51
|
|
52
|
Solin SL, Wang Y, Mauldin J, Schultz LE, Lincow DE, Brodskiy PA, Jones CA, Syrkin-Nikolau J, Linn JM, Essner JJ, Hostetter JM, Whitley EM, Cameron JD, Chou HH, Severin AJ, Sakaguchi DS, McGrail M. Molecular and cellular characterization of a zebrafish optic pathway tumor line implicates glia-derived progenitors in tumorigenesis. PLoS One 2014; 9:e114888. [PMID: 25485542 PMCID: PMC4259487 DOI: 10.1371/journal.pone.0114888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022] Open
Abstract
In this study we describe the molecular and cellular characterization of a zebrafish mutant that develops tumors in the optic pathway. Heterozygous Tg(flk1:RFP)is18 transgenic adults develop tumors of the retina, optic nerve and optic tract. Molecular and genetic mapping demonstrate the tumor phenotype is linked to a high copy number transgene array integrated in the lincRNA gene lincRNAis18/Zv9_00007276 on chromosome 3. TALENs were used to isolate a 147kb deletion allele that removes exons 2–5 of the lincRNAis18 gene. Deletion allele homozygotes are viable and do not develop tumors, indicating loss of function of the lincRNAis18 locus is not the trigger for tumor onset. Optic pathway tumors in the Tg(flk1:RFP)is18 mutant occur with a penetrance of 80–100% by 1 year of age. The retinal tumors are highly vascularized and composed of rosettes of various sizes embedded in a fibrous matrix. Immunohistochemical analysis showed increased expression of the glial markers GFAP and BLBP throughout retinal tumors and in dysplastic optic nerve. We performed transcriptome analysis of pre-tumorous retina and retinal tumor tissue and found changes in gene expression signatures of radial glia and astrocytes (slc1a3), activated glia (atf3, blbp, apoeb), proliferating neural progenitors (foxd3, nestin, cdh2, her9/hes1), and glioma markers (S100β, vim). The transcriptome also revealed activation of cAMP, Stat3 and Wnt signal transduction pathways. qRT-PCR confirmed >10-fold overexpression of the Wnt pathway components hbegfa, ascl1a, and insm1a. Together the data indicate Müller glia and/or astrocyte-derived progenitors could contribute to the zebrafish Tg(flk1:RFP)is18 optic pathway tumors.
Collapse
Affiliation(s)
- Staci L. Solin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Ying Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Joshua Mauldin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Laura E. Schultz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Deborah E. Lincow
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Pavel A. Brodskiy
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Crystal A. Jones
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Judith Syrkin-Nikolau
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jasmine M. Linn
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jeffrey J. Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jesse M. Hostetter
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, United States of America
| | - Elizabeth M. Whitley
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, United States of America
| | - J. Douglas Cameron
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Andrew J. Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa, United States of America
| | - Donald S. Sakaguchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
53
|
Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG, Goldman D. Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Rep 2014; 9:272-284. [PMID: 25263554 DOI: 10.1016/j.celrep.2014.08.047] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/09/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Unlike mammals, zebrafish can regenerate a damaged retina. This remarkable regenerative response is mediated by Müller glia (MG) that undergo a reprogramming event that drives their proliferation and the generation of multipotent progenitors for retinal repair. The mechanisms that drive MG reprogramming are poorly understood. Here, we report that Leptin and Gp130-coupled receptors, acting via a Jak/Stat signaling pathway, stimulate MG reprogramming and progenitor formation in the injured retina. Importantly, we find that ascl1a gene expression, which drives MG reprogramming in fish and mammals, is regulated in a Jak/Stat-dependent manner and requires consensus Stat-binding sites for injury-dependent activation. Finally, we identify cytokines that are induced by retinal injury and exhibit a remarkable synergy in their ability to activate Jak/Stat signaling and MG reprogramming in the uninjured retina. Our study not only furthers our understanding of retina regeneration in zebrafish but also suggests new strategies for awakening retina regeneration in mammals.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jin Wan
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Curtis Powell
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajesh Ramachandran
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin G Myers
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
54
|
Asaoka Y, Hata S, Namae M, Furutani-Seiki M, Nishina H. The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish. PLoS One 2014; 9:e97365. [PMID: 24828882 PMCID: PMC4020862 DOI: 10.1371/journal.pone.0097365] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA)]. Loss of Yap's TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by repressing Rx1-mediated transactivation of photoreceptor cell genes during zebrafish retinogenesis.
