51
|
Mercader JM, González JR, Lozano JJ, Bak M, Kauppinen S, Sumoy L, Dierssen M, Fernández-Aranda F, Visa J, Gratacòs M, Estivill X. Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model. Gene 2012; 497:181-90. [DOI: 10.1016/j.gene.2012.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/17/2022]
|
52
|
Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res 2012; 40:5651-65. [PMID: 22402495 PMCID: PMC3384334 DOI: 10.1093/nar/gks218] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GW182 family proteins are essential for miRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets via interactions with Argonaute proteins and then promote translational repression and degradation of the miRNA targets. The human and Drosophila melanogaster GW182 proteins share a similar domain organization and interact with PABPC1 as well as with subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. The homologous proteins in Caenorhabditis elegans, AIN-1 and AIN-2, lack most of the domains present in the vertebrate and insect proteins, raising the question as to how AIN-1 and AIN-2 contribute to silencing. Here, we show that both AIN-1 and AIN-2 interact with Argonaute proteins through GW repeats in the middle region of the AIN proteins. However, only AIN-1 interacts with C. elegans and D. melanogaster PABPC1, PAN3, NOT1 and NOT2, suggesting that AIN-1 and AIN-2 are functionally distinct. Our findings reveal a surprising evolutionary plasticity of the GW182 protein interaction network and demonstrate that binding to PABPC1 and deadenylase complexes has been maintained throughout evolution, highlighting the significance of these interactions for silencing.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
53
|
Gu XL, Wang H, Huang H, Cui XF. SPT6L encoding a putative WG/GW-repeat protein regulates apical-basal polarity of embryo in Arabidopsis. MOLECULAR PLANT 2012; 5:249-259. [PMID: 21948524 DOI: 10.1093/mp/ssr073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In eukaryotes, a protein motif consisting of WG/GW repeats, also called the Argonaute (AGO) hook, is thought to be essential for binding AGO proteins to fulfill their functions in RNA-mediated gene silencing. Although a number of WG/GW-containing proteins have been computationally identified in Arabidopsis, their roles in plant growth and development are unknown. Here, we show that the Arabidopsis Suppressor of Ty insertion 6-like (SPT6L) gene, which encodes a protein with C-terminal WG/GW repeats, plays critical roles in embryonic development. SPT6L is evolutionarily conserved only in vascular plants, with varying numbers of C-terminal WG/GW repeats, which are plant-species specific. spt6l mutants formed embryos with an aberrant apical-basal axis, showing insufficient development of the basal domain and embryonic lethality. Expression domains of the class-III homeodomain-leucine zipper (HD-ZIP III) genes PHABULOSA (PHB) and PHAVOLUTA (PHV) were expanded in the spt6l embryo. In contrast, the PLETHORA1 (PLT1) gene, which acts antagonistically to the HD-ZIP III genes in specification of basal fate, was severely down-regulated in the spt6l mutant. Furthermore, the phb phv double mutations partially rescued aberrant basal development in the spt6l background and restored PLT1 expression. Collectively, our results indicate that SPT6L is essential for specification of the apical-basal axis, partly by controlling the HD-ZIP III genes in embryos.
Collapse
Affiliation(s)
- Xiao-Lu Gu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
54
|
Jiang Z, Yu N, Kuang P, Chen M, Shao F, Martin G, Chui DHK, Cardoso WV, Ai X, Lü J. Trinucleotide repeat containing 6a (Tnrc6a)-mediated microRNA function is required for development of yolk sac endoderm. J Biol Chem 2011; 287:5979-87. [PMID: 22187428 DOI: 10.1074/jbc.m111.297937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tnrc6 family members (Tnrc6a/b/c) are key components of the RNA-induced silencing complex in microRNA (miRNA)-mediated gene suppression. Here, we show that Tnrc6a, also known as GW182, is selectively expressed in the yolk sac endoderm and that gene trap disruption of GW182 leads to growth arrest and apoptosis. We found that targets of miRNAs highly expressed in the yolk sac are significantly derepressed in GW182(gt/gt) mutant mice, although levels of miRNAs are not altered. Specifically, growth arrest and apoptosis phenotype are associated with significant derepression of Cdkn1a (p21), Cdkn1c (P27), Lats1, Lats2, Rb1, Rbl, Bim, and Pten, known targets of miRNAs from miR-17/20/93/106 clusters highly expressed in yolk sac endoderm. Together, these data strongly suggest that GW182 is an essential functional component in the RNA-induced silencing complex for miRNA-mediated gene silencing in vivo, and selectively regulation of miRNA activity plays an important role in the proper development of yolk sac.
