51
|
Bonnell TR, Vilette C, Henzi SP, Barrett L. Network reaction norms: taking account of network position and plasticity in response to environmental change. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
52
|
Conformity and differentiation are two sides of the same coin. Trends Ecol Evol 2023; 38:545-553. [PMID: 36803986 DOI: 10.1016/j.tree.2023.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Variation between individuals is a key component of selection and hence evolutionary change. Social interactions are important drivers of variation, potentially making behaviour more similar (i.e., conform) or divergent (i.e., differentiate) between individuals. While documented across a wide range of animals, behaviours and contexts, conformity and differentiation are typically considered separately. Here, we argue that rather than independent concepts, they can be integrated onto a single scale that considers how social interactions drive changes in interindividual variance within groups: conformity reduces variance within groups while differentiation increases it. We discuss the advantages of placing conformity and differentiation at different ends of a single scale, allowing for a deeper understanding of the relationship between social interactions and interindividual variation.
Collapse
|
53
|
Westrelin S, Moreau M, Fourcassié V, Santoul F. Overwintering aggregation patterns of European catfish Silurus glanis. MOVEMENT ECOLOGY 2023; 11:9. [PMID: 36750882 PMCID: PMC9903427 DOI: 10.1186/s40462-023-00373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Animal aggregation, particularly in large-bodied species, is both a fascinating and intriguing phenomenon. Here we analyzed the overwintering behavior of the European catfish, Silurus glanis Linnaeus, 1758, the largest freshwater fish in Europe. By tracking 47 subadults and adults in a shallow lake in southeastern France, we reported a consistent aggregative behavior across four successive winters. By implementing time series analysis and Cox proportional hazard models, we investigated the dynamics of these aggregations (formation, stability, dislocation), and the factors that govern it, whether external (temperature, time of the day) or specific to the fish (size, key individuals). These aggregations lasted 1.5-2 months and mainly took place in a single small 4 m-deep area whose environmental conditions (temperature, oxygen, substrate) did not differ from other parts of the lake. In some periods during winter, all tagged fish were aggregated, which suggests that a large proportion of the lake population gathered there. Low temperatures (below 9 °C) triggered the formation of aggregations. They became more stable with decreasing temperatures, while individuals more frequently left the aggregation, preferentially at dusk and at night, when temperatures increased. The largest individuals swam more frequently back and forth to the aggregation. Irrespective of their size, some individuals consistently arrived earlier in the aggregation in winter and left later. This predictable seasonal grouping of individuals and, more generally, the knowledge provided by such studies on how species use space have important operational value and are useful for species conservation as well as for species control.
Collapse
Affiliation(s)
- Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182, Aix-en-Provence Cedex 5, France.
| | - Mathieu Moreau
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, UMR5169, Rue Marianne Grunberg-Manago, 31062, Toulouse, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, UMR5169, Rue Marianne Grunberg-Manago, 31062, Toulouse, France
| | - Frédéric Santoul
- Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, ENFA, UMR5174 EDB, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
54
|
Perinot E, Fritz J, Fusani L, Voelkl B, Nobile MS. Characterization of bird formations using fuzzy modelling. J R Soc Interface 2023; 20:20220798. [PMID: 36789511 PMCID: PMC9929497 DOI: 10.1098/rsif.2022.0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The investigation of the emergent collective behaviour in flying birds is a challenging task, yet it has always fascinated scientists from different disciplines. In the attempt of studying and modelling line formation, we collected high-precision position data of 29 free-flying northern bald ibises (Geronticus eremita) using Global Navigation Satellite System loggers, to investigate whether the spatial relationships within a flock can be explained by birds maintaining energetically advantageous positions. Specifically, we exploited domain knowledge and available literature information to model by means of fuzzy logic where the air vortices lie behind a flying bird. This allowed us to determine when a leading bird provides the upwash to a following bird, reducing its overall effort. Our results show that the fuzzy model allows to easily distinguish which bird is flying in the wake of another individual, provides a clear indication about flying flock dynamics and also gives a hint about birds' social relationships.
