51
|
Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 2018; 41:585-596. [PMID: 29594645 DOI: 10.1007/s10545-018-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.
Collapse
Affiliation(s)
- Graeme Preston
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
52
|
Ilie IR. Advances in PCOS Pathogenesis and Progression-Mitochondrial Mutations and Dysfunction. Adv Clin Chem 2018; 86:127-155. [PMID: 30144838 DOI: 10.1016/bs.acc.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common female endocrine disorder, which still remains largely unsolved in terms of etiology and pathogenesis despite important advances in our understanding of its genetic, epigenetic, or environmental factor implications. It is a heterogeneous disease, frequently associated with insulin resistance, chronic inflammation, and oxidative stress and probably accompanied with subclinical cardiovascular disease (CVD) and some malignant lesions as well, such as endometrial cancer. Discrepancies in the clinical phenotype and progression of PCOS exist between different population groups, which nuclear genetic studies have so far failed to explain. Over the last years, mitochondrial dysfunction has been increasingly recognized as an important contributor to an array of diseases. Because mitochondria are under the dual genetic control of both the mitochondrial and nuclear genomes, mutations within either DNA molecule may result in deficiency in respiratory chain function that leads to a reduced ability to produce cellular adenosine-5'-triphosphate and to an excessive production of reactive oxygen species. However, the association between variants in mitochondrial genome, mitochondrial dysfunction, and PCOS has been investigated to a lesser extent. May mutations in mitochondrial DNA (mtDNA) become an additional target of investigations on the missing PCOS heritability? Are mutations in mtDNA implicated in the initiation and progression of PCOS complications, e.g., CVDs, diabetes mellitus, cancers?
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania; E-mail:
| |
Collapse
|
53
|
Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, Westrin Å, Hough CM, Lin J, Reus VI, Epel ES, Mellon SH. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 2018; 43:1557-1564. [PMID: 29453441 PMCID: PMC5983469 DOI: 10.1038/s41386-017-0001-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) has been linked to mitochondrial defects, which could manifest in mitochondrial DNA (mtDNA) polymorphisms or mutations. Additionally, copy number of mtDNA (mtDNA-cn) can be quantified in peripheral blood mononuclear cells (PBMC)s, indirectly reflecting cellular energetics, or in the circulating cell-free mtDNA (ccf-mtDNA) levels, which may reflect a fraction of the mitochondrial genome released during cellular stress. Few studies have examined ccf-mtDNA in MDD, and no studies have tested its relationship with intracellular mtDNA-cn or with antidepressant treatment response. Here, mtDNA levels were quantified in parallel from: (i) PBMCs and (ii) cell-free plasma of 50 unmedicated MDD subjects and 55 controls, in parallel with PBMC telomere length (TL) and antioxidant enzyme glutathione peroxidase (GpX) activity. MtDNA measures were repeated in 19 MDD subjects after 8 weeks of open-label SSRI treatment. In analyses adjusted for age, sex, BMI, and smoking, MDD subjects had significantly elevated levels of ccf-mtDNA (F = 20.6, p = 0.00002). PBMC mtDNA-cn did not differ between groups (p > 0.4). In preliminary analyses, we found that changes in ccf-mtDNA with SSRI treatment differed between SSRI responders and non-responders (F = 6.47, p = 0.02), with the non-responders showing an increase in ccf-mtDNA and responders not changing. Baseline ccf-mtDNA was positively correlated with GpX (r = 0.32, p = 0.001), and PBMC mtDNA correlated positively with PBMC TL (r = 0.38, p = 0.0001). These data suggest that plasma ccf-mtDNA and PBMC mtDNA-cn reflect different cellular processes and that the former may be more reflective of certain aspects of MDD pathophysiology and of the response to SSRI antidepressants.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden. .,Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA. .,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden.
