51
|
Cui LY, Wang SS, Guan CG, Liang WF, Xue ZL, Zhang C, Xing XH. Breeding of Methanol-Tolerant Methylobacterium extorquens
AM1 by Atmospheric and Room Temperature Plasma Mutagenesis Combined With Adaptive Laboratory Evolution. Biotechnol J 2018; 13:e1700679. [DOI: 10.1002/biot.201700679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/29/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lan-Yu Cui
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- School of Preclinical Medicine; Guangxi Medical University; Shuang Yong Road 530021 Nanning China
| | - Shan-Shan Wang
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- College of Biological and Chemical Engineering; Anhui Polytechnic University; Beijing Middle Road 241000 Wuhu China
| | - Chang-Ge Guan
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
| | - Wei-Fan Liang
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
| | - Zheng-Lian Xue
- College of Biological and Chemical Engineering; Anhui Polytechnic University; Beijing Middle Road 241000 Wuhu China
| | - Chong Zhang
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- Tsinghua University; Center for Synthetic and System Biology; Tsinghua Yuan Street 100084 Beijing China
| | - Xin-Hui Xing
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- Tsinghua University; Center for Synthetic and System Biology; Tsinghua Yuan Street 100084 Beijing China
| |
Collapse
|
52
|
Shepelin D, Hansen ASL, Lennen R, Luo H, Herrgård MJ. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes. Genes (Basel) 2018; 9:E249. [PMID: 29751691 PMCID: PMC5977189 DOI: 10.3390/genes9050249] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.
Collapse
Affiliation(s)
- Denis Shepelin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Anne Sofie Lærke Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Rebecca Lennen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Hao Luo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
53
|
MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab Eng 2018; 47:294-302. [DOI: 10.1016/j.ymben.2018.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 11/20/2022]
|
54
|
A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica. Metab Eng 2018; 47:346-356. [DOI: 10.1016/j.ymben.2018.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
55
|
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018; 102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
56
|
Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 2018; 50:47-56. [DOI: 10.1016/j.copbio.2017.10.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/01/2023]
|
57
|
Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci Rep 2017; 7:16780. [PMID: 29196644 PMCID: PMC5711897 DOI: 10.1038/s41598-017-17014-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022] Open
Abstract
In this work, we performed a comparative adaptive laboratory evolution experiment of the important biotechnological platform strain Corynebacterium glutamicum ATCC 13032 and its prophage-free variant MB001 towards improved growth rates on glucose minimal medium. Both strains displayed a comparable adaptation behavior and no significant differences in genomic rearrangements and mutation frequencies. Remarkably, a significant fitness leap by about 20% was observed for both strains already after 100 generations. Isolated top clones (UBw and UBm) showed an about 26% increased growth rate on glucose minimal medium. Genome sequencing of evolved clones and populations resulted in the identification of key mutations in pyk (pyruvate kinase), fruK (1-phosphofructokinase) and corA encoding a Mg2+ importer. The reintegration of selected pyk and fruK mutations resulted in an increased glucose consumption rate and ptsG expression causative for the accelerated growth on glucose minimal medium, whereas corA mutations improved growth under Mg2+ limiting conditions. Overall, this study resulted in the identification of causative key mutations improving the growth of C. glutamicum on glucose. These identified mutational hot spots as well as the two evolved top strains, UBw and UBm, represent promising targets for future metabolic engineering approaches.