Collapse
Affiliation(s)
- Elisa Perinot
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna 1160, Austria
- Waldrappteam Conservation and Research, 6162 Mutters, Austria
| | - Johannes Fritz
- Waldrappteam Conservation and Research, 6162 Mutters, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna 1010, Austria
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna 1160, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna 1010, Austria
| | - Bernhard Voelkl
- Waldrappteam Conservation and Research, 6162 Mutters, Austria
- Animal Welfare Division, University of Bern, 3012 Bern, Switzerland
| | - Marco S. Nobile
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30123 Venezia, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging research center (B4), 20900 Monza, Italy
| |
Collapse
|
55
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
56
|
Social isolation does not alter the relationship between flexibility in metabolic rate and growth in grass carp (Ctenopharyngodon idella) under changing food availability. J Comp Physiol B 2023; 193:95-108. [PMID: 36355208 DOI: 10.1007/s00360-022-01467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Growth and energy metabolism are highly flexible in fish species in response to food availability, and these two traits depend to some extent on the social rearing environment (e.g., isolated vs. group rearing). Currently, how social rearing environments influence flexibility in metabolic rate of fish and their ecological consequences (e.g., somatic growth) remain largely unknown. Here, we investigated how social isolation (i.e., group-reared vs. isolation-reared) and food availability (i.e., high vs. low) affect metabolic rates, growth and their correlations in a group-living fish, grass carp (Ctenopharyngodon idella), which were subjected to a 4-week growth experiment. The metabolic rates (e.g., standard metabolic rate, SMR; maximum metabolic rate, MMR; aerobic scope, AS = MMR-SMR) and morphology (e.g., body mass and length) of the fish in four treatments were measured at the beginning and end of the growth experiment, and then the growth parameters (e.g., food intake, FI; feeding efficiency, FE; and specific growth rate, SGR) were also obtained. We found that social isolation did impair growth of fish with individuals showing a lower SGR compared to those group-reared fish irrespective of food availability. However, the growth advantage of group-reared fish under two food availabilities did not result from their FIs or FEs. Metabolic rates (i.e., SMR) seemed to decrease in response to social isolation, but increased greater when fish were reared at high food ration. These shifts in metabolic rates were positively linked with individual differences in somatic growth; individuals who increased metabolic rates more grew faster, while those who increased their metabolic rates less or even reduced had a lower growth, but these links were independent on both social isolation and food ration. These results suggested that social isolation can inhibit the growth of individual fish, but not the AS. Flexibility in metabolic rates could confer a growth advantage under changing food availability, but the links between variation in energy metabolism and growth were not altered by social deprivation. Our study demonstrates the importance of metabolic plasticity accounting for inter-individual difference in growth performance under the challenges of changing food resource.
Collapse
|
57
|
Sbragaglia V, Roy T, Thörnqvist PO, López-Olmeda JF, Winberg S, Arlinghaus R. Evolutionary implications of size-selective mortality on the ontogenetic development of shoal cohesion: a neurochemical approach using a zebrafish, Danio rerio, harvest selection experiment. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Size-selective mortality may evolutionarily alter life-history as well as individual behavioral and physiological traits. Moreover, size-selective mortality can affect group behavioral traits, such as shoaling and collective properties (e.g., shoal cohesion), which are relevant for finding food and reducing risk of predation. Here, we present experimental evidence using selection lines of zebrafish (Danio rerio) that were exposed to positive (large-harvested), negative (small-harvested), and random (control) size-selective mortality for five generations, followed by eight generations during which harvesting was halted to remove maternal effects and to study evolutionarily fixed outcomes. We investigated changes in shoal cohesion and turnover in monoamines in zebrafish through ontogeny. To that end, we repeatedly measured inter-individual distance in groups of eight fish and the turnovers of dopamine and serotonin in brains of fish from juvenile to the adult stage at 40-day intervals. We, firstly, found that shoal cohesion was overall consistent through ontogeny at group levels suggesting the presence of collective personality. Secondly, we found a decrease in shoal cohesion through ontogeny in the small-harvested and control lines, while the large-harvested line did not show any ontogenetic change. Thirdly, the selection lines did not differ among each other in shoal cohesion at any ontogenetic stage. Fourthly, dopamine turnover increased through ontogeny in a similar way for all lines while the serotonin turnover decreased in the large-harvested and control lines, but not in the small-harvested line. The large-harvested line also had higher serotonin turnover than controls at specific time periods. In conclusion, intensive size-selective mortality left an evolutionary legacy of asymmetric selection responses in the ontogeny of shoal cohesion and the underlying physiological mechanisms in experimentally harvested zebrafish in the laboratory.
Significant statement
The evolution of animal behavior can be affected by human activities both at behavioral and physiological levels, but causal evidence is scarce and mostly focusing on single life-stages. We studied whether and to what extent size-selective harvesting, a common selection pattern in fisheries, can be an evolutionary driver of the development of shoal cohesion during ontogeny. We used a multi-generation experiment with zebrafish to study cause-and-effects of opposing size-selection patterns. We quantified shoal cohesion, and serotonin and dopamine turnover in the brain. We found that shoal cohesion emerged as a collective personality trait and that behavioral and physiological responses were asymmetrical with respect to the opposing selection patterns.
Collapse
|
58
|
Bulavkina EV, Kudryavtsev AA, Goncharova MA, Lantsova MS, Shuvalova AI, Kovalev MA, Kudryavtseva AV. Multifaceted Nothobranchius. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1563-1578. [PMID: 36717447 DOI: 10.1134/s0006297922120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Annual killifish of the genus Nothobranchius are seeing a rapid increase in scientific interest over the years. A variety of aspects surrounding the egg-laying Cyprinodontiformes is being extensively studied, including their aging. Inhabiting drying water bodies of Africa rarely allows survival through more than one rainy season for the Nothobranchius populations. Therefore, there is no lifespan-related bias in natural selection, which has ultimately led to the decreased efficiency of DNA repair system. Aging of the Nothobranchius species is studied both under normal conditions and under the influence of potential geroprotectors, as well as genetic modifications. Most biogerontological studies are conducted using the species Nothobranchius furzeri (GRZ isolate), which has a lifespan of 3 to 7 months. However, the list of model species of Nothobranchius is considerably wider, and the range of advanced research areas with their participation extends far beyond gerontology. This review summarizes the most interesting and promising topics developing in the studies of the fish of Nothobranchius genus. Both classical studies related to lifespan control and rather new ones are discussed, including mechanisms of diapause, challenges of systematics and phylogeny, evolution of sex determination mechanisms, changes in chromosome count, occurrence of multiple repeated DNA sequences in the genome, cognitive and behavioral features and social stratification, as well as methodological difficulties in working with Nothobranchius.