| | - Owen M. Wolkowitz
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Martin Picard
- 0000 0001 2285 2675grid.239585.0Division of Behavioral Medicine, Department of Psychiatry, Columbia University Medical Center, New York, NY USA ,0000 0001 2285 2675grid.239585.0Department of Neurology and Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY USA ,0000 0001 2285 2675grid.239585.0Columbia Aging Center, Columbia University Medical Center, New York, NY USA
| | - Lars Ohlsson
- 0000 0000 9961 9487grid.32995.34Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Francesco S. Bersani
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA ,grid.7841.aDepartment of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Johan Fernström
- 0000 0001 0930 2361grid.4514.4Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden ,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Åsa Westrin
- 0000 0001 0930 2361grid.4514.4Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden ,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Christina M. Hough
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA ,0000 0000 9632 6718grid.19006.3ePresent Address: Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jue Lin
- 0000 0001 2297 6811grid.266102.1Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Victor I. Reus
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Elissa S. Epel
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Synthia H. Mellon
- 0000 0001 2297 6811grid.266102.1Department of OB/GYN and Reproductive Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| |
Collapse
|
54
|
Wang D, Li Z, Liu W, Zhou J, Ma X, Tang J, Chen X. Differential mitochondrial DNA copy number in three mood states of bipolar disorder. BMC Psychiatry 2018; 18:149. [PMID: 29801445 PMCID: PMC5970444 DOI: 10.1186/s12888-018-1717-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accumulating evidences indicated that mitochondrial abnormalities were associated with bipolar disorder. As a sensitive index of mitochondrial function and biogenesis, Mitochondrial DNA copy number (mtDNAcn) may be involved in the pathophysiology of bipolar disorder. METHODS Leukocyte relative mtDNAcn was measured by quantitative polymerase chain reaction in subjects with BD (n = 131) in manic, depressive, and euthymic symptoms. Thirty-four healthy individuals were used as comparison control. BD clinical symptomatology was evaluated by Young Mania Rating Scale (YMRS), Hamilton Depression Scale (HAM-D), Clinical Global Impression-Bipolar Disorder-Severity of Illness Scale (CGI-BD-S), and the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared to healthy controls, BD patients with manic and depressive symptoms presented significantly decreased mtDNAcn levels (p-value = 0.009 and 0.041, respectively). No significant differences were detected in mtDNAcn between euthymic patients and healthy controls. The mtDNAcn was negatively correlated with the number of relapses in manic patients (β = - 0.341, p = 0.044). CONCLUSIONS Our study described the first evidence of (1) a significant decline of mtDNAcn in manic BD patients, (2) a similar decreased level of mtDNAcn between manic and depressed BD patients, (3) a negative correlation of mtDNAcn with number of relapses in patients suffering from manic states. Alterations of mtDNAcn in manic and depressed patients, which may reflect disturbances of energy metabolism, supported the role of mitochondrial abnormalities in the pathophysiology of BD.
