51
|
Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases. Int J Mol Sci 2016; 17:ijms17121969. [PMID: 27898009 PMCID: PMC5187769 DOI: 10.3390/ijms17121969] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications.
Collapse
|
52
|
Filippou PS, Karagiannis GS, Musrap N, Diamandis EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci 2016; 53:277-91. [PMID: 26886390 DOI: 10.3109/10408363.2016.1154643] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The kallikrein-related peptidases (KLKs) represent the largest family of serine proteases within the human genome and are expressed in various tissues. Although they regulate several important physiological functions, KLKs have also been implicated in numerous pathophysiological processes, including cancer. Growing evidence describing the deregulation of KLK expression and secretion, as well as activation in various malignancies, has uncovered their potential as mediators of cancer progression, biomarkers of disease and as candidate therapeutic targets. The diversity of signalling pathways and proteolytic cascades involving KLKs and their downstream targets appears to affect cancer biology through multiple mechanisms, including those related to the hallmarks of cancer. The aim of this review is to provide an update on the importance of KLK-driven molecular pathways in relation to cancer cell traits associated with the hallmarks of cancer and to highlight their potential in personalized therapeutics.
Collapse
Affiliation(s)
- Panagiota S Filippou
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - George S Karagiannis
- b Department of Anatomy & Structural Biology , Albert Einstein College of Medicine, Yeshiva University Bronx , New York , NY , USA
| | - Natasha Musrap
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Eleftherios P Diamandis
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada .,c Department of Clinical Biochemistry , University Health Network , Toronto , ON , Canada , and.,d Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
53
|
Sidiropoulos KG, Ding Q, Pampalakis G, White NMA, Boulos P, Sotiropoulou G, Yousef GM. KLK6-regulated miRNA networks activate oncogenic pathways in breast cancer subtypes. Mol Oncol 2016; 10:993-1007. [PMID: 27093921 DOI: 10.1016/j.molonc.2016.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
KLK6 is expressed in normal mammary tissues and is aberrantly regulated in breast cancer. At physiological levels of expression, i.e. those found in normal mammary tissues, KLK6 acts as a tumor suppressor in human breast cancer. However, aberrant overexpression of KLK6 (i.e. 50-100-fold higher than normal), a characteristic of a subset of human breast cancers is associated with increased tumorigenicity (Pampalakis et al. Cancer Res 69:3779-3787, 2009). Here, we stably transfected KLK6-non-expressing MDA-MB-231 breast cancer cells with the full-length KLK6 cDNA to overexpress KLK6 at levels comparable to those observed in patients, and investigated potential oncogenic miRNA networks regulated by these abnormally high KLK6 expression levels and increased activity of this serine protease. A number of miRNAs that are upregulated (e.g. miR-146a) or downregulated (e.g. miR-34a) via KLK6-induced alterations in the miRNA biogenesis machinery were identified. Integrated experimental and bioinformatics analyses identified convergent miRNA networks targeting the cell cycle, MYC, MAPK, and other signaling pathways. In large clinical datasets, significant correlations between KLK6 and downstream MAPK and MYC targets at both the RNA and protein levels was confirmed, as well as negative correlation with GATA3. It was also demonstrated that KLK6 overexpression and likely its proteolytic activity is associated with alterations in downstream miRNAs and their targets, and these differ with the molecular subtypes of breast cancer. The data partly explains the different characteristics of breast cancer subtypes. Importantly, we introduce a combined KLK6-CDKN1B+MYC+CDKN1C score for prediction of long-term patient survival outcomes, with higher scores indicating poor survival.