Collapse
Affiliation(s)
- Zhihua Jiang
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci U S A 2011; 109:315-20. [PMID: 22184231 DOI: 10.1073/pnas.1114673109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant microRNAs (miRNAs) typically mediate RNA cleavage, but examples of miRNA-mediated translational repression have also been reported. However, the functional significance of this latter process is unknown. We identified SUO in a screen for Arabidopsis mutations that increase the accumulation of the miR156-regulated gene SPL3. suo has a loss-of-function phenotype characteristic of plants with reduced Argonaute (AGO)1 activity. An analysis of RNA and protein levels in suo mutants demonstrated that this phenotype is a consequence of a defect in miRNA-mediated translational repression; the effect of suo on vegetative phase change is attributable to a reduction in miR156/miR157 activity. SUO encodes a large protein with N-terminal bromo-adjacent homology (BAH) and transcription elongation factor S-II (TFS2N) domains and two C-terminal GW (glycine and tryptophan) repeats. SUO is present in the nucleus, and colocalizes with the processing-body component DCP1 in the cytoplasm. Our results reveal that SOU is a component of the miRNA pathway in Arabidopsis and demonstrate that translational repression is a functionally important aspect of miRNA activity in plants.
Collapse
|
56
|
Ahn M, Witting SR, Ruiz R, Saxena R, Morral N. Constitutive expression of short hairpin RNA in vivo triggers buildup of mature hairpin molecules. Hum Gene Ther 2011; 22:1483-97. [PMID: 21780944 DOI: 10.1089/hum.2010.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNA interference (RNAi) has become the cornerstone technology for studying gene function in mammalian cells. In addition, it is a promising therapeutic treatment for multiple human diseases. Virus-mediated constitutive expression of short hairpin RNA (shRNA) has the potential to provide a permanent source of silencing molecules to tissues, and it is being devised as a strategy for the treatment of liver conditions such as hepatitis B and hepatitis C virus infection. Unintended interaction between silencing molecules and cellular components, leading to toxic effects, has been described in vitro. Despite the enormous interest in using the RNAi technology for in vivo applications, little is known about the safety of constitutively expressing shRNA for multiple weeks. Here we report the effects of in vivo shRNA expression, using helper-dependent adenoviral vectors. We show that gene-specific knockdown is maintained for at least 6 weeks after injection of 1 × 10(11) viral particles. Nonetheless, accumulation of mature shRNA molecules was observed up to weeks 3 and 4, and then declined gradually, suggesting the buildup of mature shRNA molecules induced cell death with concomitant loss of viral DNA and shRNA expression. No evidence of well-characterized innate immunity activation (such as interferon production) or saturation of the exportin-5 pathway was observed. Overall, our data suggest constitutive expression of shRNA results in accumulation of mature shRNA molecules, inducing cellular toxicity at late time points, despite the presence of gene silencing.
Collapse
Affiliation(s)
- M Ahn
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
57
|
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2011; 11:537-61. [PMID: 21532838 PMCID: PMC3048316 DOI: 10.2174/138920210793175895] [Citation(s) in RCA: 1321] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/23/2010] [Accepted: 09/06/2010] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.
Collapse
Affiliation(s)
- Leigh-Ann Macfarlane
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada
| | | |
Collapse
|
58
|
Kerr TA, Korenblat KM, Davidson NO. MicroRNAs and liver disease. Transl Res 2011; 157:241-52. [PMID: 21420035 PMCID: PMC3063952 DOI: 10.1016/j.trsl.2011.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 12/13/2022]
Abstract
Posttranscriptional regulation of gene expression is now recognized as an important contributor to disease pathogenesis, whose mechanisms include alterations in the function of stability and translational elements within both coding and noncoding regions of messenger RNA. A major component in this regulatory paradigm is the binding both to RNA stability as well as to translational control elements by microRNAs (miRNAs). miRNAs are noncoding endogenously transcribed RNAs that undergo a well-characterized series of processing steps that generate short single-stranded (∼20-22) RNA fragments that bind to complementary regions within a range of targets and in turn lead to mRNA degradation or attenuated translation as a result of trafficking to processing bodies. This article will highlight selected advances in the role of miRNAs in liver disease including nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma and will briefly discuss the utility of miRNAs as biomarkers of liver injury and neoplasia.