Collapse
Affiliation(s)
- Dong Wang
- 0000 0004 1803 0208grid.452708.cDepartment of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan China ,0000 0004 1803 0208grid.452708.cMental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Zongchang Li
- 0000 0004 1803 0208grid.452708.cDepartment of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan China ,0000 0001 0379 7164grid.216417.7Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Weiqing Liu
- grid.414902.aDepartment of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan China
| | - Jun Zhou
- 0000 0004 1803 0208grid.452708.cDepartment of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan China ,0000 0004 1803 0208grid.452708.cMental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiaoqian Ma
- 0000 0004 1803 0208grid.452708.cDepartment of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan China ,0000 0004 1803 0208grid.452708.cMental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jinsong Tang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Xiaogang Chen
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| |
Collapse
|
55
|
Mellon SH, Gautam A, Hammamieh R, Jett M, Wolkowitz OM. Metabolism, Metabolomics, and Inflammation in Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:866-875. [PMID: 29628193 DOI: 10.1016/j.biopsych.2018.02.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023]
Abstract
Posttraumatic stress disorder (PTSD) is defined by classic psychological manifestations, although among the characteristics are significantly increased rates of serious somatic comorbidities, such as cardiovascular disease, immune dysfunction, and metabolic syndrome. In this review, we assess the evidence for disturbances that may contribute to somatic pathology in inflammation, metabolic syndrome, and circulating metabolites (implicating mitochondrial dysfunction) in individuals with PTSD and in animal models simulating features of PTSD. The clinical and preclinical data highlight probable interrelated features of PTSD pathophysiology, including a proinflammatory milieu, metabolomic changes (implicating mitochondrial and other processes), and metabolic dysregulation. These data suggest that PTSD may be a systemic illness, or that it at least has systemic manifestations, and the behavioral manifestations are those most easily discerned. Whether somatic pathology precedes the development of PTSD (and thus may be a risk factor) or follows the development of PTSD (as a result of either shared pathophysiologies or lifestyle adaptations), comorbid PTSD and somatic illness is a potent combination placing affected individuals at increased physical as well as mental health risk. We conclude with directions for future research and novel treatment approaches based on these abnormalities.
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | - Aarti Gautam
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Rasha Hammamieh
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Marti Jett
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland.
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California-San Francisco, San Francisco, California
| |
Collapse
|
56
|
Tymofiyeva O, Blom EH, Ho TC, Connolly CG, Lindqvist D, Wolkowitz OM, Lin J, LeWinn KZ, Sacchet MD, Han LKM, Yuan JP, Bhandari SP, Xu D, Yang TT. High levels of mitochondrial DNA are associated with adolescent brain structural hypoconnectivity and increased anxiety but not depression. J Affect Disord 2018; 232:283-290. [PMID: 29500956 PMCID: PMC5864120 DOI: 10.1016/j.jad.2018.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adolescent anxiety and depression are highly prevalent psychiatric disorders that are associated with altered molecular and neurocircuit profiles. Recently, increased mitochondrial DNA copy number (mtDNA-cn) has been found to be associated with several psychopathologies in adults, especially anxiety and depression. The associations between mtDNA-cn and anxiety and depression have not, however, been investigated in adolescents. Moreover, to date there have been no studies examining associations between mtDNA-cn and brain network alterations in mood disorders in any age group. METHODS The first aim of this study was to compare salivary mtDNA-cn between 49 depressed and/or anxious adolescents and 35 well-matched healthy controls. The second aim of this study was to identify neural correlates of mtDNA-cn derived from diffusion tensor imaging (DTI) and tractography, in the full sample of adolescents. RESULTS There were no diagnosis-specific alterations in mtDNA-cn. However, there was a positive correlation between mtDNA-cn and levels of anxiety, but not depression, in the full sample of adolescents. A subnetwork of connections largely corresponding to the left fronto-occipital fasciculus had significantly lower fractional anisotropy (FA) values in adolescents with higher than median mtDNA-cn. LIMITATIONS Undifferentiated analysis of free and intracellular mtDNA and use of DTI-based tractography represent this study's limitations. CONCLUSIONS The results of this study help elucidate the relationships between clinical symptoms, molecular changes, and neurocircuitry alterations in adolescents with and without anxiety and depression, and they suggest that increased mtDNA-cn is associated both with increased anxiety symptoms and with decreased fronto-occipital structural connectivity in this population.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States.
