51
|
Koeberl M, Clarke D, Lopata AL. Next generation of food allergen quantification using mass spectrometric systems. J Proteome Res 2014; 13:3499-509. [PMID: 24824675 DOI: 10.1021/pr500247r] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Food allergies are increasing worldwide and becoming a public health concern. Food legislation requires detailed declarations of potential allergens in food products and therefore an increased capability to analyze for the presence of food allergens. Currently, antibody-based methods are mainly utilized to quantify allergens; however, these methods have several disadvantages. Recently, mass spectrometry (MS) techniques have been developed and applied to food allergen analysis. At present, 46 allergens from 11 different food sources have been characterized using different MS approaches and some specific signature peptides have been published. However, quantification of allergens using MS is not routinely employed. This review compares the different aspects of food allergen quantification using advanced MS techniques including multiple reaction monitoring. The latter provides low limits of quantification for multiple allergens in simple or complex food matrices, while being robust and reproducible. This review provides an overview of current approaches to analyze food allergens, with specific focus on MS systems and applications.
Collapse
Affiliation(s)
- Martina Koeberl
- Molecular Immunology Group, Centre for Biodiscovery and Molecular Discovery of Therapeutics, School of Pharmacy and Molecular Sciences, James Cook University , James Cook Drive, Townsville, QLD 4811, Australia
| | | | | |
Collapse
|
52
|
Hattersley S, Ward R, Baka A, Crevel RW. Advances in the risk management of unintended presence of allergenic foods in manufactured food products – An overview. Food Chem Toxicol 2014; 67:255-61. [DOI: 10.1016/j.fct.2014.01.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/29/2013] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
|
53
|
Yang W, Liqing W, Fei D, Bin Y, Yi Y, Jing W. Development of an SI-Traceable HPLC-Isotope Dilution Mass Spectrometry Method To Quantify β-Lactoglobulin in Milk Powders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3073-3080. [PMID: 24628306 DOI: 10.1021/jf4054337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
β-Lactoglobulin (β-LG) is one of the major allergenic proteins in milk. There is an urgent demand for an accurate and traceable method to develop β-LG certified reference material (CRM). In this work, β-LG was enzymatically digested and a specific peptide was chosen for quantitation by isotope-dilution mass spectrometry (IDMS). With amino acid CRMs as standards, the results could be traced to SI unit. By the proposed method, the recovery ranged from 86.0% to 118.3% with CVs <9.0%. The LOD and LOQ were 4.8 × 10-5 g/g and 1.6 × 10-4 g/g of β-LG in milk powder, respectively. Ten samples from domestic market were analyzed with CVs <5.6%, and the relative expanded uncertainties ranged from 4.2% to 5.9% (k = 2). With the CRMs, it is expected that the comparability of β-LG quantitation results will be improved among different laboratories.
Collapse
Affiliation(s)
- Wang Yang
- College of Science, Beijing University of Chemical Technology , Beijing, 100029, People's Republic of China
| | - Wu Liqing
- Division of Medical and Biological Measurement, National Institute of Metrology , Beijing, People's Republic of China
| | - Duan Fei
- College of Science, Beijing University of Chemical Technology , Beijing, 100029, People's Republic of China
| | - Yang Bin
- Division of Medical and Biological Measurement, National Institute of Metrology , Beijing, People's Republic of China
| | - Yang Yi
- College of Science, Beijing University of Chemical Technology , Beijing, 100029, People's Republic of China
| | - Wang Jing
- Division of Medical and Biological Measurement, National Institute of Metrology , Beijing, People's Republic of China
| |
Collapse
|
54
|
Mattarozzi M, Milioli M, Bignardi C, Elviri L, Corradini C, Careri M. Investigation of different sample pre-treatment routes for liquid chromatography–tandem mass spectrometry detection of caseins and ovalbumin in fortified red wine. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
55
|
Ciardiello MA, Tamburrini M, Liso M, Crescenzo R, Rafaiani C, Mari A. Food allergen profiling: A big challenge. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
56
|