Collapse
Affiliation(s)
- Thomas A Kerr
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
59
|
Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12:99-110. [PMID: 21245828 DOI: 10.1038/nrg2936] [Citation(s) in RCA: 1763] [Impact Index Per Article: 125.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
Collapse
|
60
|
Okada N, Yabuta N, Suzuki H, Aylon Y, Oren M, Nojima H. A novel Chk1/2–Lats2–14-3-3 signaling pathway regulates P-body formation in response to UV damage. J Cell Sci 2011; 124:57-67. [DOI: 10.1242/jcs.072918] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proper response to DNA damage is essential for maintaining the integrity of the genome. Here we show that in response to ultraviolet (UV) radiation, the Lats2 tumor suppressor protein is phosphorylated predominantly by Chk1 and weakly by Chk2 at S408 in vivo, and that this process occurs at all stages of the cell cycle and leads to phosphorylation of 14-3-3γ on S59 by Lats2. Interaction of Lats2 and 14-3-3γ in vivo was confirmed by immunoprecipitation and western blot analysis. Phosphorylated 14-3-3γ translocates to the P-body, where mRNA degradation, translational repression and mRNA surveillance take place. Depletion of Lats2 or 14-3-3γ by siRNA inhibits P-body formation in response to UV, newly implicating Lats2 and 14-3-3 as regulators of P-body formation. By contrast, siRNA-mediated depletion of Lats1, a mammalian paralog of Lats2, showed no such effect. On the basis of these findings, we propose that the Chk1/2–Lats2–14-3-3 axis identified here plays an important role in connecting DNA damage signals to P-body assembly.
Collapse
Affiliation(s)
- Nobuhiro Okada
- Department of Molecular Genetics, Research Institute for MicroFbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for MicroFbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hirokazu Suzuki
- Department of Molecular Genetics, Research Institute for MicroFbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for MicroFbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
61
|
Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EKL. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 2010; 39:2534-47. [PMID: 21131274 PMCID: PMC3074120 DOI: 10.1093/nar/gkq1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896–1219) containing the Ago hook and Δ5 (amino acids 1670–1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Δ5, but not the Ago hook in Δ12, were important for silencing. Repression mediated by Δ5 or Δ12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Δ5, but not Δ12, enhanced Ago2-mediated repression in a tethering assay. Transfected Δ12, but not Δ5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Δ12 (Δ12a, amino acids 896–1045) were important for silencing activity. Although Δ12 appeared to bind PABPC1 more efficiently than Δ5, neither Δ5 nor Δ12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Δ5 and Δ12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Huntzinger E, Braun JE, Heimstädt S, Zekri L, Izaurralde E. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J 2010; 29:4146-60. [PMID: 21063388 PMCID: PMC3018788 DOI: 10.1038/emboj.2010.274] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/12/2010] [Indexed: 12/14/2022] Open
Abstract
Previous studies have suggested that the mechanism of miRNA-mediated silencing may differ between human and Drosophila cells. Here, a direct comparison demonstrates that the mechanism is conserved and the GW182–PABP interaction is required for silencing in vivo. miRNA-mediated gene silencing requires the GW182 proteins, which are characterized by an N-terminal domain that interacts with Argonaute proteins (AGOs), and a C-terminal silencing domain (SD). In Drosophila melanogaster (Dm) GW182 and a human (Hs) orthologue, TNRC6C, the SD was previously shown to interact with the cytoplasmic poly(A)-binding protein (PABPC1). Here, we show that two regions of GW182 proteins interact with PABPC1: the first contains a PABP-interacting motif 2 (PAM2; as shown before for TNRC6C) and the second contains the M2 and C-terminal sequences in the SD. The latter mediates indirect binding to the PABPC1 N-terminal domain. In D. melanogaster cells, the second binding site dominates; however, in HsTNRC6A–C the PAM2 motif is essential for binding to both Hs and DmPABPC1. Accordingly, a single amino acid substitution in the TNRC6A–C PAM2 motif abolishes the interaction with PABPC1. This mutation also impairs TNRC6s silencing activity. Our findings reveal that despite species-specific differences in the relative strength of the PABPC1-binding sites, the interaction between GW182 proteins and PABPC1 is critical for miRNA-mediated silencing in animal cells.