| | - Eva Henje Blom
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Clinical Sciences/ Child- and Adolescent Psychiatry, Umeå University, Umeå, Sweden
| | - Tiffany C. Ho
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Psychology, Stanford University, United States
| | - Colm G. Connolly
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Daniel Lindqvist
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Psychiatry, Sweden
| | - Owen M. Wolkowitz
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Matthew D. Sacchet
- Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Laura K. M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Justin P. Yuan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Sarina P. Bhandari
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Tony T. Yang
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| |
Collapse
|
57
|
Brunst KJ, Sanchez-Guerra M, Chiu YHM, Wilson A, Coull BA, Kloog I, Schwartz J, Brennan KJ, Bosquet Enlow M, Wright RO, Baccarelli AA, Wright RJ. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: Effect modification by maternal lifetime trauma and child sex. ENVIRONMENT INTERNATIONAL 2018; 112:49-58. [PMID: 29248865 PMCID: PMC6094933 DOI: 10.1016/j.envint.2017.12.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Prenatal ambient fine particulate matter (PM2.5) and maternal chronic psychosocial stress have independently been linked to changes in mithochondrial DNA copy number (mtDNAcn), a marker of mitochondrial response and dysfunction. Further, overlapping research shows sex-specific effects of PM2.5 and stress on developmental outcomes. Interactions among PM2.5, maternal stress, and child sex have not been examined in this context. METHODS We examined associations among exposure to prenatal PM2.5, maternal lifetime traumatic stressors, and mtDNAcn at birth in a sociodemographically diverse pregnancy cohort (N=167). Mothers' daily exposure to PM2.5 over gestation was estimated using a satellite-based spatio-temporally resolved prediction model. Lifetime exposure to traumatic stressors was ascertained using the Life Stressor Checklist-Revised; exposure was categorized as high vs. low based on a median split. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNAcn in placenta and cord blood leukocytes. Bayesian Distributed Lag Interaction regression models (BDLIMs) were used to statistically model and visualize the PM2.5 timing-dependent pattern of associations with mtDNAcn and explore effect modification by maternal lifetime trauma and child sex. RESULTS Increased PM2.5 exposure across pregnancy was associated with decreased mtDNAcn in cord blood (cumulative effect estimate=-0.78; 95%CI -1.41, -0.16). Higher maternal lifetime trauma was associated with reduced mtDNAcn in placenta (β=-0.33; 95%CI -0.63, -0.02). Among women reporting low trauma, increased PM2.5 exposure late in pregnancy (30-38weeks gestation) was significantly associated with decreased mtDNAcn in placenta; no significant association was found in the high trauma group. BDLIMs identified a significant 3-way interaction between PM2.5, maternal trauma, and child sex. Specifically, PM2.5 exposure between 25 and 40weeks gestation was significantly associated with increased placental mtDNAcn among boys of mothers reporting high trauma. In contrast, PM2.5 exposure in this same window was significantly associated with decreased placental mtDNAcn among girls of mothers reporting low trauma. Similar 3-way interactive effects were observed in cord blood. CONCLUSIONS These results indicate that joint exposure to PM2.5 in late pregnancy and maternal lifetime trauma influence mtDNAcn at the maternal-fetal interface in a sex-specific manner. Additional studies will assist in understanding if the sex-specific patterns reflect distinct pathophysiological processes in addition to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, United States.
| | - Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico.
| | - Yueh-Hsiu Mathilda Chiu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, United States.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA 02115, United States.
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B 653, Beer Sheva, Israel.
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States.
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168th St., New York, NY 10032, United States.
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02215, United States; Department of Psychiatry, Harvard Medical School, 401 Park Dr., Boston, MA 02215, United States.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd St., New York, NY 10029, United States; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102nd St., New York, NY 10029, United States.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168th St., New York, NY 10032, United States.
| | - Rosalind J Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102nd St., New York, NY 10029, United States.
| |
Collapse
|
58
|
Guyatt AL, Burrows K, Guthrie PAI, Ring S, McArdle W, Day INM, Ascione R, Lawlor DA, Gaunt TR, Rodriguez S. Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women. Mitochondrion 2018; 39:9-19. [PMID: 28818596 PMCID: PMC5832987 DOI: 10.1016/j.mito.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.