Cucu T, Jacxsens L, De Meulenaer B. Analysis to support allergen risk management: Which way to go? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5624-5633. [PMID: 23323855 DOI: 10.1021/jf303337z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Food allergy represents an important food safety issue because of the potential lethal effects; the only effective treatment is the complete removal of the allergen involved from the diet. However, due to the growing complexity of food formulations and food processing, foods may be unintentionally contaminated via allergen-containing ingredients or cross-contamination. This affects not only consumers' well-being but also food producers and competent authorities involved in inspecting and auditing food companies. To address these issues, the food industry and control agencies rely on available analytical methods to quantify the amount of a particular allergic commodity in a food and thus to decide upon its safety. However, no "gold standard methods" exist for the quantitative detection of food allergens. Nowadays mostly receptor-based methods and in particular commercial kits are used in routine analysis. However, upon evaluation of their performances, commercial assays proved often to be unreliable in processed foods, attributed to the chemical changes in proteins that affect the molecular recognition with the receptor used. Unfortunately, the analytical outcome of other methods, among which are chromatographic combined with mass spectrometric techniques as well as DNA-based methods, seem to be affected in a comparable way by food processing. Several strategies can be employed to improve the quantitative analysis of allergens in foods. Nevertheless, issues related to extractability and matrix effects remain a permanent challenge. In view of the presented results, it is clear that the food industry needs to continue to make extra efforts to provide accurate labeling and to reduce the contamination with allergens to an acceptable level through the use of allergen risk management on a company level, which needs to be supported inevitably by a tailor-validated extraction and detection method.
Collapse
Affiliation(s)
- Tatiana Cucu
- NutriFOODchem Unit (member of Food2Know), Department of Food Safety and Food Quality, Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | | | | |
Collapse
|
57
|
Pilolli R, Monaci L, Visconti A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Cucu T, De Meulenaer B, Devreese B. MALDI-based identification of stable hazelnut protein derived tryptic marker peptides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1821-31. [DOI: 10.1080/19440049.2012.719639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
59
|
Bignardi C, Mattarozzi M, Penna A, Sidoli S, Elviri L, Careri M, Mangia A. A Rapid Size-Exclusion Solid-Phase Extraction Step for Enhanced Sensitivity in Multi-Allergen Determination in Dark Chocolate and Biscuits by Liquid Chromatography–Tandem Mass Spectrometry. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9521-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Revák O, Golian J. Nutirtion labelling of food and allergen in food. POTRAVINARSTVO 2012. [DOI: 10.5219/230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The new regulation introduced mandatory nutrition labelling and ordering food manufacturers provide information on energy and six nutrients: fat, saturated fatty acids, carbohydrates, sugars, protein and salt - in that order, and per 100 g or 100 ml. This information should be included in the nutritional table in one visual field (usually on the back cover), moreover, can also be expressed on per serving. It is important to realize that this regulation requires manufacturers indicate the nutritional value in one field of vision, usually on the "back cover" designation in the principal field (e.g. "on the front cover") remains voluntary. Food allergy is a significant public health issue worldwide. Regulatory risk management strategies for allergic consumers have focused on providing information about the presence of food allergens through label declarations. A number of countries and regulatory bodies have recognized the importance of providing this information by enacting laws, regulations or standards for food allergen labelling of ‘‘priority allergens. Increasing volume of the international food trade suggests that there would be value in supporting sensitive consumers by harmonizing (to the extent possible) these regulatory frameworks. As a first step toward this goal, an inventory of allergen labelling regulations was assembled and analyzed to identify commonalities, differences, and future needs.
