51
|
Xue W, Bo X, Zhou M, Guo L. Enzymeless electrochemical detection of hydrogen peroxide at Pd nanoparticles/porous graphene. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
52
|
Graphene-based materials for the electrochemical determination of hazardous ions. Anal Chim Acta 2016; 946:9-39. [DOI: 10.1016/j.aca.2016.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023]
|
53
|
Synthetic methods and potential applications of transition metal dichalcogenide/graphene nanocomposites. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
54
|
Chen X, Wang Y, Tong J, Xia S, Zhou Y, Wu K. Electrochemical sensing platform for tetrabromobisphenol A at pM level based on the synergetic enhancement effects of graphene and dioctadecyldimethylammonium bromide. Anal Chim Acta 2016; 935:90-6. [DOI: 10.1016/j.aca.2016.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
|
55
|
The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium. MICROMACHINES 2016; 7:mi7060103. [PMID: 30404277 PMCID: PMC6189839 DOI: 10.3390/mi7060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/31/2023]
Abstract
Cadmium(II) is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr)/l-cysteine/gold electrode to detect trace levels of cadmium (Cd) by differential pulse stripping voltammetry (DPSV). The influence of hydrogen overflow was decreased and the current response was enhanced because the modified graphene extended the potential range of the electrode. The Gr/l-cysteine/gold electrode showed high electrochemical conductivity, producing a marked increase in anodic peak currents (vs. the glass carbon electrode (GCE) and boron-doped diamond (BDD) electrode). The calculated detection limits are 1.15, 0.30, and 1.42 µg/L, and the sensitivities go up to 0.18, 21.69, and 152.0 nA·mm−2·µg−1·L for, respectively, the BDD electrode, the GCE, and the Gr/l-cysteine/gold electrode. It was shown that the Gr/l-cysteine/gold-modified electrode is an effective means for obtaining highly selective and sensitive electrodes to detect trace levels of cadmium.
Collapse
|
56
|
Shahrokhian S, Naderi L, Ghalkhani M. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:842-50. [DOI: 10.1016/j.msec.2016.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/17/2015] [Accepted: 01/11/2016] [Indexed: 01/09/2023]
|
57
|
|
58
|
Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1781-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Reversible Switched Detection of Dihydroxybenzenes Using a Temperature-sensitive Electrochemical Sensing Film. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
60
|
Sun T, Xia N, Liu L. A Graphene Oxide-Based Fluorescent Platform for Probing of Phosphatase Activity. NANOMATERIALS 2016; 6:nano6010020. [PMID: 28344277 PMCID: PMC5302530 DOI: 10.3390/nano6010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 01/19/2023]
Abstract
We presented a strategy for fabricating graphene oxide (GO)-based fluorescent biosensors to monitor the change of phosphorylation state and detect phosphatase activity. By regulating the interaction between the negatively charged phosphate group and the positively charged amino residue, we found that GO showed different quenching efficiency toward the phosphorylated and dephosphorylated dye-labeled peptides. To demonstrate the application of our method, alkaline phosphatase (ALP) was tested as a model enzyme with phosphorylated fluorescein isothiocyanate (FITC)-labeled short peptide FITC-Gly-Gly-Gly-Tyr(PO₃2-)-Arg as the probe. When the negatively charged phosphate group in the Tyr residue was removed from the peptide substrate by enzymatic hydrolysis, the resulting FITC-Gly-Gly-Gly-Tyr-Arg was readily adsorbed onto the GO surface through electrostatic interaction. As a result, fluorescence quenching was observed. Furthermore, the method was applied for the screening of phosphatase inhibitors.
Collapse
Affiliation(s)
- Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
61
|
Dehghanzad B, Razavi Aghjeh MK, Rafeie O, Tavakoli A, Jameie Oskooie A. Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods. RSC Adv 2016. [DOI: 10.1039/c5ra19954a] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide was chemically synthesized, functionalized with dodecyl amine and then reduced. The graphene oxide was also thermally reduced to obtain graphene. Different analyses were employed to structural characterization of the materials.