Collapse
Affiliation(s)
- Elizaveta V Bulavkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Kudryavtsev
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Margarita A Goncharova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Margarita S Lantsova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasija I Shuvalova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Kovalev
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
59
|
Jarvis DM, Pope EC, Duteil M, Fürtbauer I, Brown MR, Davis RJ, King AJ. Elevated CO 2 does not alter behavioural lateralization in free-swimming juvenile European sea bass (Dicentrarchus labrax) tested in groups. JOURNAL OF FISH BIOLOGY 2022; 101:1361-1365. [PMID: 35906859 DOI: 10.1111/jfb.15180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The authors investigated left-right turning preferences of n = 260 juvenile European sea bass (Dicentrarchus labrax) reared in ambient conditions and ocean acidification (OA) conditions or in ambient conditions but tested in OA water. Groups of 10 individuals were observed alone in a circular tank, and individuals' left and right turning during free-swimming was quantified using trajectory data from the video. The authors showed that near-future OA levels do not affect the number of turns made, or behavioural lateralization (turning preference), in juvenile D. labrax tested in groups.
Collapse
Affiliation(s)
- Dominic M Jarvis
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Edward C Pope
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Mathieu Duteil
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
- Department of Biomedical Engineering, College of Engineering, Swansea University, Swansea, UK
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Constance, Germany
| | - Ines Fürtbauer
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - M Rowan Brown
- Department of Biomedical Engineering, College of Engineering, Swansea University, Swansea, UK
| | - Richard J Davis
- Department of Biomedical Engineering, College of Engineering, Swansea University, Swansea, UK
| | - Andrew J King
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
60
|
Hansen MJ, Krause S, Dhellemmes F, Pacher K, Kurvers RHJM, Domenici P, Krause J. Mechanisms of prey division in striped marlin, a marine group hunting predator. Commun Biol 2022; 5:1161. [PMID: 36316537 PMCID: PMC9622829 DOI: 10.1038/s42003-022-03951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial group-hunters cooperate to kill prey but then compete for their share with dominance being a strong predictor of prey division. In contrast, little is known about prey division in group-hunting marine predators that predominately attack small, evasive prey (e.g. fish schools). We identified individual striped marlin (Kajikia audax) hunting in groups. Groups surrounded prey but individuals took turns attacking. We found that competition for prey access led to an unequal division of prey among the predators, with 50% of the most frequently attacking marlin capturing 70–80% of the fish. Neither aggression, body size nor variation in hunting efficiency explained this skewed prey division. We did find that newly arrived groups of marlin gained on average more access to the prey. This raises the possibility that newly arrived marlin were hungrier and more motivated to feed. However, this result does not necessarily explain the unequal prey division among the predators because the skew in prey captures was found at the level of these groups. Dynamic prey division is probably widespread but under-reported in marine group-hunters and the inability of individuals to monopolize prey until satiation likely reduces the importance of social hierarchies for prey division. Striped marlin use a dynamic prey division method when hunting as a group, taking turns to feed but without doing so equally.
Collapse
Affiliation(s)
- M. J. Hansen
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - S. Krause
- grid.4562.50000 0001 0057 2672Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - F. Dhellemmes
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - K. Pacher
- grid.7468.d0000 0001 2248 7639Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - R. H. J. M. Kurvers
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany ,grid.419526.d0000 0000 9859 7917Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - P. Domenici
- grid.5326.20000 0001 1940 4177IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy ,IAS-CNR, Località Sa Mardini, 09170 Torregrande, Oristano Italy
| | - J. Krause
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany ,grid.6734.60000 0001 2292 8254Cluster of Excellence “Science of Intelligence,” Technical University of Berlin, Marchstr. 23, 10587 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Present Address: Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
61
|
Kurvers RHJM, Snijders L. The balance of the sexes. eLife 2022; 11:83254. [PMID: 36205708 PMCID: PMC9545519 DOI: 10.7554/elife.83254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A large-scale experiment demonstrates sex differences in cooperation and competition that can explain group size variation in ostriches.