Collapse
|
61
|
Di Stefano V, Avellone G, Bongiorno D, Cunsolo V, Muccilli V, Sforza S, Dossena A, Drahos L, Vékey K. Applications of liquid chromatography–mass spectrometry for food analysis. J Chromatogr A 2012; 1259:74-85. [DOI: 10.1016/j.chroma.2012.04.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
|
62
|
Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9058-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
63
|
Deng X, Liu L, Ma W, Xu C, Wang L, Kuang H. Development and validation of a sandwich ELISA for quantification of peanut agglutinin (PNA) in foods. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2011.617358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
64
|
Peng J, Meng X, Deng X, Zhu J, Kuang H, Xu C. Development of a monoclonal antibody-based sandwich ELISA for the detection of ovalbumin in foods. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2012.716398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
65
|
Mattarozzi M, Bignardi C, Elviri L, Careri M. Rapid shotgun proteomic liquid chromatography-electrospray ionization-tandem mass spectrometry-based method for the lupin ( Lupinus albus L.) multi-allergen determination in foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5841-5846. [PMID: 22612429 DOI: 10.1021/jf302105r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Allergy to lupin is a growing food safety problem because this legume, increasingly exploited in the food industry, is one of the allergens that, according to law, must be declared on the labels of food products in the European Union. In this context, a rapid targeted proteomic approach based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was proposed and aimed to unequivocal confirmation and reliable determination of the major lupin allergens, i.e., conglutins, in pasta and biscuits. Detected concentrations were around 1 mg of lupin/kg of pasta and biscuits, proving the capabilities of the MS-based method in terms of the sensitive allergen screening method. Good precision was observed in terms of both intra- and interday repeatability, with relative standard deviation (RSD) lower than 23%. Recoveries from 95 ± 10 to 118 ± 12% and from 103 ± 1 to 110 ± 12% ranges were calculated for biscuits and pasta, respectively. Finally, the applicability of the devised method was investigated by analyzing market samples containing lupin and samples that may possibly contain traces of lupin deriving from cross-contamination between products and production lines.
Collapse
Affiliation(s)
- Monica Mattarozzi
- Centro Interdipartimentale SITEIA.PARMA, Università degli Studi di Parma , Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | | | | | | |
Collapse
|
66
|
Cucu T, De Meulenaer B, Kerkaert B, Vandenberghe I, Devreese B. MALDI based identification of whey protein derived tryptic marker peptides that resist protein glycation. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
67
|
Nemes P, Vertes A. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.11.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
68
|
Costa J, Mafra I, Carrapatoso I, Oliveira MBPP. Almond allergens: molecular characterization, detection, and clinical relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1337-1349. [PMID: 22260748 DOI: 10.1021/jf2044923] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Almond ( Prunus dulcis ) has been widely used in all sorts of food products (bakery, pastry, snacks), mostly due to its pleasant flavor and health benefits. However, it is also classified as a potential allergenic seed known to be responsible for triggering several mild to life-threatening immune reactions in sensitized and allergic individuals. Presently, eight groups of allergenic proteins have been identified and characterized in almond, namely, PR-10 (Pru du 1), TLP (Pru du 2), prolamins (Pru du 2S albumin, Pru du 3), profilins (Pru du 4), 60sRP (Pru du 5), and cupin (Pru du 6, Pru du γ-conglutin), although only a few of them have been tested for reactivity with almond-allergic sera. To protect sensitized individuals, labeling regulations have been implemented for foods containing potential allergenic ingredients, impelling the development of adequate analytical methods. This work aims to present an updated and critical overview of the molecular characterization and clinical relevance of almond allergens, as well as review the main methodologies used to detect and quantitate food allergens with special emphasis on almond.
Collapse
Affiliation(s)
- Joana Costa
- REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
69
|
Cucu T, De Meulenaer B, Devreese B. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods. Peptides 2012; 33:187-96. [PMID: 22212959 DOI: 10.1016/j.peptides.2011.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods.
