorosis-associated virus (YmCaV) and rice stripe mosaic virus (RSMV). Overall, our results provide strong evidence that BaCV is indeed a new virus species in the genus Cytorhabdovirus (family Rhabdoviridae), the first rhabdovirus to be identified infecting common bean.
Collapse
Affiliation(s)
| | - Bruna Pinheiro-Lima
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | | | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900 Brasília, Brazil.
| |
Collapse
|
70
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
71
|
Evolution of plant-virus interactions: host range and virus emergence. Curr Opin Virol 2019; 34:50-55. [PMID: 30654270 DOI: 10.1016/j.coviro.2018.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Changes in host range are central to virus emergence. Host range, together with its evolution, is determined by virus intrinsic factors, such as genetic traits determining its fitness in different hosts. Experimental analyses have shown the relevance in host range evolution of across-host fitness trade-offs. Host range is also determined by ecological factors extrinsic to the virus such as the distribution, abundance, and interaction of species, and understanding their role in host range evolution is a current challenge. Indeed, intrinsic and extrinsic factors, and the complexity of biotic and abiotic interactions, must be considered in order to provide generalisations on patterns of transmission, host range evolution, and disease emergence. This exciting new field of research is still in its infancy.
Collapse
|
72
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
73
|
Salánki K, Gellért Á, Nemes K, Divéki Z, Balázs E. Molecular Modeling for Better Understanding of Cucumovirus Pathology. Adv Virus Res 2018; 102:59-88. [PMID: 30266176 DOI: 10.1016/bs.aivir.2018.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cucumber mosaic virus (CMV) is a small RNA virus capable of infecting a wide variety of plant species. The high economic losses due to the CMV infection made this virus a relevant subject of scientific studies, which were further facilitated by the small size of the viral genome. Hence, CMV also became a model organism to investigate the molecular mechanism of pathogenesis. All viral functions are dependent on intra- and intermolecular interactions between nucleic acids and proteins of the virus and the host. This review summarizes the recent data on molecular determinants of such interactions. A particular emphasis is given to the results obtained by utilizing molecular-based planning and modeling techniques.
Collapse
Affiliation(s)
- Katalin Salánki
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- MTA ATK, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Nemes
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Divéki
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ervin Balázs
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
74
|
Viljakainen L, Holmberg I, Abril S, Jurvansuu J. Viruses of invasive Argentine ants from the European Main supercolony: characterization, interactions and evolution. J Gen Virol 2018; 99:1129-1140. [DOI: 10.1099/jgv.0.001104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lumi Viljakainen
- 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ida Holmberg
- 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Sílvia Abril
- 2Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Jaana Jurvansuu
- 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
75
|
Zhou J, Zhao GL, Wang XM, Du XS, Su S, Li CG, Nair V, Yao YX, Cheng ZQ. Synergistic Viral Replication of Marek's Disease Virus and Avian Leukosis Virus Subgroup J is Responsible for the Enhanced Pathogenicity in the Superinfection of Chickens. Viruses 2018; 10:E271. [PMID: 29783672 PMCID: PMC5977264 DOI: 10.3390/v10050271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Superinfection of Marek's disease virus (MDV) and avian leukosis virus subgroup J (ALV-J) causes lethal neoplasia and death in chickens. However, whether there is synergism between the two viruses in viral replication and pathogenicity has remained elusive. In this study, we found that the superinfection of MDV and ALV-J increased the viral replication of the two viruses in RNA and protein level, and synergistically promoted the expression of IL-10, IL-6, and TGF-β in chicken embryo fibroblasts (CEF). Moreover, MDV and ALV-J protein expression in dual-infected cells detected by confocal laser scanning microscope appeared earlier in the cytoplasm and the nucleus, and caused more severe cytopathy than single infection, suggesting that synergistically increased MDV and ALV-J viral-protein biosynthesis is responsible for the severe cytopathy. In vivo, compared to the single virus infected chickens, the mortality and tumor formation rates increased significantly in MDV and ALV-J dual-infected chickens. Viral loads of MDV and ALV-J in tissues of dual-infected chickens were significantly higher than those of single-infected chickens. Histopathology observation showed that more severe inflammation and tumor cells metastases were present in dual-infected chickens. In the present study, we concluded that synergistic viral replication of MDV and ALV-J is responsible for the enhanced pathogenicity in superinfection of chickens.
Collapse
Affiliation(s)
- Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Guo-Liang Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Xiao-Man Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Xu-Sheng Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Chen-Gui Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yong-Xiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zi-Qiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.
| |
Collapse
|
76
|
McLeish MJ, Fraile A, García-Arenal F. Ecological Complexity in Plant Virus Host Range Evolution. Adv Virus Res 2018; 101:293-339. [PMID: 29908592 DOI: 10.1016/bs.aivir.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
77
|
Ziebell H, MacDiarmid R. Prospects for engineering and improvement of cross-protective virus strains. Curr Opin Virol 2017; 26:8-14. [PMID: 28743041 DOI: 10.1016/j.coviro.2017.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Abstract
Mild strain cross-protection is currently an important method for the production of high quality plant products; despite challenge from severe virus isolates the initial protecting strain precludes symptom development. The mechanism of cross-protection is not yet resolved as RNA silencing does not sufficiently explain the phenomenon. Six requirements have been put forward to ensure long-lasting protection. We propose two additional requirements for effective and durable mild strain cross-protection; mild strains based on knowledge of the mechanism and consideration of impacts to consumers. Future research on predicting phenotype from genotype and understanding virus-plant and virus-vector interactions will enable improvement of cross-protective strains. Shared international databases of whole ecosystem interactions across a wide range of virus patho- and symbiotic-systems will form the basis for making step-change advances towards our collective ability to engineer and improve mild strain cross-protection.
Collapse
Affiliation(s)
- Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Messeweg 11-12, 38104 Braunschweig, Germany.
| | - Robin MacDiarmid
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
78
|
Sanfaçon H. Grand Challenge in Plant Virology: Understanding the Impact of Plant Viruses in Model Plants, in Agricultural Crops, and in Complex Ecosystems. Front Microbiol 2017; 8:860. [PMID: 28596756 PMCID: PMC5442230 DOI: 10.3389/fmicb.2017.00860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/27/2017] [Indexed: 01/23/2023] Open
Affiliation(s)
- Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development CentreSummerland, BC, Canada
| |
Collapse
|