Collapse
Affiliation(s)
- Eric Huntzinger
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
63
|
|
64
|
|
65
|
Chekulaeva M, Parker R, Filipowicz W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 2010; 38:6673-83. [PMID: 20530530 PMCID: PMC2965232 DOI: 10.1093/nar/gkq501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | | | |
Collapse
|
66
|
Gu S, Kay MA. How do miRNAs mediate translational repression? SILENCE 2010; 1:11. [PMID: 20459656 PMCID: PMC2881910 DOI: 10.1186/1758-907x-1-11] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/07/2010] [Indexed: 01/12/2023]
Abstract
Micro(mi)RNAs regulate gene expression by what are believed to be related but separate mechanistic processes. The relative contribution that each process plays, their mechanistic overlap, and the degree by which they regulate complex genetic networks is still being unraveled. One process by which miRNAs inhibit gene expression occurs through translational repression. In recent years, there has been a plethora of studies published, which have resulted in various molecular models of how miRNAs impair translation. At first evaluation, it appears that these models are quite different and incompatible with one another. In this paper, we focus on possible explanations for the various interpretations of these data sets, and provide a model that we believe is consistent with many of the observations published to date.
Collapse
Affiliation(s)
- Shuo Gu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
67
|
Kozlov G, Safaee N, Rosenauer A, Gehring K. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J Biol Chem 2010; 285:13599-606. [PMID: 20181956 PMCID: PMC2859521 DOI: 10.1074/jbc.m109.089540] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/25/2010] [Indexed: 12/17/2022] Open
Abstract
Poly(A)-binding protein (PABPC1) is involved in multiple aspects of mRNA processing and translation. It is a component of RNA stress granules and binds the RNA-induced silencing complex to promote degradation of silenced mRNAs. Here, we report the crystal structures of the C-terminal Mlle (or PABC) domain in complex with peptides from GW182 (TNRC6C) and Ataxin-2. The structures reveal overlapping binding sites but with unexpected diversity in the peptide conformation and residues involved in binding. The mutagenesis and binding studies show low to submicromolar binding affinity with overlapping but distinct specificity determinants. These results rationalize the role of the Mlle domain of PABPC1 in microRNA-mediated mRNA deadenylation and suggest a more general function in the assembly of cytoplasmic RNA granules.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry and Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G1Y6, Canada
| | - Nozhat Safaee
- From the Department of Biochemistry and Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G1Y6, Canada
| | - Angelika Rosenauer
- From the Department of Biochemistry and Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G1Y6, Canada
| | - Kalle Gehring
- From the Department of Biochemistry and Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G1Y6, Canada
| |
Collapse
|
68
|
Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nat Rev Mol Cell Biol 2010; 11:379-84. [PMID: 20379206 DOI: 10.1038/nrm2885] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GW182 proteins have emerged as key components of microRNA (miRNA) silencing complexes in animals. Although the precise molecular function of GW182 proteins is not fully understood, new findings indicate that they act as poly(A)-binding protein (PABP)-interacting proteins (PAIPs) that promote gene silencing, at least in part, by interfering with cytoplasmic PABP1 (PABPC1) function during translation and mRNA stabilization. This recent discovery paves the way for future studies of miRNA silencing mechanisms.
Collapse
|
69
|
Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 2009; 16:1160-6. [PMID: 19838187 PMCID: PMC2921184 DOI: 10.1038/nsmb.1709] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/25/2009] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Collapse
|
70
|
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 2009; 29:6220-31. [PMID: 19797087 DOI: 10.1128/mcb.01081-09] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.
Collapse
|
71
|
Bednenko J, Noto T, DeSouza LV, Siu KWM, Pearlman RE, Mochizuki K, Gorovsky MA. Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement. Mol Cell Biol 2009; 29:5020-30. [PMID: 19596782 PMCID: PMC2738283 DOI: 10.1128/mcb.00076-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/19/2009] [Accepted: 06/21/2009] [Indexed: 01/08/2023] Open
Abstract
In conjugating Tetrahymena thermophila, massive DNA elimination occurs upon the development of the new somatic genome from the germ line genome. Small, approximately 28-nucleotide scan RNAs (scnRNAs) and Twi1p, an Argonaute family member, mediate H3K27me3 and H3K9me3 histone H3 modifications, which lead to heterochromatin formation and the excision of the heterochromatinized germ line-limited sequences. In our search for new factors involved in developmental DNA rearrangement, we identified two Twi1p-interacting proteins, Wag1p and CnjBp. Both proteins contain GW (glycine and tryptophan) repeats, which are characteristic of several Argonaute-interacting proteins in other organisms. Wag1p and CnjBp colocalize with Twi1p in the parental macronucleus early in conjugation and in the new developing macronucleus during later developmental stages. Around the time DNA elimination occurs, Wag1p forms multiple nuclear bodies in the developing macronuclei that do not colocalize with heterochromatic DNA elimination structures. Analyses of DeltaWAG1, DeltaCnjB, and double DeltaWAG1 DeltaCnjB knockout strains revealed that WAG1 and CnjB genes need to be deleted together to inhibit the downregulation of specific scnRNAs, the formation of DNA elimination structures, and DNA excision. Thus, Wag1p and CnjBp are two novel players with overlapping functions in RNA interference-mediated genome rearrangement in Tetrahymena.