Collapse
Affiliation(s)
- Konstantinos G Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Qiang Ding
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | | | - Nicole M A White
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Peter Boulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
54
|
Synthesis, biological evaluation and molecular modeling of pseudo-peptides based statine as inhibitors for human tissue kallikrein 5. Eur J Med Chem 2016; 112:39-47. [DOI: 10.1016/j.ejmech.2016.01.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/11/2016] [Accepted: 01/30/2016] [Indexed: 02/05/2023]
|
55
|
Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets 2016; 20:801-18. [PMID: 26941073 DOI: 10.1517/14728222.2016.1147560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Tissue kallikrein and the kallikrein-related peptidases (KLKs) constitute a family of 15 homologous secreted serine proteases with trypsin- or chymotrypsin-like activities, which participate in a broad spectrum of physiological procedures. Deregulated expression and/or activation of the majority of the family members have been reported in several human diseases, thereby making KLKs ideal targets for therapeutic intervention. AREAS COVERED In the present review, we summarize the role of KLKs in normal human physiology and pathology, focusing on prostate cancer and skin diseases. Furthermore, we discuss the recent advances in the development of KLK-based therapies. A great number of diverse engineered KLKs inhibitors with improved potency, selectivity and immunogenicity have been synthesized by redesigning examples that are endogenous and naturally occurring. Moreover, encouraging results have been documented using KLKs-based vaccines and immunotherapies, as well as KLKs-mediated activation of pro-drugs. Finally, KLKs-targeting aptamers and KLKs-based imaging tools represent novel approaches towards the exploitation of KLKs' therapeutic value. EXPERT OPINION The central/critical roles of KLK family in several human pathologies highlight KLKs as attractive molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Margaritis Avgeris
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| | - Andreas Scorilas
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| |
Collapse
|
56
|
Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes. DISEASE MARKERS 2015; 2015:946572. [PMID: 26783378 PMCID: PMC4689925 DOI: 10.1155/2015/946572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
Human kallikrein-related peptidases (KLKs) are a subgroup of serine proteases that participate in proteolytic pathways and control protein levels in normal physiology as well as in several pathological conditions. Their complex network of stimulatory and inhibitory interactions may induce inflammatory and immune responses and contribute to the neoplastic phenotype through the regulation of several cellular processes, such as proliferation, survival, migration, and invasion. This family of proteases, which includes one of the most useful cancer biomarkers, kallikrein-related peptidase 3 or PSA, also has a protective effect against cancer promoting apoptosis or counteracting angiogenesis and cell proliferation. Therefore, they represent attractive therapeutic targets and may have important applications in clinical oncology. Despite being intensively studied, many gaps in our knowledge on several molecular aspects of KLK functions still exist. This review aims to summarize recent data on their involvement in different processes related to health and disease, in particular those directly or indirectly linked to the neoplastic process.
Collapse
|
57
|
The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie 2015; 122:283-99. [PMID: 26343558 DOI: 10.1016/j.biochi.2015.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Collapse
|
58
|
Kallistatin ameliorates influenza virus pathogenesis by inhibition of kallikrein-related peptidase 1-mediated cleavage of viral hemagglutinin. Antimicrob Agents Chemother 2015; 59:5619-30. [PMID: 26149981 DOI: 10.1128/aac.00065-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/18/2015] [Indexed: 12/30/2022] Open
Abstract
Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses.
Collapse
|
59
|
Panos M, Christophi GP, Rodriguez M, Scarisbrick IA. Differential expression of multiple kallikreins in a viral model of multiple sclerosis points to unique roles in the innate and adaptive immune response. Biol Chem 2015; 395:1063-73. [PMID: 25153387 DOI: 10.1515/hsz-2014-0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
Abstract
Recent studies provide a functional link between kallikrein 6 (Klk6) and the development and progression of disease in patients with multiple sclerosis (MS) and in its murine models. To evaluate the involvement of additional kallikrein family members, we compared Klk6 expression with four other kallikreins (Klk1, Klk7, Klk8, and Klk10) in the brain and spinal cord of mice infected with Theiler's murine encephalomyelitis virus, an experimental model of progressive MS. The robust upregulation of Klk6 and Klk8 in the brain during the acute phase of viral encephalitis and in the spinal cord during disease development and progression points to their participation in inflammation, demyelination, and progressive axon degeneration. More limited changes in Klk1, Klk7, and Klk10 were also observed. In addition, Klk1, Klk6, and Klk10 were dynamically regulated in T cells in vitro as a recall response to viral antigen and in activated monocytes, pointing to their activities in the development of adaptive and innate immune function. Together, these results point to overlapping and unique roles for multiple kallikreins in the development and progression of virus-mediated central nervous system inflammatory demyelinating disease, including activities in the development of the adaptive and innate immune response, in demyelination, and in progressive axon degeneration.
