51
|
Bhetwal BP, An C, Baker SA, Lyon KL, Perrino BA. Impaired contractile responses and altered expression and phosphorylation of Ca(2+) sensitization proteins in gastric antrum smooth muscles from ob/ob mice. J Muscle Res Cell Motil 2013; 34:137-49. [PMID: 23576331 DOI: 10.1007/s10974-013-9341-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K(+)-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca(2+) transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis.
Collapse
Affiliation(s)
- Bhupal P Bhetwal
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, CMM 203E-MS 0575, 1664 N Virginia St, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
52
|
Romano MR, Lograno MD. Signaling cross-talk between cannabinoid and muscarinic systems actives Rho-kinase and increases the contractile responses of the bovine ciliary muscle. Eur J Pharmacol 2013; 702:174-9. [PMID: 23396229 DOI: 10.1016/j.ejphar.2013.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 01/02/2013] [Accepted: 01/29/2013] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to evaluate the role of a possible interaction between cannabinoid and muscarinic systems, both widely expressed in the ocular structure and involved in the control of bovine ciliary muscle contractility and intraocular pressure modulation. The ciliary muscle strips isolated by bovine eyes were exposed cumulatively to anandamide in the presence and in the absence of carbachol (5 nM), in a miograph system for isometric recording. The experiments were also conducted in the presence of AM251 (100 nM), 4-DAMP (100 nM), Pertussis toxin (500 ng/ml), U73122 (0.1 and 1 μM), chelerythrine (1 and 10 μM) and Y27632 (1 and 10 μM). Contractile responses were expressed as the percentage of 10 μM carbachol-induced contraction. The anandamide-induced contraction on bovine ciliary muscle strips was enhanced by the previous stimulation of Gq-protein-coupled muscarinic M3 receptors with carbachol. The contractile response to anandamide plus carbachol was affected by different inhibitors such as Pertussis toxin, phospholipase C, protein kinase C and Rho-kinase. The key results of the present study show that sequential activation of muscarinic M3 receptors and cannabinoid CB1 receptors produce synergistic contractile effects of the bovine ciliary muscle by involving the activation of Rho-kinase and protein kinase C.
Collapse
Affiliation(s)
- Maria Rosaria Romano
- Department of Pharmacy - Science of Drug, Section of Pharmacology and Toxicology, University of Bari Aldo Moro, Bari, Italy.
| | | |
Collapse
|
53
|
Singh J, Rattan S. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS. Am J Physiol Gastrointest Liver Physiol 2012; 303:G713-22. [PMID: 22790596 PMCID: PMC3468534 DOI: 10.1152/ajpgi.00112.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca(2+), KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K(+) depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10(-5) M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs' SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS.
Collapse
Affiliation(s)
- Jagmohan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Momotani K, Somlyo AV. p63RhoGEF: a new switch for G(q)-mediated activation of smooth muscle. Trends Cardiovasc Med 2012; 22:122-7. [PMID: 22902181 DOI: 10.1016/j.tcm.2012.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023]
Abstract
In normal and diseased vascular smooth muscle (SM), the RhoA pathway, which is activated by multiple agonists through G protein-coupled receptors (GPCRs), plays a central role in regulating basal tone and peripheral resistance. Multiple RhoA GTP exchange factors (GEFs) are expressed in SM, raising the possibility that specific agonists coupled to specific GPCRs may couple to distinct RhoGEFs and provide novel therapeutic targets. This review focuses on the function and mechanisms of activation of p63RhoGEF (Arhgef 25; GEFT) recently identified in SM and its possible role in selective targeting of RhoA-mediated regulation of basal blood pressure through agonists that couple through G(αq/11).
Collapse
Affiliation(s)
- Ko Momotani
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA 22908, USA
| | | |
Collapse
|
55
|
Mahapatra S, Marcantoni A, Zuccotti A, Carabelli V, Carbone E. Equal sensitivity of Cav1.2 and Cav1.3 channels to the opposing modulations of PKA and PKG in mouse chromaffin cells. J Physiol 2012; 590:5053-73. [PMID: 22826131 DOI: 10.1113/jphysiol.2012.236729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse chromaffin cells (MCCs) express high densities of L-type Ca2+ channels (LTCCs), which control pacemaking activity and catecholamine secretion proportionally to their density of expression. In vivo phosphorylation of LTCCs by cAMP-PKA and cGMP–PKG, regulate LTCC gating in two opposing ways: the cAMP-PKA pathway potentiates while the cGMP–PKG cascade inhibits LTCCs. Despite this, no attempts have been made to answer three key questions related to the two Cav1 isoforms expressed in MCCs (Cav1.2 and Cav1.3): (i) how much are the two Cav1 channels basally modulated by PKA and PKG?, (ii) to what extent can Cav1.2 and Cav1.3 be further regulated by PKA or PKG activation?, and (iii) are the effects of both kinases cumulative when simultaneously active? Here, by comparing the size of L-type currents of wild-type (WT; Cav1.2+Cav1.3) and Cav1.3−/− KO (Cav1.2) MCCs, we provide new evidence that both PKA and PKG pathways affect Cav1.2 and Cav1.3 to the same extent either under basal conditions or induced stimulation. Inhibition of PKA by H89 (5 μM) reduced the L-type current in WT and KO MCCs by∼60%,while inhibition of PKG by KT 5823 (1 μM) increased by∼40% the same current in both cell types. Given that Cav1.2 and Cav1.3 carry the same quantity of Ca2+ currents, this suggests equal sensitivity of Cav1.2 and Cav1.3 to the two basal modulatory pathways. Maximal stimulation of cAMP–PKA by forskolin (100 μM) and activation of cGMP–PKG by pCPT-cGMP (1mM) uncovered a∼25% increase of L-type currents in the first case and∼65% inhibition in the second case in both WT and KO MCCs, suggesting equal sensitivity of Cav1.2 and Cav1.3 during maximal PKA or PKG stimulation. The effects of PKA and PKG were cumulative and most evident when one pathway was activated and the other was inhibited. The two extreme combinations(PKA activation–PKG inhibition vs. PKG activation-PKA inhibition) varied the size of L-type currents by one order of magnitude (from 180% to 18% of control size). Taken together our data suggest that: (i) Cav1.2 and Cav1.3 are equally sensitive to PKA and PKG action under both basal conditions and maximal stimulation, and (ii) PKA and PKG act independently on both Cav1.2 and Cav1.3, producing cumulative effects when opposingly activated. These extreme Cav1 channel modulations may occur either during high-frequency sympathetic stimulation to sustain prolonged catecholamine release (maximal L-type current) or following activation of the NO–cGMP–PKG signalling pathway (minimal L-type current) to limit the steady release of catecholamines.