Collapse
Affiliation(s)
- Anna L Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Philip A I Guthrie
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Sue Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Wendy McArdle
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ian N M Day
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| |
Collapse
|
59
|
Malan-Muller S, Valles-Colomer M, Raes J, Lowry CA, Seedat S, Hemmings SM. The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders. ACTA ACUST UNITED AC 2018; 22:90-107. [DOI: 10.1089/omi.2017.0077] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mireia Valles-Colomer
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-Core), Aurora, Colorado
- Department of Psychiatry, Neurology & Physical Medicine and Rehabilitation, Anschutz School of Medicine, University of Colorado, Aurora, Colorado
- VA Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Denver, Colorado
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sian M.J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
60
|
Venter M, van der Westhuizen FH, Elson JL. The aetiology of cardiovascular disease: a role for mitochondrial DNA? Cardiovasc J Afr 2017; 29:122-132. [PMID: 28906532 PMCID: PMC6009096 DOI: 10.5830/cvja-2017-037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a world-wide cause of mortality in humans and its incidence is on the rise in Africa. In this review, we discuss the putative role of mitochondrial dysfunction in the aetiology of CVD and consequently identify mitochondrial DNA (mtDNA) variation as a viable genetic risk factor to be considered. We then describe the contribution and pitfalls of several current approaches used when investigating mtDNA in relation to complex disease. We also propose an alternative approach, the adjusted mutational load hypothesis, which would have greater statistical power with cohorts of moderate size, and is less likely to be affected by population stratification. We therefore address some of the shortcomings of the current haplogroup association approach. Finally, we discuss the unique challenges faced by studies done on African populations, and recommend the most viable methods to use when investigating mtDNA variation in CVD and other common complex disease.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, United Kingdom
| |
Collapse
|
61
|
Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients. Eur Neuropsychopharmacol 2017. [PMID: 28647451 DOI: 10.1016/j.euroneuro.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, p<0.0001) at baseline. The difference in mtDNA copy number between patients and controls remained significant after controlling for age and sex (ß=8.13, p<0.0001; linear regression analysis). The mtDNA copy number was significantly associated with Patient Health Questionnaire (PHQ-9) scores (β=0.57, p=0.02) at baseline. After treatment, the change in mtDNA copy number was significantly associated with the treatment response, i.e., change in Hospital Anxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders.
Collapse
|
62
|
Solomon Z, Tsur N, Levin Y, Uziel O, Lahav M, Ohry A. The implications of war captivity and long-term psychopathology trajectories for telomere length. Psychoneuroendocrinology 2017; 81:122-128. [PMID: 28448821 DOI: 10.1016/j.psyneuen.2017.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous findings have demonstrated the link between trauma, its psychopathological aftermath and cellular aging, as reflected in telomere length. However, as long-term examinations of psychopathology following trauma are scarce, very little is known regarding the repercussions of depression and PTSD trajectories of psychopathology for telomeres. The current study examined the implications of war captivity and depression/PTSD trajectories on telomere length. METHODS Ninety-nine former prisoners of war (ex-POWs) from the 1973 Yom Kippur War were evaluated for depression and PTSD at 18, 30, 35 and 42 years after the war. Data on leukocyte telomere length of ex-POWs and 79 controls was collected 42 years after the war. RESULTS Ex-POWs had shorter telomeres compared to controls (Cohen's d=.5 indicating intermediate effect). Ex-POWs with chronic depression had shorter telomeres compared to those with delayed onset of depression (Cohen's d=4.89), and resilient ex-POWs (Cohen's d= 3.87), indicating high effect sizes. PTSD trajectories were not implicated in telomere length (Partial eta2=.16 and p=.11). CONCLUSION The findings suggest that the detrimental ramifications of war captivity are extensive, involving premature cellular senesces. These findings further point to the wear-and-tear effect of long-term depression, but not PTSD, on telomere length. Explanations for the findings are discussed.