Collapse
Affiliation(s)
- Ralf H J M Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.,Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Lysanne Snijders
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
62
|
Paterson JT, Proffitt KM, DeCesare NJ, Gude JA, Hebblewhite M. Evaluating the summer landscapes of predation risk and forage quality for elk ( Cervus canadensis). Ecol Evol 2022; 12:e9201. [PMID: 35979523 PMCID: PMC9366754 DOI: 10.1002/ece3.9201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
The recovery of carnivore populations in North American has consequences for trophic interactions and population dynamics of prey. In addition to direct effects on prey populations through killing, predators can influence prey behavior by imposing the risk of predation. The mechanisms through which patterns of space use by predators are linked to behavioral response by prey and nonconsumptive effects on prey population dynamics are poorly understood. Our goal was to characterize population- and individual-level patterns of resource selection by elk (Cervus canadensis) in response to risk of wolves (Canis lupus) and mountain lions (Puma concolor) and evaluate potential nonconsumptive effects of these behavioral patterns. We tested the hypothesis that individual elk risk-avoidance behavior during summer would result in exposure to lower-quality forage and reduced body fat and pregnancy rates. First, we evaluated individuals' second-order and third-order resource selection with a used-available sampling design. At the population level, we found evidence for a positive relationship between second- and third-order selection and forage, and an interaction between forage quality and mountain lion risk such that the relative probability of use at low mountain lion risk increased with forage quality but decreased at high risk at both orders of selection. We found no evidence of a population-level trade-off between forage quality and wolf risk. However, we found substantial among-individual heterogeneity in resource selection patterns such that population-level patterns were potentially misleading. We found no evidence that the diversity of individual resource selection patterns varied predictably with available resources, or that patterns of individual risk-related resource selection translated into biologically meaningful changes in body fat or pregnancy rates. Our work highlights the importance of evaluating individual responses to predation risk and predator hunting technique when assessing responses to predators and suggests nonconsumptive effects are not operating at a population scale in this system.
Collapse
Affiliation(s)
| | | | | | | | - Mark Hebblewhite
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
63
|
Understanding the spatial distribution and hot spots of collared Bornean elephants in a multi-use landscape. Sci Rep 2022; 12:12830. [PMID: 35896774 PMCID: PMC9329282 DOI: 10.1038/s41598-022-16630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
In the Kinabatangan floodplain, Sabah, Malaysian Borneo, oil palm and settlements have reduced and fragmented lowland tropical forests, home to around 200 endangered Bornean elephants (Elephas maximus borneensis). In this region, elephants range within forests, oil palm and community areas. The degree to which elephants are using these areas remains unclear. We used GPS telemetry data from 2010 to 2020 for 14 collared elephants to map their entire known ranges and highly used areas (hot spots) across four land use categories and estimate time spent within these. The use of land use types across elephants varied significantly. Typically, females had strong fidelity to forests, yet many of these forests are threatened with conversion. For the three males, and several females, they heavily used oil palm estates, and this may be due to decreased landscape permeability or foraging opportunities. At the pooled level, the entire range and hot spot extents, constituted 37% and 34% for protected areas, respectively, 8% and 11% for unprotected forests, 53% and 51% for oil palm estates, and 2% for community areas. Protecting all forested habitats and effectively managing areas outside of protected areas is necessary for the long-term survival of this population.
Collapse
|
64
|
Jolles JW, Sosna MMG, Mazué GPF, Twomey CR, Bak-Coleman J, Rubenstein DI, Couzin ID. Both prey and predator features predict the individual predation risk and survival of schooling prey. eLife 2022; 11:e76344. [PMID: 35852826 PMCID: PMC9348852 DOI: 10.7554/elife.76344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal 'strike zone' the most vulnerable to be targeted. From the prey's perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike's head. Our results highlight the crucial interplay between predators' attack strategy and response of prey underlying the predation risk within mobile animal groups.
Collapse
Affiliation(s)
- Jolle Wolter Jolles
- Department of Collective Behaviour, Max Planck Institute of Animal BehaviorKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Centre for Ecological Research and Forestry Applications (CREAF)BarcelonaSpain
| | - Matthew MG Sosna
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Geoffrey PF Mazué
- School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Colin R Twomey
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Joseph Bak-Coleman
- eScience Institute, University of WashingtonSeattleUnited States
- Center for an Informed Public, University of WashingtonSeattleUnited States
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal BehaviorKonstanzGermany
- Department of Biology, University of KonstanzKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
| |
Collapse
|
65
|
Makowicz AM, Bierbach D, Richardson C, Hughes KA. Cascading indirect genetic effects in a clonal vertebrate. Proc Biol Sci 2022; 289:20220731. [PMID: 35858068 PMCID: PMC9277275 DOI: 10.1098/rspb.2022.0731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly (Poecilia formosa), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission-fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments.