Collapse
Affiliation(s)
- Janna Bednenko
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009; 57:1265-79. [PMID: 19170179 PMCID: PMC2713384 DOI: 10.1002/glia.20846] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peripheral myelin protein 22 (PMP22) is a dose-sensitive, disease-associated protein primarily expressed in myelinating Schwann cells. Either reduction or overproduction of PMP22 can result in hereditary neuropathy, suggesting a requirement for correct protein expression for peripheral nerve biology. PMP22 is post-transcriptionally regulated and the 3'untranslated region (3'UTR) of the gene exerts a negative effect on translation. MicroRNAs (miRNAs) are small regulatory molecules that function at a post-transcriptional level by targeting the 3'UTR in a reverse complementary manner. We used cultured Schwann cells to demonstrate that alterations in the miRNA biogenesis pathway affect PMP22 levels, and endogenous PMP22 is subjected to miRNA regulation. GW-body formation, the proposed cytoplasmic site for miRNA-mediated repression, and Dicer expression, an RNase III family ribonuclease involved in miRNA biogenesis, are co-regulated with the differentiation state of Schwann cells. Furthermore, the levels of Dicer inversely correlate with PMP22, while the inhibition of Dicer leads to elevated PMP22. Microarray analysis of actively proliferating and differentiated Schwann cells, in conjunction with bioinformatics programs, identified several candidate PMP22-targeting miRNAs. Here we demonstrate that miR-29a binds and inhibits PMP22 reporter expression through a specific miRNA seed binding region. Over-expression of miR-29a enhances the association of PMP22 RNA with Argonaute 2, a protein involved in miRNA function, and reduces the steady-state levels of PMP22. In contrast, inhibition of endogenous miR-29a relieves the miRNA-mediated repression of PMP22. Correlation analyses of miR-29 and PMP22 in sciatic nerves reveal an inverse relationship, both developmentally and in post-crush injury. These results identify PMP22 as a target of miRNAs and suggest that myelin gene expression by Schwann cells is regulated by miRNAs.
Collapse
Affiliation(s)
- Jonathan D. Verrier
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Pierre Lau
- Section of Developmental Genetics, National Institutes of Health, National Institute of Neurological Disease and Stroke, Bethesda, MD
| | - Lynn Hudson
- Section of Developmental Genetics, National Institutes of Health, National Institute of Neurological Disease and Stroke, Bethesda, MD
| | - Alexander K. Murashov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|
73
|
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CYA, Shyu AB, Yates JR, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 2009; 35:868-80. [PMID: 19716330 DOI: 10.1016/j.molcel.2009.08.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/13/2009] [Accepted: 08/11/2009] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
75
|
Schmidt T, Mewes HW, Stümpflen V. A novel putative miRNA target enhancer signal. PLoS One 2009; 4:e6473. [PMID: 19649282 PMCID: PMC2714067 DOI: 10.1371/journal.pone.0006473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/29/2009] [Indexed: 11/21/2022] Open
Abstract
It is known that miRNA target sites are very short and the effect of miRNA-target site interaction alone appears as being unspecific. Recent experiments suggest further context signals involved in miRNA target site recognition and regulation. Here, we present a novel GC-rich RNA motif downstream of experimentally supported miRNA target sites in human mRNAs with no similarity to previously reported functional motifs. We demonstrate that the novel motif can be found in at least one third of all transcripts regulated by miRNAs. Furthermore, we show that motif occurrence and the frequency of miRNA target sites as well as the stability of their duplex structures correlate. The finding, that the novel motif is significantly associated with miRNA target sites, suggests a functional role of the motif in miRNA target site biology. Beyond, the novel motif has the impact to improve prediction of miRNA target sites significantly.