Collapse
|
56
|
Butruille L, Mayeur S, Duparc T, Knauf C, Moitrot E, Fajardy I, Valet P, Storme L, Deruelle P, Lesage J. Prenatal fasudil exposure alleviates fetal growth but programs hyperphagia and overweight in the adult male rat. Eur J Pharmacol 2012; 689:278-84. [PMID: 22683867 DOI: 10.1016/j.ejphar.2012.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 11/26/2022]
Abstract
Numerous data indicate that Rho kinase inhibitors, such as Fasudil, may constitute a novel therapy for cardiovascular and metabolic diseases. We evaluated long-term effects of exposure to Fasudil during late gestation (10 mg/day) in male rat offspring from birth until 9 months. We also analyzed its effects in offspring from hypertensive mothers treated with a nitric oxide synthesis inhibitor (L-NAME; 50 mg/day). Prenatal exposure to Fasudil did not affect birth weight, but increased body weight from postnatal day 7 (P7) to 9 months. In intrauterine growth-restricted (IUGR) fetuses exposed to L-NAME, maternal Fasudil treatment increased birth weight. At P42 and P180, rats exposed to Fasudil and L-NAME showed alterations of their food intake as well as an increased basal glycemia associated with mild glucose intolerance at 6 months which was also observed in Fasudil-exposed rats. In 9 month-old rats, exposure to Fasudil increased the daily food intake as well as hypothalamic mRNA level of the orexigenic NPY peptide without modulation of the anorexigenic POMC gene expression. Altogether, our data suggest that prenatal Fasudil exposure alleviates fetal growth in IUGR rats, but programs long-term metabolic disturbances including transient perturbations of glucose metabolism, a persistent increase of body weight gain, hyperphagia and an augmented expression of hypothalamic NPY orexigenic gene. We postulate that Fasudil treatment during perinatal periods may predispose individuals to the development of metabolic disorders.
Collapse
Affiliation(s)
- Laura Butruille
- Univ Lille Nord de France, Unité Environnement Périnatal et Croissance, EA 4489, Faculté de Médecine, Pôle Recherche, Bâtiment SN4, Villeneuve d'Ascq, IFR 114, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
The vasorelaxant mechanisms of a Rho kinase inhibitor DL0805 in rat thoracic aorta. Molecules 2012; 17:5935-44. [PMID: 22609784 PMCID: PMC6268074 DOI: 10.3390/molecules17055935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/21/2022] Open
Abstract
Rho-kinase has been suggested as a potential therapeutic target in the treatment of cardiovascular diseases. The Rho-kinase signaling pathway is substantially involved in vascular contraction. The aim of the present study was to evaluate the vasorelaxant effects of Rho kinase inhibitor DL0805 in isolated rat aortic rings and to investigate its possible mechanism(s). It was found that DL0805 exerted vasorelaxation in a dose-dependent manner in NE or KCl-induced sustained contraction and partial loss of the vasorelaxation under endothelium-denuded rings. The DL0805-induced vasorelaxation was significantly reduced by the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester, the guanylate cyclase inhibitor methylene blue and the cyclooxygenase inhibitor indomethacin. The voltage-dependent K+ channel blocker 4-aminopyridine remarkably attenuated DL0805-induced relaxations. However, the ATP-sensitive K+ channel blocker glibenclamide and Ca2+-activated K+ channel blocker tetraethylammonium did not affect the DL0805-induced relaxation. In the endothelium-denuded rings, DL0805 also reduced NE-induced transient contraction and inhibited contraction induced by increasing external calcium. These findings suggested that DL0805 is a novel vasorelaxant compound associated with inhibition of Rho/ROCK signaling pathway. The NO-cGMP pathway may be involved in the relaxation of DL0805 in endothelium-intact aorta. The vasorelaxant effect of DL0805 is partially mediated by the opening of the voltage-dependent K+ channels.
Collapse
|
58
|
Rattan S, Singh J. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2012; 302:G664-75. [PMID: 22241857 PMCID: PMC3330775 DOI: 10.1152/ajpgi.00430.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.
Collapse
Affiliation(s)
- Satish Rattan
- Dept. of Medicine, Division of Gastroenterology & Hepatology, Philadelphia, PA 19107, USA.
| | | |
Collapse
|