Collapse
|
58
|
Choi JW, Yim SS, Jeong KJ. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2017; 102:873-883. [DOI: 10.1007/s00253-017-8653-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/29/2023]
|
59
|
Jang S, Jang S, Xiu Y, Kang TJ, Lee SH, Koffas MAG, Jung GY. Development of Artificial Riboswitches for Monitoring of Naringenin In Vivo. ACS Synth Biol 2017; 6:2077-2085. [PMID: 28749656 DOI: 10.1021/acssynbio.7b00128] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microbial strains are considered promising hosts for production of flavonoids because of their rapid growth rate and suitability for large-scale manufacturing. However, productivity and titer of current recombinant strains still do not meet the requirements of industrial processes. Genetically encoded biosensors have been applied for high-throughput screening or dynamic regulation of biosynthetic pathways for enhancing the performance of microbial strains that produce valuable chemicals. Currently, few protein sensor-regulators for flavonoids exist. Unlike the protein-based trans-regulating controllers, riboswitches can respond to their ligands faster and eliminate off-target effects. Here, we developed artificial riboswitches that activate gene expression in response to naringenin, an important flavonoid. RNA aptamers for naringenin were developed using SELEX and cloned upstream of a dual selectable marker gene to construct a riboswitch library. Two in vivo selection routes were applied separately to the library by supplementing naringenin at two different concentrations during enrichments to modulate the operational ranges of the riboswitches. The selected riboswitches were responsive to naringenin and activated gene expression up to 2.91-fold. Operational ranges of the riboswitches were distinguished on the basis of their selection route. Additionally, the specificity of the riboswitches was assessed, and their applicability as dynamic regulators was confirmed. Collectively, the naringenin riboswitches reported in this work will be valuable tools in metabolic engineering of microorganisms for the production of flavonoids.
Collapse
Affiliation(s)
- Sungho Jang
- Department
of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sungyeon Jang
- Department
of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Yu Xiu
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100191, China
| | - Taek Jin Kang
- Department
of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Korea
| | - Sang-Hyeup Lee
- Department
of Life Chemistry, Catholic University of Daegu, Hayang-ro 13-13,
Hayang-eup, Gyeongsan, Gyeongbuk 38430, Korea
| | - Mattheos A. G. Koffas
- Department
of Chemical and Biological Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department
of Biological Sciences, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institutee, Troy, New York 12180, United States
| | - Gyoo Yeol Jung
- Department
of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- School
of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
60
|
Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab Eng 2017; 44:253-264. [PMID: 29097310 DOI: 10.1016/j.ymben.2017.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/17/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA metabolism and improve cellular productivity. Effective metabolic engineering of microorganisms requires the introduction of heterologous pathways and dynamically rerouting metabolic flux towards products of interest. Transcriptional factor-based biosensors translate an internal cellular signal to a transcriptional output and drive the expression of the designed genetic/biomolecular circuits to compensate the activity loss of the engineered biosystem. Recent development of genetically-encoded malonyl-CoA sensor has stood out as a classical example to dynamically reprogram cell metabolism for various biotechnological applications. Here, we reviewed the design principles of constructing a transcriptional factor-based malonyl-CoA sensor with superior detection limit, high sensitivity and broad dynamic range. We discussed various synthetic biology strategies to remove pathway bottleneck and how genetically-encoded metabolite sensor could be deployed to improve pathway efficiency. Particularly, we emphasized that integration of malonyl-CoA sensing capability with biocatalytic function would be critical to engineer efficient microbial cell factory. Biosensors have also advanced beyond its classical function of a sensor actuator for in situ monitoring of intracellular metabolite concentration. Applications of malonyl-CoA biosensors as a sensor-invertor for negative feedback regulation of metabolic flux, a metabolic switch for oscillatory balancing of malonyl-CoA sink pathway and source pathway and a screening tool for engineering more efficient biocatalyst are also presented in this review. We envision the genetically-encoded malonyl-CoA sensor will be an indispensable tool to optimize cell metabolism and cost-competitively manufacture malonyl-CoA-derived compounds.