Collapse
|
60
|
Yu Y, Prassas I, Dimitromanolakis A, Diamandis EP. Novel Biological Substrates of Human Kallikrein 7 Identified through Degradomics. J Biol Chem 2015; 290:17762-17775. [PMID: 26032414 DOI: 10.1074/jbc.m115.643551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/03/2023] Open
Abstract
Kallikrein-related peptidases (KLKs) are a group of serine proteases widely expressed in various tissues and involved in a wide range of physiological and pathological processes. Although our understanding of the pathophysiological roles of most KLKs has blossomed in recent years, identification of the direct endogenous substrates of human KLKs remains an unmet objective. In this study we employed a degradomics approach to systemically investigate the endogenous substrates of KLK7 in an effort to understand the molecular pathways underlying KLK7 action in skin. We identified several previously known as well as novel protein substrates. Our most promising candidates were further validated with the use of targeted quantitative proteomics (selected reaction monitoring methods) and in vitro recombinant protein digestion assays. Our study revealed midkine, CYR61, and tenascin-C as endogenous substrates for KLK7. Interestingly, some of these substrates (e.g. midkine) were prone to proteolytic cleavage only by KLK7 (and not by other skin-associated KLKs), whereas others (e.g. CYR61 and tenascin-C) could be digested by several KLKs. Furthermore, using melanoma cell line, we show that KLK7-mediated cleavage of midkine results in an overall reduction in the pro-proliferative and pro-migratory effect of midkine. An inverse relation between KLK7 and midkine is also observed in human melanoma tissues. In summary, our degradomics approach revealed three novel endogenous substrates for KLK7, which may shed more light on the pathobiological roles of KLK7 in human skin. Similar substrate screening approaches could be applied for the discovery of biological substrates of other protease.
Collapse
Affiliation(s)
- Yijing Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | | | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
61
|
Cereda V, Formica V, Menghi A, Pellicori S, Roselli M. Kallikrein-related peptidases targeted therapies in prostate cancer: perspectives and challenges. Expert Opin Investig Drugs 2015; 24:929-47. [PMID: 25858813 DOI: 10.1517/13543784.2015.1035708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Despite the emergence of several new effective treatments for metastatic castration-resistant prostate cancer patients, disease progression inevitably occurs, leading scientific community to carefully look for novel therapeutic targets of prostate cancer. Kallikrein (KLK)-related peptidases have been demonstrated to facilitate prostate tumorigenesis and disease progression through the development of an oncogenic microenvironment for prostate cells. AREAS COVERED This review first summarizes the large amount of preclinical data showing the involvement of KLKs in prostate cancer pathobiology. In the second part, the authors assess the current status and future directions for KLK-targeted therapy and briefly describe the advances and challenges implicated in the design of effective manufactured drugs. The authors then focus on the preclinical data and on Phase I/II studies of the most promising KLK-targeted agents in prostate cancer. The drugs discussed here are divided on the basis of their mechanism of action: KLK-engineered inhibitors; KLK-activated pro-drugs; KLK-targeted microRNAs and small interfering RNAs(-/)small hairpin RNAs; KLK vaccines and antibodies. EXPERT OPINION Targeting KLK expression and/or activity could be a promising direction in prostate cancer treatment. Future human clinical trials will help us to evaluate the real benefits, toxicities and the consequent optimal use of KLK-targeted drugs, as mono-therapy or in combination regimens.
Collapse
Affiliation(s)
- Vittore Cereda
- 1 University of Rome Tor Vergata, Tor Vergata University Clinical Center, Department of Systems Medicine, Medical Oncology , Viale Oxford 81, 00133 Rome , Italy +39 0620908190 ; +39 0620903504 ;
| | | | | | | | | |
Collapse
|
62
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
63
|
Michaelidou K, Kladi-Skandali A, Scorilas A. Kallikreins as Biomarkers in Human Malignancies. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
64
|
Tan X, Soualmia F, Furio L, Renard JF, Kempen I, Qin L, Pagano M, Pirotte B, El Amri C, Hovnanian A, Reboud-Ravaux M. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem 2014; 58:598-612. [PMID: 25489658 DOI: 10.1021/jm500988d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inhibition of kallikreins 5 and 7, and possibly kallikrein 14 and matriptase, (that initiates the kallikrein proteolytic cascade) constitutes an innovative way to treat some skin diseases such as Netherton syndrome. We present here the inhibitory properties of coumarin-3-carboxylate derivatives against these enzymes. Our small collection of these versatile organic compounds was enriched by newly synthesized derivatives in order to obtain molecules selective against one, two, three enzymes or acting on the four ones. We evidenced a series of compounds with IC50 values in the nanomolar range. A suicide mechanism was observed against kallikrein 7 whereas the inactivation was either definitive (suicide type) or transient for kallikreins 5 and 14, and matriptase. Most of these potent inhibitors were devoid of cytotoxicity toward healthy human keratinocytes. In situ zymography investigations on skin sections from human kallikrein 5 transgenic mouse revealed significant reduction of the global proteolytic activity by several compounds.