Collapse
Affiliation(s)
- Behzad Dehghanzad
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz
- Iran
- Faculty of Polymer Engineering
| | - Mir Karim Razavi Aghjeh
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz
- Iran
- Faculty of Polymer Engineering
| | - Omid Rafeie
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz
- Iran
- Faculty of Polymer Engineering
| | - Akram Tavakoli
- Faculty of Chemical Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Amin Jameie Oskooie
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz
- Iran
- Faculty of Polymer Engineering
| |
Collapse
|
62
|
Wang Q, Wang Q, Li M, Szunerits S, Boukherroub R. One-step synthesis of Au nanoparticle–graphene composites using tyrosine: electrocatalytic and catalytic properties. NEW J CHEM 2016. [DOI: 10.1039/c5nj03532e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in situ synthesis of a reduced graphene oxide/Au nanoparticle composite for nonenzymatic H2O2 detection and nitrophenol reduction.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
- Institut d'Electronique
| | - Qian Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
- Institut d'Electronique
| | - Musen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
| | - Sabine Szunerits
- Institut d'Electronique
- de Microélectronique et de Nanotechnologie (IEMN)
- UMR CNRS 8520
- Université Lille1
- 59652 Villeneuve d'Ascq
| | - Rabah Boukherroub
- Institut d'Electronique
- de Microélectronique et de Nanotechnologie (IEMN)
- UMR CNRS 8520
- Université Lille1
- 59652 Villeneuve d'Ascq
| |
Collapse
|
63
|
Garoz-Ruiz J, Ibañez D, Romero EC, Ruiz V, Heras A, Colina A. Optically transparent electrodes for spectroelectrochemistry fabricated with graphene nanoplatelets and single-walled carbon nanotubes. RSC Adv 2016. [DOI: 10.1039/c6ra04116g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hybrid optically transparent electrodes based on single-walled carbon nanotubes and graphene nanoplatelets have been fabricated. The new methodology can be used with other carbon nanomaterials.
Collapse
Affiliation(s)
| | - David Ibañez
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| | - Edna C. Romero
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| | - Virginia Ruiz
- IK4-CIDETEC
- Materials Division
- E-20009 San Sebastián
- Spain
| | - Aranzazu Heras
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| | - Alvaro Colina
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| |
Collapse
|
64
|
Salehniya H, Amiri M, Mansoori Y. Positively charged carbon nanoparticulate/sodium dodecyl sulphate bilayer electrode for extraction and voltammetric determination of ciprofloxacin in real samples. RSC Adv 2016. [DOI: 10.1039/c6ra03170f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modified electrode was prepared using a layer-by-layer method with functionalized CNPs and SDS. The ability of modified electrode to adsorb ciprofloxacin was investigated. Ciprofloxacin was analyzed in real samples.
Collapse
Affiliation(s)
- Haneie Salehniya
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Mandana Amiri
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Yaghoub Mansoori
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| |
Collapse
|
65
|
Fei J, Dou W, Zhao G. Amperometric immunoassay for the detection of Salmonella pullorum using a screen - printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1721-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
66
|
Majidi MR, Ghaderi S, Asadpour-Zeynali K, Dastangoo H. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:257-64. [PMID: 26354262 PMCID: PMC4570934 DOI: 10.1016/j.msec.2015.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/27/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022]
Abstract
In this paper, preparation, characterization and application of a new sensor for fast and simple determination of trace amount of diazepam were described. This sensor is based on Ag nanodendrimers (AgNDs) supported by graphene nanosheets modified glassy carbon electrode (GNs/GCE). The AgNDs were directly electrodeposited on the surface of electrode via potentiostatic method without using any templates, surfactants, or stabilizers. The structure of the synthesized AgNDs/GNs was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) techniques. The nanodendrimers with tree-like and hierarchical structures have a fascinating structure for fabrication of effective electrocatalysts. The experimental results confirmed that AgNDs/GNs/GC electrode has good electrocatalytic activity toward the reduction of diazepam. A low detection limit of 8.56 × 10− 8 M and a wide linear detection range of 1.0 × 10− 7 to 1.0 × 10− 6 M and 1.0 × 10− 6 to 20 × 10− 6 M were achieved via differential pulse voltammetry (DPV). The proposed electrode displayed excellent repeatability and long-term stability and it was satisfactorily used for determination of diazepam in real samples (commercially tablet, injection and human blood plasma) with high recovery. Applying a simple, fast and cost-effective method for synthesis of silver nanodendrimers Characterization of AgNDs/GNs/GCE surface by SEM, EDX, XRD, EIS and CV methods Successful application of this sensor for diazepam determination with an excellent detection limit Calculation of diffusion coefficient, electron transfer coefficient and standard heterogeneous rate constant for diazepam Satisfactorily using of this sensor for diazepam determination in several real samples
Collapse
Affiliation(s)
- Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Seyran Ghaderi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hossein Dastangoo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
