51
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
52
|
Saijou E, Enomoto Y, Matsuda M, Yuet‐Yin Kok C, Akira S, Tanaka M, Miyajima A. Neutrophils alleviate fibrosis in the CCl 4-induced mouse chronic liver injury model. Hepatol Commun 2018; 2:703-717. [PMID: 29881822 PMCID: PMC5983199 DOI: 10.1002/hep4.1178] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022] Open
Abstract
Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1-deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4-induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1-deficient liver. Consistently, transplantation of Trib1-deficient bone marrow cells into wild-type mice alleviated CCl4-induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 (Cxcl1) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl4-induced fibrosis; infusion of wild-type neutrophils in CCl4-treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4-induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703-717).
Collapse
Affiliation(s)
- Eiko Saijou
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
| | - Yutaka Enomoto
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
| | - Michitaka Matsuda
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
- Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Cindy Yuet‐Yin Kok
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
- Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Shizuo Akira
- Immunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Minoru Tanaka
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
- Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
| |
Collapse
|
53
|
Abstract
Neutrophils play a key role in host defense against pathogens. They can contribute to pathological inflammation, and are thought to exacerbate tissue injury upon exposure to bacterial products, such as endotoxin (LPS). Recent findings suggest that neutrophils can also participate in adaptive immune responses and contribute to inflammation resolution. Many discoveries regarding the in vivo role of neutrophils were made possible by the use of genetically modified neutrophil-deficient mice, or by the use of neutrophil-depleting antibodies. Here we describe a new mouse model, PMNDTR mice, in which neutrophils can be selectively depleted upon injection of diphtheria toxin. Using this model, we have recently demonstrated that neutrophils play a protective role during lethal endotoxin-induced systemic shock. This new mouse model presents several major advantages over more classical models of neutropenia, which are discussed herein.
Collapse
Affiliation(s)
- Caitlin M Gillis
- Institut Pasteur, Département d'immunologie, Inserm U1222, Unité des anticorps en thérapie et pathologie, 25, rue du Docteur Roux, 75015 Paris, France
| | - Laurent L Reber
- Institut Pasteur, Département d'immunologie, Inserm U1222, Unité des anticorps en thérapie et pathologie, 25, rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
54
|
Foquet L, Schafer C, Minkah NK, Alanine DGW, Flannery EL, Steel RWJ, Sack BK, Camargo N, Fishbaugher M, Betz W, Nguyen T, Billman ZP, Wilson EM, Bial J, Murphy SC, Draper SJ, Mikolajczak SA, Kappe SHI. Plasmodium falciparum Liver Stage Infection and Transition to Stable Blood Stage Infection in Liver-Humanized and Blood-Humanized FRGN KO Mice Enables Testing of Blood Stage Inhibitory Antibodies (Reticulocyte-Binding Protein Homolog 5) In Vivo. Front Immunol 2018; 9:524. [PMID: 29593746 PMCID: PMC5861195 DOI: 10.3389/fimmu.2018.00524] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5–7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection.
Collapse
Affiliation(s)
- Lander Foquet
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Carola Schafer
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Nana K Minkah
- Center for Infectious Disease Research, Seattle, WA, United States
| | | | - Erika L Flannery
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Ryan W J Steel
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Brandon K Sack
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Nelly Camargo
- Center for Infectious Disease Research, Seattle, WA, United States
| | | | - Will Betz
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Thao Nguyen
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Zachary P Billman
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Microbiology, University of Washington, Seattle, WA, United States
| | | | - John Bial
- Yecuris Corporation, Tualatin, OR, United States
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
55
|
Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice. J Immunol Res 2018; 2018:5379085. [PMID: 29577051 PMCID: PMC5822902 DOI: 10.1155/2018/5379085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/05/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1+ or Ly6G+ neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression.
Collapse
|