Collapse
|
61
|
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 2017; 47:67-82. [DOI: 10.1016/j.copbio.2017.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
62
|
Vickers CE, Williams TC, Peng B, Cherry J. Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 2017. [DOI: 10.1016/j.cbpa.2017.05.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
64
|
Gong Z, Nielsen J, Zhou YJ. Engineering Robustness of Microbial Cell Factories. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiwei Gong
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
- College of Chemistry and Chemical EngineeringWuhan University of Science and Technology947 Heping RoadWuhan 430081P.R. China
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyKemivägen 10 Gothenburg SE‐41296Sweden
| | - Yongjin J. Zhou
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
| |
Collapse
|
65
|
Abatemarco J, Sarhan MF, Wagner JM, Lin JL, Liu L, Hassouneh W, Yuan SF, Alper HS, Abate AR. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nat Commun 2017; 8:332. [PMID: 28835641 PMCID: PMC5569033 DOI: 10.1038/s41467-017-00425-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Synthetic biology and metabolic engineering seek to re-engineer microbes into "living foundries" for the production of high value chemicals. Through a "design-build-test" cycle paradigm, massive libraries of genetically engineered microbes can be constructed and tested for metabolite overproduction and secretion. However, library generation capacity outpaces the rate of high-throughput testing and screening. Well plate assays are flexible but with limited throughput, whereas droplet microfluidic techniques are ultrahigh-throughput but require a custom assay for each target. Here we present RNA-aptamers-in-droplets (RAPID), a method that greatly expands the generality of ultrahigh-throughput microfluidic screening. Using aptamers, we transduce extracellular product titer into fluorescence, allowing ultrahigh-throughput screening of millions of variants. We demonstrate the RAPID approach by enhancing production of tyrosine and secretion of a recombinant protein in Saccharomyces cerevisiae by up to 28- and 3-fold, respectively. Aptamers-in-droplets affords a general approach for evolving microbes to synthesize and secrete value-added chemicals.Screening libraries of genetically engineered microbes for secreted products is limited by the available assay throughput. Here the authors combine aptamer-based fluorescent detection with droplet microfluidics to achieve high throughput screening of yeast strains engineered for enhanced tyrosine or streptavidin production.
Collapse
Affiliation(s)
- Joseph Abatemarco
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA
| | - Maen F Sarhan
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA
| | - James M Wagner
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA
| | - Jyun-Liang Lin
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA
| | - Leqian Liu
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA
| | - Wafa Hassouneh
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, California, USA
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas, 78712, USA
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas, 78712, USA.
| | - Adam R Abate
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA.
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA.
- Chan Zuckerberg Biohub, San Francisco, 94158, California, USA.
| |
Collapse
|
66
|
Zeng W, Du P, Lou Q, Wu L, Zhang HM, Lou C, Wang H, Ouyang Q. Rational Design of an Ultrasensitive Quorum-Sensing Switch. ACS Synth Biol 2017; 6:1445-1452. [PMID: 28437094 DOI: 10.1021/acssynbio.6b00367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.
Collapse
Affiliation(s)
| | - Pei Du
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100871, China
| | - Qiuli Lou
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100871, China
| | - Lili Wu
- The
State Key Laboratory for Artificial Microstructures and Mesoscopic
Physics, School of Physics, Peking University, Beijing 100871, China
| | | | - Chunbo Lou
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100871, China
| | - Hongli Wang
- The
State Key Laboratory for Artificial Microstructures and Mesoscopic
Physics, School of Physics, Peking University, Beijing 100871, China
| | - Qi Ouyang
- The
State Key Laboratory for Artificial Microstructures and Mesoscopic
Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
67
|
Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2017; 2:87-96. [PMID: 29062965 PMCID: PMC5637227 DOI: 10.1016/j.synbio.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Collapse
|
68
|
Jagtap UB, Jadhav JP, Bapat VA, Pretorius IS. Synthetic biology stretching the realms of possibility in wine yeast research. Int J Food Microbiol 2017; 252:24-34. [DOI: 10.1016/j.ijfoodmicro.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/02/2023]
|
69
|
Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS. Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol 2017; 10:264-278. [PMID: 28083938 PMCID: PMC5328816 DOI: 10.1111/1751-7915.12488] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Alcohol is fundamental to the character of wine, yet too much can put a wine off‐balance. A wine is regarded to be well balanced if its alcoholic strength, acidity, sweetness, fruitiness and tannin structure complement each other so that no single component dominates on the palate. Balancing a wine's positive fruit flavours with the optimal absolute and relative concentration of alcohol can be surprisingly difficult. Over the past three decades, consumers have increasingly demanded wine with richer and riper fruit flavour profiles. In response, grape and wine producers have extended harvest times to increase grape maturity and enhance the degree of fruit flavours and colour intensity. However, a higher degree of grape maturity results in increased grape sugar concentration, which in turn results in wines with elevated alcohol concentration. On average, the alcohol strength of red wines from many warm wine‐producing regions globally rose by about 2% (v/v) during this period. Notwithstanding that many of these ‘full‐bodied, fruit‐forward’ wines are well balanced and sought after, there is also a significant consumer market segment that seeks lighter styles with less ethanol‐derived ‘hotness’ on the palate. Consumer‐focussed wine producers are developing and implementing several strategies in the vineyard and winery to reduce the alcohol concentration in wines produced from well‐ripened grapes. In this context, Saccharomyces cerevisiae wine yeasts have proven to be a pivotal strategy to reduce ethanol formation during the fermentation of grape musts with high sugar content (> 240 g l−1). One of the approaches has been to develop ‘low‐alcohol’ yeast strains which work by redirecting their carbon metabolism away from ethanol production to other metabolites, such as glycerol. This article reviews the current challenges of producing glycerol at the expense of ethanol. It also casts new light on yeast strain development programmes which, bolstered by synthetic genomics, could potentially overcome these challenges.
Collapse
Affiliation(s)
- Hugh D Goold
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,New South Wales Department of Primary Industries, Locked Bag 21, Orange, NSW, 2800, Australia
| | - Heinrich Kroukamp
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Adelaide, SA, 5064, Australia
| | - Isak S Pretorius
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
70
|
Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: The future of chemical production. Science 2017; 355:355/6320/aag0804. [DOI: 10.1126/science.aag0804] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022]
Abstract
The current model for industrial chemical manufacturing employs large-scale megafacilities that benefit from economies of unit scale. However, this strategy faces environmental, geographical, political, and economic challenges associated with energy and manufacturing demands. We review how exploiting biological processes for manufacturing (i.e., industrial biomanufacturing) addresses these concerns while also supporting and benefiting from economies of unit number. Key to this approach is the inherent small scale and capital efficiency of bioprocesses and the ability of engineered biocatalysts to produce designer products at high carbon and energy efficiency with adjustable output, at high selectivity, and under mild process conditions. The biological conversion of single-carbon compounds represents a test bed to establish this paradigm, enabling rapid, mobile, and widespread deployment, access to remote and distributed resources, and adaptation to new and changing markets.
Collapse
|
71
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
72
|
Williams TC, Xu X, Ostrowski M, Pretorius IS, Paulsen IT. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth Biol (Oxf) 2017; 2:ysw002. [PMID: 32995501 PMCID: PMC7513737 DOI: 10.1093/synbio/ysw002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022] Open
Abstract
Biosensors are valuable and versatile tools in synthetic biology that are used to modulate gene expression in response to a wide range of stimuli. Ligand responsive transcription factors are a class of biosensor that can be used to couple intracellular metabolite concentration with gene expression to enable dynamic regulation and high-throughput metabolite producer screening. We have established the Saccharomyces cerevisiae WAR1 transcriptional regulator and PDR12 promoter as an organic acid biosensor that can be used to detect varying levels of para-hydroxybenzoic acid (PHBA) production from the shikimate pathway and output green fluorescent protein (GFP) expression in response. The dynamic range of GFP expression in response to PHBA was dramatically increased by engineering positive-feedback expression of the WAR1 transcriptional regulator from its target PDR12 promoter. In addition, the noise in GFP expression at the population-level was controlled by normalising GFP fluorescence to constitutively expressed mCherry fluorescence within each cell. These biosensor modifications increased the high-throughput screening efficiency of yeast cells engineered to produce PHBA by 5,000-fold, enabling accurate fluorescence activated cell sorting isolation of producer cells that were mixed at a ratio of 1 in 10,000 with non-producers. Positive-feedback, ratiometric transcriptional regulator expression is likely applicable to many other transcription-factor/promoter pairs used in synthetic biology and metabolic engineering for both dynamic regulation and high-throughput screening applications.