Collapse
Affiliation(s)
- Tatiana Cucu
- Department of Food Safety and Food Quality, Research group Food Chemistry and Human Nutrition, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | |
Collapse
|
70
|
Tortajada-Genaro LA, Santiago-Felipe S, Morais S, Gabaldón JA, Puchades R, Maquieira Á. Multiplex DNA detection of food allergens on a digital versatile disk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:36-43. [PMID: 22126645 DOI: 10.1021/jf2037032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of a DNA microarray method on a digital versatile disk (DVD) is described for the simultaneous detection of traces of hazelnut ( Corylus avellana L.), peanut ( Arachis hypogaea ), and soybean ( Glycine max ) in foods. After DNA extraction, multiplex PCR was set up using 5'-labeled specific primers for Cor a 1, Ar h 2, and Le genes, respectively. Digoxin-labeled PCR products were detected by hybridization with 5'-biotinylated probes immobilized on a streptavidin-modified DVD surface. The reaction product attenuates the signal intensity of the laser that reached the DVD drive used as detector, correlating well with the amount of amplified sequence. Analytical performances showed a detection limit of 1 μg/g and good assay reproducibility (RSD 8%), suitable for the simultaneous detection of the three targeted allergens. The developed methodology was tested with several commercially available foodstuffs, demonstrating its applicability. The results were in good agreement, in terms of sensitivity and reproducibility, with those obtained with ELISA, PCR-gel agarose electrophoresis, and RT-PCR.
Collapse
Affiliation(s)
- Luis A Tortajada-Genaro
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico, IDM, Departamento de Química, Universitat Politècnica de València, Camino de Vera, E46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
71
|
Assessing allergenicity of different tomato ecotypes by using pooled sera of allergic subjects: identification of the main allergens. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1640-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
|
73
|
Monaci L, Losito I, Palmisano F, Godula M, Visconti A. Towards the quantification of residual milk allergens in caseinate-fined white wines using HPLC coupled with single-stage Orbitrap mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1304-14. [DOI: 10.1080/19440049.2011.593191] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
74
|
Rapid Detection of Shellfish Major Allergen Tropomyosin Using Superparamagnetic Nanoparticle-Based Lateral Flow Immunoassay. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.311-313.436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a competitive assay format using superparamagnetic nanoparticle-based lateral flow immunoassay (LFIA) was developed for rapid, quantitative detection of shellfish major allergen tropomyosin (Tm). Sartorius CN140 nitrocellulose membrane and 0.05mg/mL Tm immobilized in the test line (T line) were optimized in order to improve the performance of the LFIA system. Calibration curves for Tm under PBS-T diluents and carp muscle extraction diluents were established. Limit of detection (LOD) for Tm calibrated by carp muscle matrix was 12.4ng/mL with a work range of 0.01 to 20μg/mL. According to magnetic signals change with the time of sample flowing on the strip, the qualitative time of the LFIA was about 10min, while the quantitative time of the LFIA was about 25min. 30 food species were detected separately by the LFIA and Western blot method to evaluate the specificity of the LFIA. Overall relative agreement of the two methods was 96.7% (29/30). Moreover, intra- and inter-assay precisions of the LFIA for Tm detection were <10.20% and <12.34%, respectively. The average recovery range in different food matrices was 80.3~111.8%, within a reasonable range. Our data confirmed that the superparamagnetic nanoparticle-based LFIA method developed in this study is rapid, simple, high specificity and capable of quantitative test. Consequently, the LFIA has the potential application in the field of point-of-care test of shellfish major allergen Tm.
Collapse
|
75
|
Monaci L, Brohée M, Tregoat V, van Hengel A. Influence of baking time and matrix effects on the detection of milk allergens in cookie model food system by ELISA. Food Chem 2011; 127:669-75. [DOI: 10.1016/j.foodchem.2010.12.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/02/2010] [Accepted: 12/30/2010] [Indexed: 12/24/2022]
|
76
|
Picariello G, Mamone G, Addeo F, Ferranti P. The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 2011; 1218:7386-98. [PMID: 21737089 DOI: 10.1016/j.chroma.2011.06.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022]
Abstract
In the last years proteomic science has started to provide an important contribution to the disclosure of basic aspects of food-related diseases. Among these, the identification of proteins involved in food allergy and their mechanism of activation of toxicity. Elucidation of these key issues requires the integration of clinical, immunological, genomic and proteomic approaches. These combined research efforts are aimed to obtain structural and functional information to assist the development of novel, more reliable and powerful diagnostic protocols alternative to the currently available procedures, mainly based on food challenge tests. Another crucial aspect related to food allergy is the need for methods to detect trace amounts of allergenic proteins in foods. Mass spectrometry is the only non-immunological method for high-specificity and high-sensitivity detection of allergens in foods. Nowadays, once provided the appropriate sample handling and the correct operative conditions, qualitative and quantitative determination of allergens in foods and ingredients can be efficiently obtained by MALDI-TOF-MS and LC-MS/MS methods, with limits of detection and quantification in the low-ppb range. The availability of accurate and fast alternatives to immunological ELISA tests may also enable the development of novel therapeutic strategies and food processing technologies to aid patients with food allergy or intolerance, and to support allergen labelling and certification processes, all issues where the role of proteomic science is emerging.