67
|
Liu M, Zhang W, Chang D, Zhang Q, Brennan JD, Li Y. Integrating graphene oxide, functional DNA and nucleic-acid-manipulating strategies for amplified biosensing. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
68
|
Noor AM, Rameshkumar P, Huang NM, Wei LS. Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1680-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
69
|
Liu L, Xia N, Yu J. A graphene oxide-based fluorescent scheme for the determination of the activity of the β-site amyloid precursor protein (BACE1) and its inhibitors. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1647-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
70
|
Signal enhancement in amperometric peroxide detection by using graphene materials with low number of defects. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1600-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
71
|
Li F, Gan S, Han D, Niu L. Graphene-Based Nanohybrids for Advanced Electrochemical Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Sharma R, Ragavan KV, Thakur MS, Raghavarao KSMS. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 2015; 74:612-27. [PMID: 26190473 DOI: 10.1016/j.bios.2015.07.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Abstract
Food safety and hazard analysis is a prime concern of human life, thus quality assessment of food and water is the need of the day. Recent advances in nano-biotechnology play a significant role in providing possible solutions for developing highly sensitive and affordable detection tools for food analysis. Nanomaterials based aptasensors hold great potential to overcome the drawbacks of conventional analytical techniques. Aptamers comprise a novel class of highly specific bio-recognition elements which are produced by SELEX (systematic evolution of ligands by exponential enrichment) process. They bind to target molecules by folding into 3D structures that can discriminate different chiral compounds. The flexibility in making modifications in aptamers contribute to the design of biosensors, enabling the generation of bio-recognition elements for a wide variety of target molecules. Nanomaterials such as metal nanoparticles, metal nanoclusters, metal oxide nanoparticles, metal and carbon quantum dots, graphene, carbon nanotubes and nanocomposites enable higher sensitivity by signal amplification and introduce several novel transduction principles such as enhanced chemiluminescence, fluorescence, Raman signals, electrochemical signals, enhanced catalytic activity, and super-paramagnetic properties to the biosensor. Although there are a few reviews published recently which deal with the potential of aptamers in various fields, none are devoted exclusively to the potential of aptasensors based on nanomaterials for the analysis of food contaminants. Hence, the current review discusses several transduction systems and their principles used in aptamer based nanosensors which have been developed in the past five years, the challenges faced in their designing, along with their strengths and limitations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Food Engineering, CSIR-CFTRI, India; Academy of Scientific and Innovative Research, India
| | - K V Ragavan
- Department of Food Engineering, CSIR-CFTRI, India; Academy of Scientific and Innovative Research, India
| | - M S Thakur
- Materials Science Centre, University of Mysore, Mysore 570005, Karnataka, India.
| | - K S M S Raghavarao
- Department of Food Engineering, CSIR-CFTRI, India; Academy of Scientific and Innovative Research, India.
| |
Collapse
|
73
|
Fan J, Qi M, Fu R, Qu L. Performance of graphene sheets as stationary phase for capillary gas chromatographic separations. J Chromatogr A 2015; 1399:74-9. [DOI: 10.1016/j.chroma.2015.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
|
74
|
Electrochemical performance and detection of 8-Hydroxy-2′-deoxyguanosine at single-stranded DNA functionalized graphene modified glassy carbon electrode. Biosens Bioelectron 2015; 67:139-45. [DOI: 10.1016/j.bios.2014.07.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 11/18/2022]
|
75
|
Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M. Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 2015; 870:56-66. [PMID: 25819787 DOI: 10.1016/j.aca.2015.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/03/2015] [Accepted: 03/01/2015] [Indexed: 11/25/2022]
Abstract
In the present manuscript, an electrochemical sensor for the sensitive detection of Tl(+), Pb(2+) and Hg(2+) is described. A new composite electrode has been fabricated using graphene, 1-n-octylpyridinum hexafluorophosphate (OPFP), and [2,4-Cl2C6H3C(O)CHPPh3] (L), as a new synthetic phosphorus ylide. The physicochemical and electrochemical characterizations of fabricated sensor were investigated in details. The advantages of the proposed composite electrode are its ability in simultaneous electrochemical detection of Tl(+), Pb(2+) and Hg(2+) with good selectivity, stability and no need for separating of the three species from complex mixtures prior to electrochemical measurements. The analytical performance of the proposed electrode was examined using square wave voltammetry. Tl(+), Pb(2+) and Hg(2+) can be determined in linear ranges from 1.25×10(-9) to 2.00×10(-7) mol L(-1). Low detection limits of 3.57×10(-10) mol L(-1) for Tl(+), 4.50×10(-10) mol L(-1) for Pb(2+) and 3.86×10(-10) mol L(-1) for Hg(2+) were achieved. Finally, the proposed electrochemical sensor was applied to detect trace analyte ions in various water and soil samples with satisfactory results.