Collapse
Affiliation(s)
- Amber M. Makowicz
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany,Excellence Cluster ‘Science of Intelligence,’ Technische Universität Berlin, Marchstraße 23, 10587 Berlin, Germany,Faculty of Life Sciences, Thaer-Institute, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Christian Richardson
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| | - Kimberly A. Hughes
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| |
Collapse
|
66
|
Michelangeli M, Martin JM, Pinter-Wollman N, Ioannou CC, McCallum ES, Bertram MG, Brodin T. Predicting the impacts of chemical pollutants on animal groups. Trends Ecol Evol 2022; 37:789-802. [PMID: 35718586 DOI: 10.1016/j.tree.2022.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
Chemical pollution is among the fastest-growing agents of global change. Synthetic chemicals with diverse modes-of-action are being detected in the tissues of wildlife and pervade entire food webs. Although such pollutants can elicit a range of sublethal effects on individual organisms, research on how chemical pollutants affect animal groups is severely lacking. Here we synthesise research from two related, but largely segregated fields - ecotoxicology and behavioural ecology - to examine pathways by which chemical contaminants could disrupt processes that govern the emergence, self-organisation, and collective function of animal groups. Our review provides a roadmap for prioritising the study of chemical pollutants within the context of sociality and highlights important methodological advancements for future research.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden; School of Biological Sciences, Monash University, Melbourne, 3800, Australia.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7246, USA
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Erin S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
67
|
Abstract
SignificanceIn this study, we ask how ant colonies integrate information about the external environment with internal state parameters to produce adaptive, system-level responses. First, we show that colonies collectively evacuate the nest when the ground temperature becomes too warm. The threshold temperature for this response is a function of colony size, with larger colonies evacuating the nest at higher temperatures. The underlying dynamics can thus be interpreted as a decision-making process that takes both temperature (external environment) and colony size (internal state) into account. Using mathematical modeling, we show that these dynamics can emerge from a balance between local excitatory and global inhibitory forces acting between the ants. Our findings in ants parallel other complex biological systems like neural circuits.
Collapse
|
68
|
Harel R, Alavi S, Ashbury AM, Aurisano J, Berger-Wolf T, Davis GH, Hirsch BT, Kalbitzer U, Kays R, Mclean K, Núñez CL, Vining A, Walton Z, Havmøller RW, Crofoot MC. Life in 2.5D: Animal Movement in the Trees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.801850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complex, interconnected, and non-contiguous nature of canopy environments present unique cognitive, locomotor, and sensory challenges to their animal inhabitants. Animal movement through forest canopies is constrained; unlike most aquatic or aerial habitats, the three-dimensional space of a forest canopy is not fully realized or available to the animals within it. Determining how the unique constraints of arboreal habitats shape the ecology and evolution of canopy-dwelling animals is key to fully understanding forest ecosystems. With emerging technologies, there is now the opportunity to quantify and map tree connectivity, and to embed the fine-scale horizontal and vertical position of moving animals into these networks of branching pathways. Integrating detailed multi-dimensional habitat structure and animal movement data will enable us to see the world from the perspective of an arboreal animal. This synthesis will shed light on fundamental aspects of arboreal animals’ cognition and ecology, including how they navigate landscapes of risk and reward and weigh energetic trade-offs, as well as how their environment shapes their spatial cognition and their social dynamics.
Collapse
|
69
|
Nabeel A, Masila DR. Disentangling intrinsic motion from neighborhood effects in heterogeneous collective motion. CHAOS (WOODBURY, N.Y.) 2022; 32:063119. [PMID: 35778120 DOI: 10.1063/5.0093682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Most real-world collectives, including animal groups, pedestrian crowds, active particles, and living cells, are heterogeneous. The differences among individuals in their intrinsic properties have emergent effects at the group level. It is often of interest to infer how the intrinsic properties differ among the individuals based on their observed movement patterns. However, the true individual properties may be masked by the nonlinear interactions in the collective. We investigate the inference problem in the context of a bidisperse collective with two types of agents, where the goal is to observe the motion of the collective and classify the agents according to their types. Since collective effects, such as jamming and clustering, affect individual motion, the information in an agent's own movement is insufficient for accurate classification. A simple observer algorithm, based only on individual velocities, cannot accurately estimate the level of heterogeneity of the system and often misclassifies agents. We propose a novel approach to the classification problem, where collective effects on an agent's motion are explicitly accounted for. We use insights about the phenomenology of collective motion to quantify the effect of the neighborhood on an agent's motion using a neighborhood parameter. Such an approach can distinguish between agents of two types, even when their observed motion is identical. This approach estimates the level of heterogeneity much more accurately and achieves significant improvements in classification. Our results demonstrate that explicitly accounting for neighborhood effects is often necessary to correctly infer intrinsic properties of individuals.
Collapse
Affiliation(s)
- Arshed Nabeel
- Center for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - Danny Raj Masila
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
70
|
Studies of the Behavioral Sequences: The Neuroethological Morphology Concept Crossing Ethology and Functional Morphology. Animals (Basel) 2022; 12:ani12111336. [PMID: 35681801 PMCID: PMC9179564 DOI: 10.3390/ani12111336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Behavioral sequences analysis is a relevant method for quantifying the behavioral repertoire of animals to respond to the classical Tinbergen’s four questions. Research in ethology and functional morphology intercepts at the level of analysis of behaviors through the recording and interpretation of data from of movement sequence studies with various types of imaging and sensor systems. We propose the concept of Neuroethological morphology to build a holistic framework for understanding animal behavior. This concept integrates ethology (including behavioral ecology and neuroethology) with functional morphology (including biomechanics and physics) to provide a heuristic approach in behavioral biology. Abstract Postures and movements have been one of the major modes of human expression for understanding and depicting organisms in their environment. In ethology, behavioral sequence analysis is a relevant method to describe animal behavior and to answer Tinbergen’s four questions testing the causes of development, mechanism, adaptation, and evolution of behaviors. In functional morphology (and in biomechanics), the analysis of behavioral sequences establishes the motor pattern and opens the discussion on the links between “form” and “function”. We propose here the concept of neuroethological morphology in order to build a holistic framework for understanding animal behavior. This concept integrates ethology with functional morphology, and physics. Over the past hundred years, parallel developments in both disciplines have been rooted in the study of the sequential organization of animal behavior. This concept allows for testing genetic, epigenetic, and evo-devo predictions of phenotypic traits between structures, performances, behavior, and fitness in response to environmental constraints. Based on a review of the literature, we illustrate this concept with two behavioral cases: (i) capture behavior in squamates, and (ii) the ritualistic throat display in lizards.