Collapse
Affiliation(s)
- Thomas C Williams
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Xin Xu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Isak S Pretorius
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
73
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
74
|
Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii. mBio 2016; 7:mBio.01200-16. [PMID: 27601573 PMCID: PMC5013296 DOI: 10.1128/mbio.01200-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multidrug efflux pumps provide clinically significant levels of drug resistance in a number of Gram-negative hospital-acquired pathogens. These pathogens frequently carry dozens of genes encoding putative multidrug efflux pumps. However, it can be difficult to determine how many of these pumps actually mediate antimicrobial efflux, and it can be even more challenging to identify the regulatory proteins that control expression of these pumps. In this study, we developed an innovative high-throughput screening method, combining transposon insertion sequencing and cell sorting methods (TraDISort), to identify the genes encoding major multidrug efflux pumps, regulators, and other factors that may affect the permeation of antimicrobials, using the nosocomial pathogen Acinetobacter baumannii. A dense library of more than 100,000 unique transposon insertion mutants was treated with ethidium bromide, a common substrate of multidrug efflux pumps that is differentially fluorescent inside and outside the bacterial cytoplasm. Populations of cells displaying aberrant accumulations of ethidium were physically enriched using fluorescence-activated cell sorting, and the genomic locations of transposon insertions within these strains were determined using transposon-directed insertion sequencing. The relative abundance of mutants in the input pool compared to the selected mutant pools indicated that the AdeABC, AdeIJK, and AmvA efflux pumps are the major ethidium efflux systems in A. baumannii. Furthermore, the method identified a new transcriptional regulator that controls expression of amvA. In addition to the identification of efflux pumps and their regulators, TraDISort identified genes that are likely to control cell division, cell morphology, or aggregation in A. baumannii. Transposon-directed insertion sequencing (TraDIS) and related technologies have emerged as powerful methods to identify genes required for bacterial survival or competitive fitness under various selective conditions. We applied fluorescence-activated cell sorting (FACS) to physically enrich for phenotypes of interest within a mutant population prior to TraDIS. To our knowledge, this is the first time that a physical selection method has been applied in parallel with TraDIS rather than a fitness-induced selection. The results demonstrate the feasibility of this combined approach to generate significant results and highlight the major multidrug efflux pumps encoded in an important pathogen. This FACS-based approach, TraDISort, could have a range of future applications, including the characterization of efflux pump inhibitors, the identification of regulatory factors controlling gene or protein expression using fluorescent reporters, and the identification of genes involved in cell replication, morphology, and aggregation.
Collapse
|
75
|
Abstract
Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future holds is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast strain (AWRI1631), which was recently achieved via metabolic pathway engineering and synthetic enzyme fusion. A peek over the horizon is revealing that the future of "Wine Yeast 2.0" is already here. Therefore, this article seeks to help prepare the wine industry - an industry rich in history and tradition on the one hand, and innovation on the other - for the inevitable intersection of the ancient art practiced by winemakers and the inventive science of pioneering "synthetic genomicists". It would be prudent to proactively engage all stakeholders - researchers, industry practitioners, policymakers, regulators, commentators, and consumers - in a meaningful dialog about the potential challenges and opportunities emanating from Synthetic Biology. To capitalize on the new vistas of synthetic yeast genomics, this paper presents wine yeast research in a fresh context, raises important questions and proposes new directions.
Collapse
|