Collapse
Affiliation(s)
- Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (YA); (HN)
| | - Shoji Hata
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Misako Namae
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Furutani-Seiki
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (YA); (HN)
| |
Collapse
|
55
|
Sherpa T, Lankford T, McGinn TE, Hunter SS, Frey RA, Sun C, Ryan M, Robison BD, Stenkamp DL. Retinal regeneration is facilitated by the presence of surviving neurons. Dev Neurobiol 2014; 74:851-76. [PMID: 24488694 DOI: 10.1002/dneu.22167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
Abstract
Teleost fish regenerate their retinas after damage, in contrast to mammals. In zebrafish subjected to an extensive ouabain-induced lesion that destroys all neurons and spares Müller glia, functional recovery and restoration of normal optic nerve head (ONH) diameter take place at 100 days postinjury. Subsequently, regenerated retinas overproduce cells in the retinal ganglion cell (RGC) layer, and the ONH becomes enlarged. Here, we test the hypothesis that a selective injury, which spares photoreceptors and Müller glia, results in faster functional recovery and fewer long-term histological abnormalities. Following this selective retinal damage, recovery of visual function required 60 days, consistent with this hypothesis. In contrast to extensively damaged retinas, selectively damaged retinas showed fewer histological errors and did not overproduce neurons. Extensively damaged retinas had RGC axons that were delayed in pathfinding to the ONH, and showed misrouted axons within the ONH, suggesting that delayed functional recovery following an extensive lesion is related to defects in RGC axons exiting the eye and/or reaching their central targets. The atoh7, fgf8a, Sonic hedgehog (shha), and netrin-1 genes were differentially expressed, and the distribution of hedgehog protein was disrupted after extensive damage as compared with selective damage. Confirming a role for Shh signaling in supporting rapid regeneration, shha(t4) +/- zebrafish showed delayed functional recovery after selective damage. We suggest that surviving retinal neurons provide structural/molecular information to regenerating neurons, and that this patterning mechanism regulates factors such as Shh. These factors in turn control neuronal number, retinal lamination, and RGC axon pathfinding during retinal regeneration.
Collapse
Affiliation(s)
- Tshering Sherpa
- Department of Biological Sciences, University of Idaho, Moscow, Idaho; Department of Biological Sciences, Graduate Program in Neuroscience, University of Idaho, Moscow, Idaho
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sun L, Li P, Carr AL, Gorsuch R, Yarka C, Li J, Bartlett M, Pfister D, Hyde DR, Li L. Transcription of the SCL/TAL1 interrupting Locus (Stil) is required for cell proliferation in adult Zebrafish Retinas. J Biol Chem 2014; 289:6934-6940. [PMID: 24469449 DOI: 10.1074/jbc.m113.506295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Previously, we identified a homolog of the Stil gene in zebrafish mutant (night blindness b, nbb), which showed neural defects in the retina (e.g. dopaminergic cell degeneration and/or lack of regeneration). In this research, we examined the roles of Stil in cell proliferation after degeneration in adult zebrafish retinas. We demonstrated that knockdown of Stil gene expression or inhibition of Sonic hedgehog (Shh) signaling transduction decreases the rate of cell proliferation. In contrast, activation of Shh signal transduction promotes cell proliferation. In nbb(+/-) retinas, inhibition of SUFU (a repressor in the Shh pathway) rescues the defects in cell proliferation due to down-regulation of Stil gene expression. The latter data suggest that Stil play a role in cell proliferation through the Shh signal transduction pathway.