Collapse
Affiliation(s)
- Thorsten Schmidt
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (MIPS), Neuherberg, Germany
| | - Hans-Werner Mewes
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (MIPS), Neuherberg, Germany
- Chair for Genome-oriented Bioinformatics, Technische Universität München, Life and Food Science Center Weihenstephan, Freising-Weihenstephan, Germany
| | - Volker Stümpflen
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (MIPS), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
76
|
eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proc Natl Acad Sci U S A 2009; 106:11623-8. [PMID: 19556547 DOI: 10.1073/pnas.0903325106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Stem cell self-renewal is controlled by concerted actions of extrinsic niche signals and intrinsic factors in a variety of systems. Drosophila ovarian germline stem cells (GSCs) have been one of the most productive systems for identifying the factors controlling self-renewal. The differentiation factor BAM is necessary and sufficient for GSC differentiation, but it still remains expressed in GSCs at low levels. However, it is unclear how its function is repressed in GSCs to maintain self-renewal. Here, we report the identification of the translation initiation factor eIF4A for its essential role in self-renewal by directly inactivating BAM function. eIF4A can physically interact with BAM in Drosophila S2 cells and yeast cells. eIF4A exhibits dosage-specific interactions with bam in the regulation of GSC differentiation. It is required intrinsically for controlling GSC self-renewal and proliferation but not survival. In addition, it is required for maintaining E-cadherin expression but not BMP signaling activity. Furthermore, BAM and BGCN together repress translation of E-cadherin through its 3' UTR in S2 cells. Therefore, we propose that BAM functions as a translation repressor by interfering with translation initiation and eIF4A maintains self-renewal by inhibiting BAM function and promoting E-cadherin expression.
Collapse
|
77
|
Takimoto K, Wakiyama M, Yokoyama S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA (NEW YORK, N.Y.) 2009; 15:1078-89. [PMID: 19398495 PMCID: PMC2685530 DOI: 10.1261/rna.1363109] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In mammalian cells, microRNAs (miRNAs) are incorporated into miRNA-induced silencing complexes (miRISCs), which regulate protein expression post-transcriptionally through binding to 3'-untranslated regions of target mRNAs. Argonaute2 (Ago2), a key component of the miRISC, recruits GW182, a component of the processing body (GW/P-body), to the target mRNAs. To elucidate the function of GW182 in an miRNA-mediated translational repression, we analyzed Argonaute-binding sites in GW182. We found that human GW182 contains three binding sites for Ago2, within the amino-terminal glycine tryptophan (GW/WG)-repeated region that is characteristic of the GW182 family proteins. We also found that the first and second Ago2-binding site is conserved within the amino-terminal half of TNRC6B, which is a paralog of GW182. Each of the Ago-binding sites is alone sufficient to bind Ago2. Furthermore, we demonstrated that multiple Argonaute proteins were connected via the GW182 protein. A GW182 fragment containing the Ago2-binding region partially relieved let-7-mediated repression of protein synthesis in a mammalian cell-free system. Coincidentally, let-7-directed target mRNA deadenylation was delayed. Together, these results strongly suggested that the interactions of GW182 with Argonautes may induce the formation of large complexes containing miRNA target mRNAs, and may be critical for miRNA-mediated translational repression.
Collapse
Affiliation(s)
- Koji Takimoto
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
78
|
Lazzaretti D, Tournier I, Izaurralde E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA (NEW YORK, N.Y.) 2009; 15:1059-66. [PMID: 19383768 PMCID: PMC2685519 DOI: 10.1261/rna.1606309] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 05/24/2023]
Abstract
Proteins of the GW182 family are essential components of the miRNA pathway in animal cells. Vertebrate genomes encode three GW182 paralogs (TNRC6A, TNRC6B, and TNRC6C), which may be functionally redundant. Here, we show that the N-terminal GW-repeat-containing regions of all three TNRC6s interact with the four human Argonaute proteins (AGO1-AGO4). We also show that TNRC6A, TNRC6B, and TNRC6C silence the expression of bound mRNAs. This activity is mediated by their C-terminal silencing domains, and thus, is independent of the interaction with AGO1-AGO4. Silencing by TNRC6A, TNRC6B, and TNRC6C is effected by changes in protein expression and mRNA stability that can, in part, be attributed to deadenylation. Our findings indicate that TNRC6A, TNRC6B, and TNRC6C are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein; the TNRC6s then promote translational repression and/or degradation of miRNA targets through a C-terminal silencing domain.