Collapse
Affiliation(s)
- Gianluca Picariello
- Istituto di Scienze dell'Alimentazione (ISA) - CNR, Via Roma 52 A/C, 83100 Avellino, Italy
| | | | | | | |
Collapse
|
77
|
Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients. Proc Nutr Soc 2011; 70:351-64. [DOI: 10.1017/s0029665111000528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrition refers to the process by which a living organism ingests and digests food and uses the nutrients therein for growth, tissue maintenance and all other functions essential to life. Food components interact with our body at molecular, cellular, organ and system level. Nutrients come in complex mixtures, in which the presence and concentration of single compounds as well as their interactions with other compounds and the food matrix influence their bioavailability and bioefficacy. Traditionally, nutrition research mainly concentrated on supplying nutrients of quality to nourish populations and on preventing specific nutrient deficiencies. More recently, it investigates health-related aspects of individual ingredients or of complete diets, in view of health promotion, performance optimisation, disease prevention and risk assessment. This review focuses on proteins and peptides, their role as nutrients and biomarkers and on the technologies developed for their analysis. In the first part of this review, we provide insights into the way proteins are currently characterised and analysed using classical and emerging proteomic approaches. The scope of the second part is to review major applications of proteomics to nutrition, from characterisation of food proteins and peptides, via investigation of health-related food benefits to understanding disease-related mechanisms.
Collapse
|
78
|
Mari A, Ciardiello MA, Tamburrini M, Rasi C, Palazzo P. Proteomic analysis in the identification of allergenic molecules. Expert Rev Proteomics 2011; 7:723-34. [PMID: 20973644 DOI: 10.1586/epr.10.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional and innovative strategies can be exploited to identify and characterize new allergenic proteins. With the aim of obtaining suggestions for future improvements, this article describes our attempt to understand and describe some of the advantages and pitfalls of the methodologies and procedures often used in this field. The analysis includes the protein extract preparation, starting from the allergenic source, the separation of the proteins contained in a mixture and the detection, identification and characterization of IgE-binding molecules. Classic and emerging proteomic technologies, including mass spectrometry-based methodologies, Edman degradation procedure, microarray-based techniques and bioinformatics search strategies, have been explored. A comparative analysis of biochemistry-based proteomics and molecular biology strategies has also been given.
Collapse
Affiliation(s)
- Adriano Mari
- Center for Molecular Allergology, IDI-IRCCS, Via dei Monti di Creta 104, I-00167 Roma, Italy
| | | | | | | | | |
Collapse
|
79
|
Fæste CK, Rønning HT, Christians U, Granum PE. Liquid chromatography and mass spectrometry in food allergen detection. J Food Prot 2011; 74:316-45. [PMID: 21333155 DOI: 10.4315/0362-028x.jfp-10-336] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy is an important issue in the field of food safety because of the hazards for affected persons and the hygiene requirements and legal regulations imposed on the food industry. Consumer protection and law enforcement require suitable analytical techniques for the detection of allergens in foods. Immunological methods are currently preferred; however, confirmatory alternatives are needed. The determination of allergenic proteins by liquid chromatography and mass spectrometry has greatly advanced in recent years, and gel-free allergenomics is becoming a routinely used approach for the identification and quantitation of food allergens. The present review provides a brief overview of the principles of proteomic procedures, various chromatographic set ups, and mass spectrometry instrumentation used in allergenomics. A compendium of published liquid chromatography methods, proteomic analyses, typical marker peptides, and quantitative assays for 14 main allergy-causing foods is also included.