Collapse
Affiliation(s)
- Lei Sun
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Department of Physiology, Nankai University, Tianjin, China 370001
| | - Ping Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Aprell L Carr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ryne Gorsuch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Clare Yarka
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jingling Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michael Bartlett
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
57
|
Raymond PA, Colvin SM, Jabeen Z, Nagashima M, Barthel LK, Hadidjojo J, Popova L, Pejaver VR, Lubensky DK. Patterning the cone mosaic array in zebrafish retina requires specification of ultraviolet-sensitive cones. PLoS One 2014; 9:e85325. [PMID: 24465536 PMCID: PMC3897441 DOI: 10.1371/journal.pone.0085325] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022] Open
Abstract
Cone photoreceptors in teleost fish are organized in precise, crystalline arrays in the epithelial plane of the retina. In zebrafish, four distinct morphological/spectral cone types occupy specific, invariant positions within a regular lattice. The cone lattice is aligned orthogonal and parallel to circumference of the retinal hemisphere: it emerges as cones generated in a germinal zone at the retinal periphery are incorporated as single-cell columns into the cone lattice. Genetic disruption of the transcription factor Tbx2b eliminates most of the cone subtype maximally sensitive to ultraviolet (UV) wavelengths and also perturbs the long-range organization of the cone lattice. In the tbx2b mutant, the other three cone types (red, green, and blue cones) are specified in the correct proportion, differentiate normally, and acquire normal, planar polarized adhesive interactions mediated by Crumbs 2a and Crumbs 2b. Quantitative image analysis of cell adjacency revealed that the cones in the tbx2b mutant primarily have two nearest neighbors and align in single-cell-wide column fragments that are separated by rod photoreceptors. Some UV cones differentiate at the dorsal retinal margin in the tbx2b mutant, although they are severely dysmorphic and are eventually eliminated. Incorporating loss of UV cones during formation of cone columns at the margin into our previously published mathematical model of zebrafish cone mosaic formation (which uses bidirectional interactions between planar cell polarity proteins and anisotropic mechanical stresses in the plane of the retinal epithelium to generate regular columns of cones parallel to the margin) reproduces many features of the pattern disruptions seen in the tbx2b mutant.
Collapse
Affiliation(s)
- Pamela A. Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (PAR); (DKL)
| | - Steven M. Colvin
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zahera Jabeen
- Department of Physics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mikiko Nagashima
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Linda K. Barthel
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeremy Hadidjojo
- Department of Physics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lilia Popova
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vivek R. Pejaver
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David K. Lubensky
- Department of Physics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (PAR); (DKL)
| |
Collapse
|
58
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
59
|
Nagashima M, Barthel LK, Raymond PA. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development 2013; 140:4510-21. [PMID: 24154521 DOI: 10.1242/dev.090738] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Müller glia function as retinal stem cells in adult zebrafish. In response to loss of retinal neurons, Müller glia partially dedifferentiate, re-express neuroepithelial markers and re-enter the cell cycle. We show that the immunoglobulin superfamily adhesion molecule Alcama is a novel marker of multipotent retinal stem cells, including injury-induced Müller glia, and that each Müller glial cell divides asymmetrically only once to produce an Alcama-negative, proliferating retinal progenitor. The initial mitotic division of Müller glia involves interkinetic nuclear migration, but mitosis of retinal progenitors occurs in situ. Rapidly dividing retinal progenitors form neurogenic clusters tightly associated with Alcama/N-cadherin-labeled Müller glial radial processes. Genetic suppression of N-cadherin function interferes with basal migration of retinal progenitors and subsequent regeneration of HuC/D(+) inner retinal neurons.
Collapse
Affiliation(s)
- Mikiko Nagashima
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
60
|
Cid P, Doldán MJ, Rodríguez MS, Prego B, de Miguel E. Analysis of the morphogenesis and cell proliferation in the retina of a pleuronectiform fish, the turbot psetta maxima (Pleuronectiformes: Teleostei). Microsc Res Tech 2013; 76:588-97. [DOI: 10.1002/jemt.22203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/16/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Patricia Cid
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - María Jesús Doldán
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - María Soledad Rodríguez
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - Benjamin Prego
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - Encarnación de Miguel
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| |
Collapse
|
61
|
Stevens CB, Cameron DA, Stenkamp DL. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC DEVELOPMENTAL BIOLOGY 2011; 11:51. [PMID: 21878117 PMCID: PMC3189157 DOI: 10.1186/1471-213x-11-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/30/2011] [Indexed: 12/02/2022]
Abstract
Background Retinoic acid (RA) is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate decision. The RARαb receptor mediates the effects of endogenous, as well as exogenous RA, on rod development.
Collapse
Affiliation(s)
- Craig B Stevens
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | |
Collapse
|