Collapse
Affiliation(s)
- Daniela Lazzaretti
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
79
|
Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA (NEW YORK, N.Y.) 2009; 15:1067-77. [PMID: 19383769 PMCID: PMC2685512 DOI: 10.1261/rna.1605509] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182-AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine-tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
80
|
Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21:452-60. [PMID: 19450959 DOI: 10.1016/j.ceb.2009.04.009] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are 20-nt-long to 24-nt-long noncoding RNAs acting as post-transcriptional regulators of gene expression in animals and plants. In mammals, more than 50% of mRNAs are predicted to be the subject of miRNA-mediated control but mechanistic aspects of the regulation are not fully understood and different studies have produced often-contradictory results. miRNAs can affect both the translation and stability of mRNAs. In this report, we review current progress in understanding how miRNAs execute these effects in animals and we discuss some of the controversies regarding different modes of miRNA function.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | |
Collapse
|
81
|
Chekulaeva M, Filipowicz W, Parker R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA (NEW YORK, N.Y.) 2009; 15:794-803. [PMID: 19304924 PMCID: PMC2673071 DOI: 10.1261/rna.1364909] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/22/2009] [Indexed: 05/19/2023]
Abstract
miRNA-mediated repression affects a wide range of biological processes including development and human pathologies. The GW182 protein is a key component of miRNA repression complex, recruited by Argonaute and functioning downstream to repress translation and accelerate mRNA degradation, but little is known about how GW182 proteins act. Using both tethered function and complementation assays, we identify three independent domains of the Drosophila GW182 protein (also termed Gawky) that are sufficient to repress mRNA. Each of these domains also functions independently of poly(A) tails. These results indicate that miRNA-mediated repression is facilitated by multiple domains of GW182.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
82
|
He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 2009; 137:498-508. [PMID: 19410546 PMCID: PMC2700824 DOI: 10.1016/j.cell.2009.04.028] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/11/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.
Collapse
Affiliation(s)
- Xin-Jian He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Yi-Feng Hsu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shihua Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Andrzej T. Wierzbicki
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130
| | - Olga Pontes
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130
| | - Craig S. Pikaard
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130
| | - Hai-Liang Liu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hailing Jin
- Institute for Integrative Genome Biology and Department of Plant Pathology, University of California, Riverside, California 92521
| | - Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
83
|
Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA (NEW YORK, N.Y.) 2009; 15:781-93. [PMID: 19304925 PMCID: PMC2673060 DOI: 10.1261/rna.1448009] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteins of the GW182 family play an important role in the execution of microRNA repression in metazoa. They interact directly with Argonaute proteins, components of microRNPs, and also form part of P-bodies, structures implicated in translational repression and mRNA degradation. Recent results demonstrated that Drosophila GW182 has the potential to both repress translation and accelerate mRNA deadenylation and decay. In contrast to a single GW182 protein in Drosophila, the three GW182 paralogs TNRC6A, TNRC6B, and TNRC6C are encoded in mammalian genomes. In this study, we provide evidence that TNRC6C, like TNRC6A and TNRC6B, is important for efficient miRNA repression. We further demonstrate that tethering of each of the human TNRC6 proteins to a reporter mRNA has a dramatic inhibitory effect on protein synthesis. The repression is due to a combination of effects on the mRNA level and mRNA translation. Through deletion and mutagenesis, we identified the C-terminal part of TNRC6C encompassing the RRM RNA-binding motif as a key effector domain mediating protein synthesis repression by TNRC6C.