Collapse
Affiliation(s)
- Christiane Kruse Fæste
- Section of Chemistry, Department of Feed and Food Safety, National Veterinary Institute, P.O. Box 750 Sentrum, Oslo N-0106, Norway.
| | | | | | | |
Collapse
|
80
|
Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A. Review: multistage mass spectrometry in quality, safety and origin of foods. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:1-31. [PMID: 21625027 DOI: 10.1255/ejms.1114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quality and safety control and the validation of origin are hot issues in the production of food and its distribution, and are of primary concern to food and agriculture organization. Modern mass spectrometry (MS) provides unique, reliable and affordable methodologies to approach with a high degree of scientificity any problem which may be posed in this field. In this review the contribution of mass spectrometry to food analysis is presented aiming at providing clues on the fundamental role of the basic principles of gas-phase ion chemistry in applied research fields. Applications in proteomics, allergonomics, glycomics, metabolomics, lipidomics, food safety and traceability have been surveyed. The high level of specificity and sensitivity of the MS approach allows the characterization of food components and contaminants present at ultra-trace levels, providing a distinctive and safe validation of the products.
Collapse
Affiliation(s)
- Donatella Aiello
- Dipartimento di Chimica, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Ansari P, Stoppacher N, Rudolf J, Schuhmacher R, Baumgartner S. Selection of possible marker peptides for the detection of major ruminant milk proteins in food by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2010; 399:1105-15. [PMID: 21107975 DOI: 10.1007/s00216-010-4422-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 11/26/2022]
Abstract
The aim of this work was the determination of peptides, which can function as markers for identification of milk allergens in food samples. Emphasis was placed on two casein proteins (α- and β-casein) and two whey proteins (α-lactalbumin and β-lactoglobulin). In silico tryptic digestion provided preliminary information about the expected peptides. After tryptic digestion of four milk allergens, the analytical data obtained by combination of reversed-phase high performance liquid chromatography and quadrupole tandem mass spectrometry (LC-MS/MS) led to the identification of 26 peptides. Seven of these peptides were synthesized and used for calibration of the LC-MS/MS system. Species specificity of the selected peptides was sought by BLAST search. Among the selected peptides, only LIVTQTMK from β-lactoglobulin (m/z 467.6, charge 2+) was found to be cow milk specific and could function as a marker. Two other peptides, FFVAPFPEVFGK from α-casein (m/z 693.3, charge 2+) and GPFPIIV from β-casein (m/z 742.5, charge 1+), occur in water buffalo milk too. The other four peptides appear in the milk of other species also and can be used as markers for ruminant species milk. Using these seven peptides, a multianalyte MS-based method was developed. For the establishment of the method, it was applied at first to different dairy samples, and then to chocolate and blank samples, and the peptides could be determined down to 1 ng/mL in food samples. At the end, spiked samples were measured, where the target peptides could be detected with a high recovery (over 50%).
Collapse
Affiliation(s)
- Parisa Ansari
- Department IFA-Tulln, Center for Analytical Chemistry, Christian Doppler Laboratory for Rapid Test Systems for Allergenic Food Contaminants, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
82
|
Particle-packed column versus silica-based monolithic column for liquid chromatography-electrospray-linear ion trap-tandem mass spectrometry multiallergen trace analysis in foods. J Chromatogr A 2010; 1217:7579-85. [PMID: 21030028 DOI: 10.1016/j.chroma.2010.10.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/06/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
Abstract
A bicarbonate buffer-based extraction method for the simultaneous analysis of five nut allergens (Ana o 2, cashew-nut; Cor a 9, hazelnut; Pru 1, almond; Ara h3/4, peanut; Jug r 4, walnut) in cereals and biscuits using liquid chromatography-electrospray-linear ion trap-tandem mass spectrometry (LC-ESI-LIT-MS(2)) was developed and validated. The method was based on our earlier published LC-MS(2)-based method in a research frame aimed at the identification and determination of hidden allergens in foods by using selective biomarker peptides. A C18 particle-packed column and a silica-based C18 monolithic column were compared in terms of chromatographic performances, such as peak shape, resolution, analysis time and selectivity. The C18 particle-packed column exhibited better performances and was further used for method development and validation. By operating under MS(2) selected reaction monitoring (SRM) acquisition mode, linearity, limits of detection (LOD) and quantitation, trueness and precision were evaluated on breakfast samples enriched with a mix of the five nuts. Good linearity of the matrix matched-calibration curves was obtained and detection limit values generally varied from 14 to 55 mg nut/kg matrix. Recoveries were in the 76±4% to 94±3% range with RSD <15%. The capabilities of LIT to perform MS(n) fragmentation was exploited to improve selectivity of the analysis, and the LC-(SRM) MS(2) method was compared in terms of LOD, linearity, precision and accuracy with a LC-(SRM) MS(3) method. Finally, both the LC-MS(2) and LC-MS(3) methods were successfully applied to the analysis of nut traces in commercially available breakfast cereals and biscuits.