Collapse
|
71
|
Sankey DWE, Hunt KL, Croft DP, Franks DW, Green PA, Thompson FJ, Johnstone RA, Cant MA. Leaders of war: modelling the evolution of conflict among heterogeneous groups. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210140. [PMID: 35369752 PMCID: PMC8977670 DOI: 10.1098/rstb.2021.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
War, in human and animal societies, can be extremely costly but can also offer significant benefits to the victorious group. We might expect groups to go into battle when the potential benefits of victory (V) outweigh the costs of escalated conflict (C); however, V and C are unlikely to be distributed evenly in heterogeneous groups. For example, some leaders who make the decision to go to war may monopolize the benefits at little cost to themselves ('exploitative' leaders). By contrast, other leaders may willingly pay increased costs, above and beyond their share of V ('heroic' leaders). We investigated conflict initiation and conflict participation in an ecological model where single-leader-multiple-follower groups came into conflict over natural resources. We found that small group size, low migration rate and frequent interaction between groups increased intergroup competition and the evolution of 'exploitative' leadership, while converse patterns favoured increased intragroup competition and the emergence of 'heroic' leaders. We also found evidence of an alternative leader/follower 'shared effort' outcome. Parameters that favoured high contributing 'heroic' leaders, and low contributing followers, facilitated transitions to more peaceful outcomes. We outline and discuss the key testable predictions of our model for empiricists studying intergroup conflict in humans and animals. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- D. W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - K. L. Hunt
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - D. P. Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - D. W. Franks
- Department of Biology and Department of Computer Science, University of York, York YO10 5DD, UK
| | - P. A. Green
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - F. J. Thompson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - R. A. Johnstone
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - M. A. Cant
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- German Primate Centre, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
72
|
Brandl HB, Pruessner JC, Farine DR. The social transmission of stress in animal collectives. Proc Biol Sci 2022; 289:20212158. [PMID: 35538776 PMCID: PMC9091854 DOI: 10.1098/rspb.2021.2158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 01/04/2023] Open
Abstract
The stress systems are powerful mediators between the organism's systemic dynamic equilibrium and changes in its environment beyond the level of anticipated fluctuations. Over- or under-activation of the stress systems' responses can impact an animal's health, survival and reproductive success. While physiological stress responses and their influence on behaviour and performance are well understood at the individual level, it remains largely unknown whether-and how-stressed individuals can affect the stress systems of other group members, and consequently their collective behaviour. Stressed individuals could directly signal the presence of a stressor (e.g. via an alarm call or pheromones), or an acute or chronic activation of the stress systems could be perceived by others (as an indirect cue) and spread via social contagion. Such social transmission of stress responses could then amplify the effects of stressors by impacting social interactions, social dynamics and the collective performance of groups. As the neuroendocrine pathways of the stress response are highly conserved among vertebrates, transmission of physiological stress states could be more widespread among non-human animals than previously thought. We therefore suggest that identifying the extent to which stress transmission modulates animal collectives represents an important research avenue.
Collapse
Affiliation(s)
- Hanja B. Brandl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Jens C. Pruessner
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Damien R. Farine
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
73
|
Taylor LA, Wittemyer G, Lambert B, Douglas-Hamilton I, Vollrath F. Movement behaviour after birth demonstrates precocial abilities of African savannah elephant, Loxodonta africana, calves. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
74
|
Nicolis SC, Deneubourg JL. The effect of idiosyncrasy on aggregation in group-living organisms. J Theor Biol 2022; 542:111120. [DOI: 10.1016/j.jtbi.2022.111120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
|
75
|
Kim S, Álvarez‐Quintero N, Metcalfe NB. Does the match between individual and group behavior matter in shoaling sticklebacks? Ecol Evol 2022; 12:e8581. [PMID: 35222959 PMCID: PMC8844133 DOI: 10.1002/ece3.8581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
In animals living in groups, the social environment is fundamental to shaping the behaviors and life histories of an individual. A mismatch between individual and group behavior patterns may have disadvantages if the individual is incapable of flexibly changing its state in response to the social environment that influences its energy gain and expenditure. We used different social groups of juvenile three-spined sticklebacks (Gasterosteus aculeatus) with experimentally manipulated compositions of individual sociability to study the feedback between individual and group behaviors and to test how the social environment shapes behavior, metabolic rate, and growth. Experimentally created unsociable groups, containing a high proportion of less sociable fish, showed bolder collective behaviors during feeding than did corresponding sociable groups. Fish within groups where the majority of members had a level of sociability similar to their own gained more mass than did those within mismatched groups. Less sociable individuals within sociable groups tended to have a relatively low mass but a high standard metabolic rate. A mismatch between the sociability of an individual and that of the majority of the group in which it is living confers a growth disadvantage probably due to the expression of nonadaptive behaviors that increase energetic costs.