Collapse
Affiliation(s)
- Hasan Bagheri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | | - Mosayeb Rezaei
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
76
|
Liao C, Mak C, Zhang M, Chan HLW, Yan F. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:676-81. [PMID: 25469658 DOI: 10.1002/adma.201404378] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/25/2014] [Indexed: 05/05/2023]
Abstract
Flexible organic electrochemical transistors (OECTs) are successfully used as high-performance enzyme biosensors, such as uric acid (UA) and cholesterol sensors. The sensitivity and selectivity of the sensors can be simultaneously enhanced by co-modifying the gate electrodes with positively/negatively charged bilayer polymer films and enzymes. These OECT-based UA sensors are successfully utilized for non-invasive UA detection in human saliva.
Collapse
Affiliation(s)
- Caizhi Liao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
77
|
Hatami Z, Jalali F. Voltammetric determination of immunosuppressive agent, azathioprine, by using a graphene-chitosan modified-glassy carbon electrode. RUSS J ELECTROCHEM+ 2015. [DOI: 10.1134/s1023193515010097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Briones M, Casero E, Petit-Domínguez MD, Ruiz MA, Parra-Alfambra AM, Pariente F, Lorenzo E, Vázquez L. Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens Bioelectron 2015; 68:521-528. [PMID: 25636025 DOI: 10.1016/j.bios.2015.01.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
Abstract
In this work, we report the modification of a gold electrode with undoped diamond nanoparticles (DNPs) and its applicability to the fabrication of electrochemical biosensing platforms. DNPs were immobilized onto a gold electrode by direct adsorption and the electrochemical behavior of the resulting DNPs/Au platform was studied. Four well-defined peaks were observed corresponding to the DNPs oxidation/reduction at the underlying gold electrode, which demonstrate that, although undoped DNPs have an insulating character, they show electrochemical activity as a consequence of the presence of different functionalities with unsaturated bonding on their surface. In order to develop a DNPs-based biosensing platform, we have selected glucose oxidase (GOx), as a model enzyme. We have performed an exhaustive study of the different steps involved in the biosensing platform preparation (DNPs/Au and GOx/DNPs/Au systems) by atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry (CV). The glucose biosensor shows a good electrocatalytic response in the presence of (hydroxymethyl)ferrocene as redox mediator. Once the suitability of the prototype system to determine glucose was verified, in a second step, we prepared a similar biosensor, but employing the enzyme lactate oxidase (LOx/DNPs/Au). As far as we know, this is the first electrochemical biosensor for lactate determination that includes DNPs as nanomaterial. A linear concentration range from 0.05 mM to 0.7 mM, a sensitivity of 4.0 µA mM(-1) and a detection limit of 15 µM were obtained.
Collapse
Affiliation(s)
- M Briones
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain
| | - E Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain.
| | - M D Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain
| | - M A Ruiz
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain
| | - A M Parra-Alfambra
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain
| | - F Pariente
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain
| | - E Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente N°7, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanoscience, Faraday 9, Campus Cantoblanco-UAM, 28049 Madrid, Spain
| | - L Vázquez
- Instituto de Ciencia de Materiales de Madrid (CSIC), Campus de Excelencia de la Universidad Autónoma de Madrid, c/Sor Juana Inés de la Cruz N°3, 28049 Madrid, Spain
| |
Collapse
|
79
|
Samanman S, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode. Anal Chim Acta 2015; 853:521-532. [DOI: 10.1016/j.aca.2014.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 10/06/2014] [Indexed: 01/05/2023]
|
80
|
Abstract
AbstractMicrobial cell biosensors, where cells are in direct connection with a transducer enabling quantitative and qualitative detection of an analyte, are very promising analytical tools applied mainly for assays in the environmental field, food industry or biomedicine. Microbial cell biosensors are an excellent alternative to conventional analytical methods due to their specificity, rapid detection and low cost of analysis. Nowadays, nanomaterials are often used in the construction of biosensors to improve their sensitivity and stability. In this review, the combination of microbial and other individual cells with different nanomaterials (carbon nanotubes, graphene, gold nanoparticles, etc.) for the construction of biosensors is described and their applications are provided as well.