Collapse
|
83
|
Liquid chromatography–mass spectrometry in food safety. J Chromatogr A 2010; 1217:4018-40. [DOI: 10.1016/j.chroma.2010.03.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/23/2010] [Accepted: 03/12/2010] [Indexed: 11/18/2022]
|
84
|
Monaci L, Losito I, Palmisano F, Visconti A. Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr A 2010; 1217:4300-5. [PMID: 20452599 DOI: 10.1016/j.chroma.2010.04.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/07/2010] [Accepted: 04/14/2010] [Indexed: 11/30/2022]
Abstract
A method based on capillary liquid chromatography combined with electrospray ionization-tandem mass spectrometry (CapLC-ESI-MS-MS) for the detection and identification of casein deriving peptides in fined white wine is described. This is the first step towards the development of a liquid chromatography mass spectrometric method for the detection/identification of markers of potentially allergenic milk proteins used as wine fining agents. The method demonstrated to be capable of detecting some peptides arising from alpha and beta casein (with the relative aminoacidic sequences elucidated) in extracts of white wine fined with casein at 100 and 1000 microg/mL. This MS based approach appears to be a useful tool for screening purposes as well as a confirmatory tool for the unequivocal identification of caseins in ELISA positive samples.
Collapse
Affiliation(s)
- L Monaci
- CNR, Institute of Sciences of Food Production (ISPA), Via Amendola 122/O, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
85
|
Callipo L, Caruso G, Foglia P, Gubbiotti R, Samperi R, Laganà A. Immunoprecipitation on magnetic beads and liquid chromatography-tandem mass spectrometry for carbonic anhydrase II quantification in human serum. Anal Biochem 2010; 400:195-202. [PMID: 20123083 DOI: 10.1016/j.ab.2010.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/14/2010] [Accepted: 01/28/2010] [Indexed: 11/18/2022]
Abstract
In this study, a magnetic bead-based platform amenable to high-throughput protein carbonic anhydrase II (CA II) capture is presented. The key steps in this approach involved immunoaffinity purification of the target protein from serum followed by on-bead digestion with trypsin to release a surrogate peptide. This tryptic peptide was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) operating in multiple reaction monitoring acquisition mode. Using a synthetic peptide standard and a structural analogue free-labeled internal standard, the resulting concentration was stoichiometrically converted to CA II serum concentration. The analytical steps, such as preparation of immunobeads, protein capture, proteolysis, and calibration, were optimized. The method was validated in terms of recovery (77%), reproducibility (relative standard deviation [RSD]<12%), and method detection limit (0.5 pmol ml(-1)). The developed method was applied to determining the CA II in eight healthy subjects, and the concentration measured was 27.3 pmol ml(-1) (RSD = 65%).
Collapse
Affiliation(s)
- Luciano Callipo
- Department of Chemistry, Sapienza University of Rome, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
86
|
Kirsch S, Fourdrilis S, Dobson R, Scippo ML, Maghuin-Rogister G, De Pauw E. Quantitative methods for food allergens: a review. Anal Bioanal Chem 2009; 395:57-67. [DOI: 10.1007/s00216-009-2869-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
|