Collapse
Affiliation(s)
- Xiao Tan
- Sorbonne Universités, UPMC University Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Institut de Biologie Paris Seine , 7 Quai St Bernard, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Scorilas A, Mavridis K. Predictions for the future of kallikrein-related peptidases in molecular diagnostics. Expert Rev Mol Diagn 2014; 14:713-22. [PMID: 24927162 DOI: 10.1586/14737159.2014.928207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer's disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research.
Collapse
Affiliation(s)
- Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | | |
Collapse
|
66
|
Gill JH, Loadman PM, Shnyder SD, Cooper P, Atkinson JM, Ribeiro Morais G, Patterson LH, Falconer RA. Tumor-targeted prodrug ICT2588 demonstrates therapeutic activity against solid tumors and reduced potential for cardiovascular toxicity. Mol Pharm 2014; 11:1294-300. [PMID: 24641451 DOI: 10.1021/mp400760b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of therapeutic strategies for tumor-selective delivery of therapeutics through exploitation of the proteolytic tumor phenotype has significant scope for improvement of cancer treatment. ICT2588 is a peptide-conjugated prodrug of the vascular disrupting agent (VDA) azademethylcolchicine developed to be selectively hydrolyzed by matrix metalloproteinase-14 (MMP-14) within the tumor. In this report, we extend our previous proof-of-concept studies and demonstrate the therapeutic potential of this agent against models of human colorectal, lung, breast, and prostate cancer. In all tumor types, ICT2588 was superior to azademethylcolchicine and was greater or comparable to standard clinically used agents for the respective tumor type. Prodrug activation in clinical human lung tumor homogenates relative to stability in human plasma and liver was observed, supporting clinical translation potential. A major limiting factor to the clinical value of VDAs is their inherent cardiovascular toxicity. No increase in plasma von Willebrand factor (vWF) levels, an indicator of systemic vascular dysfunction and acute cardiovascular toxicity, was detected with ICT2588, thereby supporting the tumor-selective activation and reduced potential of ICT2588 to cause cardiovascular toxicity. Our findings reinforce the improved therapeutic index and tumor-selective approach offered by ICT2588 and this nanotherapeutic approach.
Collapse
Affiliation(s)
- Jason H Gill
- Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford , Bradford, Yorkshire BD7 1DP, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opin Ther Targets 2014; 18:365-83. [PMID: 24571737 DOI: 10.1517/14728222.2014.880693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
68
|
The dipeptide monoester prodrugs of floxuridine and gemcitabine-feasibility of orally administrable nucleoside analogs. Pharmaceuticals (Basel) 2014; 7:169-91. [PMID: 24473270 PMCID: PMC3942691 DOI: 10.3390/ph7020169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 12/19/2022] Open
Abstract
Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5′-l-phenylalanyl-l-tyrosyl-floxuridine and 5′-l-phenylalanyl-l-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.
Collapse
|
69
|
Dong Y, Loessner D, Irving-Rodgers H, Obermair A, Nicklin JL, Clements JA. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin Exp Metastasis 2014; 31:135-47. [PMID: 24043563 PMCID: PMC3892111 DOI: 10.1007/s10585-013-9615-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
Ovarian cancer, in particular epithelial ovarian cancer (EOC), is commonly diagnosed when the tumor has metastasized into the abdominal cavity with an accumulation of ascites fluid. Combining histopathology and genetic variations, EOC can be sub-grouped into Type-I and Type-II tumors, of which the latter are more aggressive and metastatic. Metastasis and chemoresistance are the key events associated with the tumor microenvironment that lead to a poor patient outcome. Kallikrein-related peptidases (KLKs) are aberrantly expressed in EOC, in particular, in the more metastatic Type-II tumors. KLKs are a family of 15 serine proteases that are expressed in diverse human tissues and involved in various patho-physiological processes. As extracellular enzymes, KLKs function in the hydrolysis of growth factors, proteases, cell membrane bound receptors, adhesion proteins, and cytokines initiating intracellular signaling pathways and their downstream events. High KLK levels are differentially associated with the prognosis of ovarian cancer patients, suggesting that they not only have application as biomarkers but also function in disease progression, and therefore are potential therapeutic targets. Recent studies have demonstrated the function of these proteases in promoting and/or suppressing the invasive behavior of ovarian cancer cells in metastasis in vitro and in vivo. Both conventional cell culture methods and three-dimensional platforms have been applied to mimic the ovarian cancer microenvironment of patients, such as the solid stromal matrix and ascites fluid. Here we summarize published studies to provide an overview of our understanding of the role of KLKs in EOC, and to lay the foundation for future research directions.