Collapse
|
81
|
Nanotechnology and Analytical Chemistry. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-444-63439-9.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
82
|
Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015; 131:424-43. [DOI: 10.1016/j.talanta.2014.07.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023]
|
83
|
Amiri M, Rezapour F, Bezaatpour A. Hydrophilic carbon nanoparticulates at the surface of carbon paste electrode improve determination of paracetamol, phenylephrine and dextromethorphan. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
84
|
Wei Y, Zhou W, Xu Y, Xiang Y, Yuan R, Chai Y. Graphene nanosensor for highly sensitive fluorescence turn-on detection of Hg2+based on target recycling amplification. RSC Adv 2014. [DOI: 10.1039/c4ra05706f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
85
|
Hussain T, Panigrahi P, Ahuja R. Sensing propensity of a defected graphane sheet towards CO, H2O and NO2. NANOTECHNOLOGY 2014; 25:325501. [PMID: 25060926 DOI: 10.1088/0957-4484/25/32/325501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have used density functional theory to investigate the sensing property of a hydrogenated graphene sheet (graphane) towards CO, H2O and NO2 gas molecules. Though the pristine graphane sheet is found not to have sufficient affinity towards the mentioned gas molecules, the defected sheet (removing few surface H atoms) has a strong affinity towards the gas molecules. While CO and H2O are found to be weakly physisorbed, the NO2 molecules are found to be strongly chemi-sorbed to the defected graphane sheet. With NO2, the N(p) and O(p) states are found to have strong hybridization with the most active C(p) states which lie at the defected site of the graphane sheet. While increasing the coverage effect of the mentioned gas molecules toward the defected sheet, the adsorption energies do not change significantly. At the same time, the work function of the defected graphane sheet shows an increasing trend while adsorbed with CO, H2O and NO2 gas molecules, opening up the possibilities for a future gas sensor.
Collapse
Affiliation(s)
- Tanveer Hussain
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, PO Box 530, SE-S75121, Uppsala, Sweden. Applied Materials Physics, Departments of Materials and Engineering, Royal Institute of Technology (KTH), SE-10044, Stockholm, Sweden
| | | | | |
Collapse
|
86
|
Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim Acta 2014; 182:1-41. [PMID: 25568497 PMCID: PMC4281370 DOI: 10.1007/s00604-014-1308-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/06/2014] [Indexed: 11/27/2022]
Abstract
Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pKa values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The article contains 198 references in the main manuscript and 207 references in the Electronic Supporting Material. Figureᅟ
Collapse
Affiliation(s)
- Bankim J. Sanghavi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 USA
| | - Otto S. Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, 93040 Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, 93040 Germany
| | - Nathan S. Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
87
|
Su Y, Lv Y. Graphene and graphene oxides: recent advances in chemiluminescence and electrochemiluminescence. RSC Adv 2014. [DOI: 10.1039/c4ra03598d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
88
|
Afkhami A, Khoshsafar H, Bagheri H, Madrakian T. Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Anal Chim Acta 2014; 831:50-9. [DOI: 10.1016/j.aca.2014.04.061] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/27/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022]
|
89
|
Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1263-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
90
|
Chang J, Zhou G, Christensen ER, Heideman R, Chen J. Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 2014; 406:3957-75. [PMID: 24740529 DOI: 10.1007/s00216-014-7804-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/16/2014] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
Abstract
Graphene (G) is attracting significant attention because of its unique physical and electronic properties. The production of graphene through the reduction of graphene oxide (GO) is a low-cost method. The reduction of GO can further lead to electrically conductive reduced GO. These graphene-based nanomaterials are attractive for high-performance water sensors due to their unique properties, such as high specific surface areas, high electron mobilities, and exceptionally low electronic noise. Because of potential risks to the environment and human health arising from heavy-metal pollution in water, G-/GO-based water sensors are being developed for rapid and sensitive detection of heavy-metal ions. In this review, a general introduction to graphene and GO properties, as well as their syntheses, is provided. Recent advances in optical, electrochemical, and electrical detection of heavy-metal ions using graphene or GO are then highlighted. Finally, challenges facing G/GO-based water sensor development and outlook for future research are discussed.