Collapse
Affiliation(s)
- Jakob T Zipprich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
84
|
Eulalio A, Tritschler F, Büttner R, Weichenrieder O, Izaurralde E, Truffault V. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 2009; 37:2974-83. [PMID: 19295135 PMCID: PMC2685099 DOI: 10.1093/nar/gkp173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM fold, with an additional C-terminal α-helix. The helix lies on the β-sheet surface, generally used by these domains to bind RNA. This, together with the absence of aromatic residues in the conserved RNP1 and RNP2 motifs, and the lack of general affinity for RNA, suggests that the GW182 RRM does not bind RNA. The domain may rather engage in protein interactions through an unusual hydrophobic cleft exposed on the opposite face of the β-sheet. We further show that the GW182 RRM is dispensable for P-body localization and for interaction of GW182 with Argonaute-1 and miRNAs. Nevertheless, its deletion impairs the silencing activity of GW182 in a miRNA target-specific manner, indicating that this domain contributes to silencing. The conservation of structural and surface residues suggests that the RRM domain adopts a similar fold with a related function in insect and vertebrate GW182 family members.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Ding XC, Grosshans H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 2009; 28:213-22. [PMID: 19131968 DOI: 10.1038/emboj.2008.275] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/03/2008] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) repress target genes through a poorly defined antisense mechanism. Cell-free and cell-based assays have supported the idea that miRNAs repress their target mRNAs by blocking initiation of translation, whereas studies in animal models argued against this possibility. We examined endogenous targets of the let-7 miRNA, an important regulator of stem cell fates. We report that let-7 represses translation initiation in Caenorhabditis elegans, demonstrating this mode of action for the first time in an organism. Unexpectedly, although the lin-4 miRNA was previously reported to repress its targets at a step downstream of translation initiation, we also observe repression of translation initiation for this miRNA. This repressive mechanism, which frequently but not always coincides with transcript degradation, requires the GW182 proteins AIN-1 and AIN-2, and acts on several mRNAs targeted by different miRNAs. Our analysis of an expanded set of endogenous miRNA targets therefore indicates widespread repression of translation initiation under physiological conditions and establishes C. elegans as a genetic system for dissection of the underlying mechanisms.
Collapse
Affiliation(s)
- Xavier C Ding
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | |
Collapse
|
86
|
Zheng D, Ezzeddine N, Chen CYA, Zhu W, He X, Shyu AB. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. ACTA ACUST UNITED AC 2008; 182:89-101. [PMID: 18625844 PMCID: PMC2447901 DOI: 10.1083/jcb.200801196] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5′-to-3′ degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
NMD (nonsense-mediated mRNA decay) is a mechanism that degrades transcripts containing PTCs (premature translation termination codons). NMD is a translation-associated process that is expected to take place throughout the cytoplasm. However, recent studies have indicated that the core NMD factors UPF1 (up-frameshift-1), UPF2 and UPF3 can associate with P-bodies (processing bodies), which are large cytoplasmic granules replete with proteins involved in general mRNA decay and related processes. It has been proposed that UPF1 directs PTC-containing mRNAs to P-bodies and triggers decay. Here, we discuss the link between P-bodies and NMD in view of recent studies that suggest that P-bodies are not required for NMD in Drosophila.
Collapse
|
88
|
Abstract
Messenger ribonucleic acids (mRNAs) containing adenine/uridine-rich elements (AREs) in their 3′ untranslated region are particularly labile, allowing for the regulation of expression for growth factors, oncoproteins, and cytokines. The regulators, effectors, and location of ARE-mediated decay (AMD) have been investigated by many groups in recent years, and several links have been found between AMD and microRNA-mediated decay. We highlight these similarities, along with recent advances in the field of AMD, and also mention how there is still much left unknown surrounding this specialized mode of mRNA decay.
Collapse
|
89
|
Abstract
MicroRNAs are approximately 22 nucleotide-long RNAs that silence gene expression posttranscriptionally by binding to the 3' untranslated regions of target mRNAs. Although much is known about their biogenesis and biological functions, the mechanisms allowing miRNAs to silence gene expression in animal cells are still under debate. Here, we discuss current models for miRNA-mediated gene silencing and formulate a hypothesis to reconcile differences.
Collapse
Affiliation(s)
- Ana Eulalio
- Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
90
|
Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008; 135:1201-14. [PMID: 18287206 DOI: 10.1242/dev.005629] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several distinct classes of small RNAs, some newly identified, have been discovered to play important regulatory roles in diverse cellular processes. These classes include siRNAs, miRNAs, rasiRNAs and piRNAs. Each class binds to distinct members of the Argonaute/Piwi protein family to form ribonucleoprotein complexes that recognize partially, or nearly perfect, complementary nucleic acid targets, and that mediate a variety of regulatory processes, including transcriptional and post-transcriptional gene silencing. Based on the known relationship of Argonaute/Piwi proteins with distinct classes of small RNAs, we can now predict how many new classes of small RNAs or silencing processes remain to be discovered.
Collapse
Affiliation(s)
- Thalia A Farazi
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | | | | |
Collapse
|