Collapse
Affiliation(s)
- Ying Dong
- Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia,
| | | | | | | | | | | |
Collapse
|
70
|
Tan X, Bertonati C, Qin L, Furio L, El Amri C, Hovnanian A, Reboud-Ravaux M, Villoutreix BO. Identification by in silico and in vitro screenings of small organic molecules acting as reversible inhibitors of kallikreins. Eur J Med Chem 2013; 70:661-8. [DOI: 10.1016/j.ejmech.2013.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
|
71
|
Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury. J Invest Dermatol 2013; 134:1305-1312. [PMID: 24352040 DOI: 10.1038/jid.2013.502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/14/2013] [Accepted: 10/25/2013] [Indexed: 11/08/2022]
Abstract
The proteolytic regulation of the desquamation process by kallikrein-related peptidases (KLKs) is crucial for epidermal barrier function, and elevated KLK levels have been reported in atopic dermatitis. KLKs are controlled by specific inhibitors of the serine protease inhibitor of Kazal-type (Spink) family. Recently, SPINK6 was shown to be present in human stratum corneum. In order to investigate its role in epidermal barrier function, we studied mouse Spink6. Sequence alignment revealed that the Kazal domain of Spink6 is highly conserved in animals. Recombinant Spink6 efficiently inhibited mouse Klk5 and human KLK2, KLK4, KLK5, KLK6, KLK7, KLK12, KLK13, and KLK14, whereas human KLK1 and KLK8 were not inhibited. Spink6 was expressed in mouse epidermis mainly in the stratum granulosum, and the inner root sheath of hair follicles. Stimulation with flagellin, EGF, and IL-1β did not alter Spink6 expression, whereas stimulation with tumor necrosis factor-α (TNFα)/IFNγ and all-trans retinoic acid resulted in a significant downregulation of Spink6 expression in cultured primary mouse keratinocytes. Mechanically and metabolically induced skin barrier dysfunction resulted both in a downregulation of Spink6 expression. Our study indicates that Spink6 is a potent inhibitor of KLKs and involved in skin barrier function.
Collapse
|
72
|
Pathak M, Wong SS, Dreveny I, Emsley J. Structure of plasma and tissue kallikreins. Thromb Haemost 2013; 110:423-33. [PMID: 23494059 DOI: 10.1160/th12-11-0840] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
The kallikrein kinin system (KKS) consists of serine proteases involved in the production of peptides called kinins, principally bradykinin and Lys-bradykinin (kallidin). The KKS contributes to a variety of physiological processes including inflammation, blood pressure control and coagulation. Here we review the protein structural data available for these serine proteases and examine the molecular mechanisms of zymogen activation and substrate recognition focusing on plasma kallikrein (PK) and tissue kallikrein (KLK1) cleavage of kininogens. PK circulates as a zymogen bound to high-molecular-weight kininogen (HK). PK is activated by coagulation factor XIIa and then cleaves HK to generate bradykinin and factor XII to generate further XIIa.A structure has been described for the activated PK protease domain in complex with the inhibitor benzamidine. Kallikrein-related peptidases (KLKs) have a distinct domain structure and exist as a family of 15 genes which are differentially expressed in many tissues and the central nervous system.They cleave a wide variety of substrates including low-molecular-weight kininogen (LK) and matrix proteins. Crystal structures are available for KLK1, 3, 4, 5, 6 and 7 activated protease domains typically in complex with S1 pocket inhibitors. A substrate mimetic complex is described for KLK3 which provides insight into substrate recognition. A zymogen crystal structure determined for KLK6 reveals a closed S1 pocket and a novel mechanism of zymogen activation. Overall these structures have proved highly informative in understanding the molecular mechanisms of the KKS and provide templates to design inhibitors for treatment of a variety of diseases.
Collapse
Affiliation(s)
- M Pathak
- Dr. Jonas Emsley, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG72RD, UK, Tel.: +44 1158467092, Fax: +44 1158468002, E-mail:
| | | | | | | |
Collapse
|