Collapse
Affiliation(s)
- Zahava Solomon
- I-Core Research Center for Mass Trauma, Tel-Aviv University, Israel; Bob Shapell School of Social Work, Tel Aviv University, Tel Aviv, Israel
| | - Noga Tsur
- I-Core Research Center for Mass Trauma, Tel-Aviv University, Israel; Bob Shapell School of Social Work, Tel Aviv University, Tel Aviv, Israel.
| | - Yafit Levin
- Bob Shapell School of Social Work, Tel Aviv University, Tel Aviv, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Meir Lahav
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Avi Ohry
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
63
|
Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans. Transl Psychiatry 2017; 7:e1169. [PMID: 28696412 PMCID: PMC5538114 DOI: 10.1038/tp.2017.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Emerging knowledge suggests that post-traumatic stress disorder (PTSD) pathophysiology is linked to the patients' epigenetic changes, but comprehensive studies examining genome-wide methylation have not been performed. In this study, we examined genome-wide DNA methylation in peripheral whole blood in combat veterans with and without PTSD to ascertain differentially methylated probes. Discovery was initially made in a training sample comprising 48 male Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) veterans with PTSD and 51 age/ethnicity/gender-matched combat-exposed PTSD-negative controls. Agilent whole-genome array detected ~5600 differentially methylated CpG islands (CpGI) annotated to ~2800 differently methylated genes (DMGs). The majority (84.5%) of these CpGIs were hypermethylated in the PTSD cases. Functional analysis was performed using the DMGs encoding the promoter-bound CpGIs to identify networks related to PTSD. The identified networks were further validated by an independent test set comprising 31 PTSD+/29 PTSD- veterans. Targeted bisulfite sequencing was also used to confirm the methylation status of 20 DMGs shown to be highly perturbed in the training set. To improve the statistical power and mitigate the assay bias and batch effects, a union set combining both training and test set was assayed using a different platform from Illumina. The pathways curated from this analysis confirmed 65% of the pool of pathways mined from training and test sets. The results highlight the importance of assay methodology and use of independent samples for discovery and validation of differentially methylated genes mined from whole blood. Nonetheless, the current study demonstrates that several important epigenetically altered networks may distinguish combat-exposed veterans with and without PTSD.
Collapse
|
64
|
Aberrant telomere length and mitochondrial DNA copy number in suicide completers. Sci Rep 2017; 7:3176. [PMID: 28600518 PMCID: PMC5466636 DOI: 10.1038/s41598-017-03599-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022] Open
Abstract
Short telomere length (TL) occurs in individuals under psychological stress, and with various psychiatric diseases. Recent studies have also reported mitochondrial DNA copy number (mtDNAcn) alterations under several neuropsychiatric conditions. However, no study has examined whether aberrant TL or mtDNAcn occur in completed suicide, one of the most serious outcomes of mental illnesses. TL and mtDNAcn in post-mortem samples from 528 suicide completers without severe physical illness (508 peripheral bloods; 20 brains) and 560 samples from control subjects (peripheral bloods from 535 healthy individuals; 25 post-mortem brains) were analysed by quantitative polymerase chain reaction. Suicide completers had significantly shorter TL and higher mtDNAcn of peripheral bloods with sex/age-dependent differences (shorter TL was more remarkably in female/young suicides; higher mtDNAcn more so in male/elderly suicides). The normal age-related decline of TL and mtDNAcn were significantly altered in suicide completers. Furthermore, shorter TL and lower mtDNAcn of post-mortem prefrontal cortex were seen in suicide completers compared to controls. This study shows the first association of aberrant telomeres and mtDNA content with suicide completion. Our results indicate that further research on telomere shortening and mitochondrial dysfunction may help elucidate the molecular underpinnings of suicide-related pathophysiology.