Collapse
Affiliation(s)
- Sin‐Yeon Kim
- Grupo Ecoloxía AnimalTorre CACTICentro de Investigación MariñaUniversidade de VigoVigoSpain
| | | | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
76
|
Bracken AM, Christensen C, O'Riain MJ, Fürtbauer I, King AJ. Flexible group cohesion and coordination, but robust leader-follower roles, in a wild social primate using urban space. Proc Biol Sci 2022; 289:20212141. [PMID: 35078361 PMCID: PMC8790338 DOI: 10.1098/rspb.2021.2141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Collective behaviour has a critical influence on group social structure and organization, individual fitness and social evolution, but we know little about whether and how it changes in anthropogenic environments. Here, we show multiple and varying effects of urban space-use upon group-level processes in a primate generalist-the chacma baboon (Papio ursinus)-within a managed wild population living at the urban edge in the City of Cape Town, South Africa. In natural space, we observe baboon-typical patterns of collective behaviour. By contrast, in urban space (where there are increased risks, but increased potential for high-quality food rewards), baboons show extreme flexibility in collective behaviour, with changes in spatial cohesion and association networks, travel speeds and group coordination. However, leader-follower roles remain robust across natural and urban space, with adult males having a disproportionate influence on the movement of group members. Their important role in the group's collective behaviour complements existing research and supports the management tactic employed by field rangers of curbing the movements of adult males, which indirectly deters the majority of the group from urban space. Our findings highlight both flexibility and robustness in collective behaviour when groups are presented with novel resources and heightened risks.
Collapse
Affiliation(s)
- Anna M. Bracken
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Charlotte Christensen
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - M. Justin O'Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Ines Fürtbauer
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Andrew J. King
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| |
Collapse
|
77
|
Tait C, Naug D. Interindividual variation in the use of social information during learning in honeybees. Proc Biol Sci 2022; 289:20212501. [PMID: 35078365 PMCID: PMC8790335 DOI: 10.1098/rspb.2021.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023] Open
Abstract
Slow-fast differences in cognition among individuals have been proposed to be an outcome of the speed-accuracy trade-off in decision-making. Based on the different costs associated with acquiring information via individual and social learning, we hypothesized that slow-fast cognitive differences would also be tied to the adoption of these different learning modes. Since foragers in honeybee colonies likely have both these information acquisition modes available to them, we chose to test them for interindividual differences in individual and social learning. By measuring performance on a learning task with and without a social cue and quantifying learning rate and maximum accuracy in these two tasks, our results show the existence of a speed-accuracy trade-off in both the individual and the social learning contexts. However, the trade-off is steeper during individual learning, which was slower than social learning but led to higher accuracy. Most importantly, our results also show that bees that attained high accuracy on the individual learning task had low accuracy on the social learning task and vice versa. We discuss how these two information acquisition strategies tie to slow-fast differences in cognitive phenotypes and how they might contribute to division of labour and social behaviour.
Collapse
Affiliation(s)
- Catherine Tait
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Dhruba Naug
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
78
|
Mugel S, Naug D. Metabolic rate diversity shapes group performance in honeybees. Am Nat 2022; 199:E156-E169. [DOI: 10.1086/719013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
79
|
Ouellette N. A physics perspective on collective animal behavior. Phys Biol 2022; 19. [PMID: 35038691 DOI: 10.1088/1478-3975/ac4bef] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The beautiful dynamic patterns and coordinated motion displayed by groups of social animals are a beautiful example of self-organization in natural farfrom-equilibrium systems. Recent advances in active-matter physics have enticed physicists to begin to consider how their results can be extended from microscale physical or biological systems to groups of real, macroscopic animals. At the same time, advances in measurement technology have led to the increasing availability of high-quality empirical data for the behavior of animal groups both in the laboratory and in the wild. In this review, I survey this available data and the ways that it has been analyzed. I then describe how physicists have approached synthesizing, modeling, and interpreting this information, both at the level of individual animals and at the group scale. In particular, I focus on the kinds of analogies that physicists have made between animal groups and more traditional areas of physics.