Collapse
Affiliation(s)
- Jingbo Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI, 53211, USA
| | | | | | | | | |
Collapse
|
91
|
Sun Z, Luo Z, Gan C, Fei S, Liu Y, Lei H. Electrochemical immunosensor based on hydrophilic polydopamine-coated prussian blue-mesoporous carbon for the rapid screening of 3-bromobiphenyl. Biosens Bioelectron 2014; 59:99-105. [PMID: 24709325 DOI: 10.1016/j.bios.2014.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/02/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
A sensitive electrochemical immunosensor for 3-bromobiphenyl (3-BBP) detection was constructed by employing a new polydopamine coated prussian blue-mesoporous carbon (PDOP/PB/CMK-3) nanocomposite as the substrate platform and multi-horseradish peroxidase-double helix carbon nanotubes-secondary antibody (multi-HRP-DHCNTs-Ab2) as the signal label. PB/CMK-3 was firstly successfully in-situ synthesized with the aid of the CMK-3 reduction, which was characterized by transmission electron microscope (TEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and N2 adsorption-desorption analysis. By using PDOP/PB/CMK-3 as the substrate, it can effectively enhance the specific surface for antigen loading due to the three-dimensional structure of the nanocomposites, while large amount of PB that fixed inside or outside the pore of CMK-3 successfully improved the electrochemical response and the PDOP film can provide a biocompatible environment to maintain the activity of antigen availability. Under the optimized conditions, the proposed immunosensor shows a good current response to 3-BBP in a linear range from 5 pM to 2 nM with a detection limit of 2.25 pM. In addition, the specificity, reproducibility and stability of the immunosensor were also proved to be acceptable, indicating its potential application in environmental monitoring.
Collapse
Affiliation(s)
- Zihong Sun
- Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhigang Luo
- Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Cuifen Gan
- Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shidong Fei
- Shenzhen Water Quality Center, Shenzhen 518036, China
| | - Yingju Liu
- Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
92
|
Amiri M, Eynaki H, Mansoori Y. Cysteine-anchored receptor on carbon nanoparticles for dopamine sensing. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
93
|
Sanghavi BJ, Kalambate PK, Karna SP, Srivastava AK. Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 2014; 120:1-9. [DOI: 10.1016/j.talanta.2013.11.077] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
94
|
Balasubramanian K, Kern K. 25th anniversary article: label-free electrical biodetection using carbon nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1154-75. [PMID: 24452968 DOI: 10.1002/adma.201304912] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/25/2013] [Indexed: 05/07/2023]
Abstract
Nanostructures are promising candidates for use as active materials for the detection of chemical and biological species, mainly due to the high surface-to-volume ratio and the unique physical properties arising at the nanoscale. Among the various nanostructures, materials comprised of sp(2) -carbon enjoy a unique position due to the possibility to readily prepare them in various dimensions ranging from 0D, through 1D to 2D. This review focuses on the use of 1D (carbon nanotubes) and 2D (graphene) carbon nanostructures for the detection of biologically relevant molecules. A key advantage is the possibility to perform the sensing operation without the use of any labels or complex reaction schemes. Along this spirit, various strategies reported for the label-free electrical detection of biomolecules using carbon nanostructures are discussed. With their promise for ultimate sensitivity and the capability to attain high selectivity through controlled chemical functionalization, carbon-based nanobiosensors are expected to open avenues to novel diagnostic tools as well as to obtain new fundamental insight into biomolecular interactions down to the single molecule level.
Collapse
Affiliation(s)
- Kannan Balasubramanian
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D70569, Stuttgart, Germany
| | | |
Collapse
|
95
|
Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1195-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
96
|
Rastgar S, Shahrokhian S. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application. Talanta 2014; 119:156-63. [DOI: 10.1016/j.talanta.2013.10.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|
97
|
Lei W, Si W, Xu Y, Gu Z, Hao Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1160-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
98
|
Hasanzadeh M, Pournaghi-Azar MH, Shadjou N, Jouyban A. A new mechanistic approach to elucidate furosemide electrooxidation on magnetic nanoparticles loaded on graphene oxide modified glassy carbon electrode. RSC Adv 2014. [DOI: 10.1039/c3ra46973e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
99
|
(Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4624-32. [DOI: 10.1016/j.msec.2013.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022]
|
100
|
Shi S, Wang X, Sun W, Wang X, Yao T, Ji L. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials. Methods 2013; 64:305-14. [DOI: 10.1016/j.ymeth.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022] Open
|