Collapse
|
65
|
Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods Mol Biol 2017; 1598:117-154. [PMID: 28508360 DOI: 10.1007/978-1-4939-6952-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - James Meyerhoff
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA.
| |
Collapse
|
66
|
Lindqvist D, Fernström J, Grudet C, Ljunggren L, Träskman-Bendz L, Ohlsson L, Westrin Å. Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity. Transl Psychiatry 2016; 6:e971. [PMID: 27922635 PMCID: PMC5315562 DOI: 10.1038/tp.2016.236] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 12/29/2022] Open
Abstract
Preclinical data suggest that chronic stress may cause cellular damage and mitochondrial dysfunction, potentially leading to the release of mitochondrial DNA (mtDNA) into the bloodstream. Major depressive disorder has been associated with an increased amount of mtDNA in leukocytes from saliva samples and blood; however, no previous studies have measured plasma levels of free-circulating mtDNA in a clinical psychiatric sample. In this study, free circulating mtDNA was quantified in plasma samples from 37 suicide attempters, who had undergone a dexamethasone suppression test (DST), and 37 healthy controls. We hypothesized that free circulating mtDNA would be elevated in the suicide attempters and would be associated with hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity. Suicide attempters had significantly higher plasma levels of free-circulating mtDNA compared with healthy controls at different time points (pre- and post-DST; all P-values<2.98E-12, Cohen's d ranging from 2.55 to 4.01). Pre-DST plasma levels of mtDNA were positively correlated with post-DST cortisol levels (rho=0.49, P<0.003). Suicide attempters may have elevated plasma levels of free-circulating mtDNA, which are related to impaired HPA-axis negative feedback. This peripheral index is consistent with an increased cellular or mitochondrial damage. The specific cells and tissues contributing to plasma levels of free-circulating mtDNA are not known, as is the specificity of this finding for suicide attempters. Future studies are needed in order to better understand the relevance of increased free-circulating mtDNA in relation to the pathophysiology underlying suicidal behavior and depression.
Collapse
Affiliation(s)
- D Lindqvist
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden,Department of Psychiatry, School of Medicine, University of California San Francisco, School of Medicine, San Francisco, CA, USA,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - J Fernström
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - C Grudet
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden
| | - L Ljunggren
- Department of Biomedical Science, Malmö University,Health and Society, Malmö, Sweden
| | - L Träskman-Bendz
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden
| | - L Ohlsson
- Department of Biomedical Science, Malmö University,Health and Society, Malmö, Sweden,Department of Biomedical Science, Malmö University, Health and Society, Malmö 205 06, Sweden. E-mail:
| | - Å Westrin
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| |
Collapse
|
67
|
Li R, Liu Y, Chen N, Zhang Y, Song G, Zhang Z. Valproate Attenuates Nitroglycerin-Induced Trigeminovascular Activation by Preserving Mitochondrial Function in a Rat Model of Migraine. Med Sci Monit 2016; 22:3229-37. [PMID: 27618395 PMCID: PMC5029177 DOI: 10.12659/msm.900185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Migraine is a chronic disease that interferes with life quality and work productivity. Valproate shows protective effects against migraine, yet the underlying mechanisms are unclear. This study aimed to evaluate the potential effect of valproate on migraine using a rat model of nitroglycerin-induced trigeminovascular activation, as well as to explore the underlying mechanism. Material/Methods Intraperitoneal injection of nitroglycerin was conducted to induce trigeminovascular activation in rats. To explore the protective effect of valproate, a low dose (100 mg/kg) or a high dose (200 mg/kg) of valproate was intraperitoneally injected into rats, and then the levels of 5-hydroxytryptamine and nitric oxide in the peripheral blood were examined. The mtDNA copy number and the protein levels of peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, and peroxisome proliferator-activated receptor-γ in the spinal trigeminal nucleus were detected to evaluate the biogenesis of mitochondria. The mitochondrial energy metabolism was determined by the mitochondrial membrane potential and the levels of adenosine triphosphate, cytochrome C oxidase, and reactive oxygen species. Results Valproate attenuated nitroglycerin-induced trigeminovascular activation in rats, with reduced scratching behavior and restored 5-hydroxytryptamine and nitric oxide levels. Moreover, the mitochondrial energy metabolism and the biogenesis of mitochondria were preserved by valproate in nitroglycerin-treated rats. Conclusions The protective effect of valproate against migraine may be achieved through the modulation of mitochondrial biogenesis and function. Our study provides evidence for the potential use of valproate in the treatment of migraine.
Collapse
Affiliation(s)
- Ruxian Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yushuang Liu
- Department of Emergency Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China (mainland)
| | - Nan Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yitong Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Ge Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
68
|
Bersani FS, Wolkowitz OM, Milush JM, Sinclair E, Eppling L, Aschbacher K, Lindqvist D, Yehuda R, Flory J, Bierer LM, Matokine I, Abu-Amara D, Reus VI, Coy M, Hough CM, Marmar CR, Mellon SH. A population of atypical CD56(-)CD16(+) natural killer cells is expanded in PTSD and is associated with symptom severity. Brain Behav Immun 2016; 56:264-70. [PMID: 27025668 DOI: 10.1016/j.bbi.2016.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) has been associated with immune disturbances, including a higher incidence of infections and autoimmune diseases as well as a net pro-inflammatory state. Natural killer (NK) cells, a key component of the innate immune system, have been less well-studied in PTSD despite their importance in immunity. METHODS We studied two independent samples of combat-exposed male war veterans with or without PTSD, the first ("Discovery Sample") to generate hypotheses, and the second ("Validation Sample") to replicate the findings. The Discovery Sample was comprised of 42 PTSD subjects and 42 controls. The Validation Sample was comprised of 25 PTSD subjects and 30 controls. Participants had fasting, morning blood samples collected for examination of the frequency of NK cell subsets, determined by flow cytometry. The current and lifetime Clinician Administered PTSD Scale (CAPS) was used to assess symptom severity. Statistical analyses were adjusted for age and BMI. RESULTS PTSD subjects compared to controls had (i) a significantly higher relative frequency of atypical CD56(-)CD16(+) NK cells in the Discovery Sample (p=0.027), which was replicated in the Validation Sample (p=0.004) and the combined sample (p<0.001), and (ii) a non-significantly lower relative frequency of CD56(bright)CD16(-) NK cells in the two samples (p=0.082; p=0.118), which became statistically significant in the combined sample (p=0.020). Further, within subjects with PTSD of both samples, the relative frequency of atypical CD56(-)CD16(+) NK cells was near significantly positively correlated with lifetime PTSD severity (p=0.074). DISCUSSION This study is the first to characterize NK cell subsets in individuals with PTSD. The results suggest that combat-exposed men with PTSD exhibit an aberrant profile of NK cells with significantly higher frequencies of an atypical population of CD56(-)CD16(+) cells and possibly lower frequencies of the functional CD56(bright)CD16(-) NK cell subsets. Higher proportions of dysfunctional CD56(-)CD16(+) cells have been reported in certain chronic viral infections and in senescent individuals. It is possible that this could contribute to immune dysfunctions and prematurely senescent phenotypes seen in PTSD.
Collapse
Affiliation(s)
- Francesco S Bersani
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA.
| | - Jeffrey M Milush
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Elizabeth Sinclair
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Lorrie Eppling
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kirstin Aschbacher
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Janine Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Linda M Bierer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Iouri Matokine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Duna Abu-Amara
- Department of Psychiatry, New York University, New York, NY, USA; Steven and Alexandra Cohen Center for Posttraumatic Stress and TBI, New York, NY, USA
| | - Victor I Reus
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Coy
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Christina M Hough
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University, New York, NY, USA; Steven and Alexandra Cohen Center for Posttraumatic Stress and TBI, New York, NY, USA
| | - Synthia H Mellon
- Department of OB/GYN and Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|