Collapse
Affiliation(s)
- Nicholas Ouellette
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California, 94305-6104, UNITED STATES
| |
Collapse
|
80
|
Sakurai Y, Ikeda Y. Visual and brain lateralization during the posthatching phase in squid under solitary and group conditions. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
81
|
Georgopoulou DG, King AJ, Brown RM, Fürtbauer I. Emergence and repeatability of leadership and coordinated motion in fish shoals. Behav Ecol 2022; 33:47-54. [PMID: 35197806 PMCID: PMC8857939 DOI: 10.1093/beheco/arab108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/04/2022] Open
Abstract
Studies of self-organizing groups like schools of fish or flocks of birds have sought to uncover the behavioral rules individuals use (local-level interactions) to coordinate their motion (global-level patterns). However, empirical studies tend to focus on short-term or one-off observations where coordination has already been established or describe transitions between different coordinated states. As a result, we have a poor understanding of how behavioral rules develop and are maintained in groups. Here, we study the emergence and repeatability of coordinated motion in shoals of stickleback fish (Gasterosteus aculeatus). Shoals were introduced to a simple environment, where their spatio-temporal position was deduced via video analysis. Using directional correlation between fish velocities and wavelet analysis of fish positions, we demonstrate how shoals that are initially uncoordinated in their motion quickly transition to a coordinated state with defined individual leader-follower roles. The identities of leaders and followers were repeatable across two trials, and coordination was reached more quickly during the second trial and by groups of fish with higher activity levels (tested before trials). The rapid emergence of coordinated motion and repeatability of social roles in stickleback fish shoals may act to reduce uncertainty of social interactions in the wild, where individuals live in a system with high fission-fusion dynamics and non-random patterns of association.
Collapse
Affiliation(s)
- Dimitra G Georgopoulou
- College of Engineering, Swansea University, SA1 8EN Swansea, UK
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK
| | - Andrew J King
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK
| | - Rowan M Brown
- College of Engineering, Swansea University, SA1 8EN Swansea, UK
| | - Ines Fürtbauer
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK
| |
Collapse
|
82
|
Rajendran H, Haluts A, Gov NS, Feinerman O. Ants resort to majority concession to reach democratic consensus in the presence of a persistent minority. Curr Biol 2021; 32:645-653.e8. [PMID: 34995489 DOI: 10.1016/j.cub.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Social groups often need to overcome differences in individual interests and knowledge to reach consensus decisions. Here, we combine experiments and modeling to study conflict resolution in emigrating ant colonies during binary nest selection. We find that cohesive emigration, without fragmentation, is achieved only by intermediate-sized colonies. We then impose a conflict regarding the desired emigration target between colony subgroups. This is achieved using an automated selective gate system that manipulates the information accessible to each ant. Under this conflict, we find that individuals concede their potential benefit to promote social consensus. In particular, colonies resolve the conflict imposed by a persistent minority through "majority concession," wherein a majority of ants that hold first-hand knowledge regarding the superior quality nest choose to reside in the inferior one. This outcome is unlikely in social groups of selfish individuals and emphasizes the importance of group cohesion in eusocial societies.
Collapse
Affiliation(s)
- Harikrishnan Rajendran
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Haluts
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
83
|
Naug D, Tait C. Slow-Fast Cognitive Phenotypes and Their Significance for Social Behavior: What Can We Learn From Honeybees? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.766414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive variation is proposed to be the fundamental underlying factor that drives behavioral variation, yet it is still to be fully integrated with the observed variation at other phenotypic levels that has recently been unified under the common pace-of-life framework. This cognitive and the resulting behavioral diversity is especially significant in the context of a social group, the performance of which is a collective outcome of this diversity. In this review, we argue about the utility of classifying cognitive traits along a slow-fast continuum in the larger context of the pace-of-life framework. Using Tinbergen’s explanatory framework for different levels of analyses and drawing from the large body of knowledge about honeybee behavior, we discuss the observed interindividual variation in cognitive traits and slow-fast cognitive phenotypes from an adaptive, evolutionary, mechanistic and developmental perspective. We discuss the challenges in this endeavor and suggest possible next steps in terms of methodological, statistical and theoretical approaches to move the field forward for an integrative understanding of how slow-fast cognitive differences, by influencing collective behavior, impact social evolution.
Collapse
|
84
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
85
|
Sbragaglia V, Klamser PP, Romanczuk P, Arlinghaus R. Evolutionary impact of size-selective harvesting on shoaling behavior: Individual-level mechanisms and possible consequences for natural and fishing mortality. Am Nat 2021; 199:480-495. [DOI: 10.1086/718591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
86
|
Font-Muñoz JS, Sourisseau M, Cohen-Sánchez A, Tuval I, Basterretxea G. Pelagic diatoms communicate through synchronized beacon natural fluorescence signaling. SCIENCE ADVANCES 2021; 7:eabj5230. [PMID: 34910521 PMCID: PMC8673755 DOI: 10.1126/sciadv.abj5230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Communication between conspecific individuals is an essential part of life both in terrestrial and marine realms. Until recently, social behavior in marine phytoplankton was assumed to rely mainly on the secretion of a variety of infochemicals that allowed population-scale collective responses. Here, we demonstrate that pelagic diatoms also use Sun-stimulated fluorescence signals for synchronizing their behavior. These unicellular microorganisms, playing a key biogeochemical role in the ocean, use photoreceptor proteins and red–far-red fluorescent radiation to communicate. A characteristic beaconing signal is generated by rhythmic organelle displacement within the cell cytoplasm, triggering coordinated population behavior. These light-based communication networks could critically determine major facets of diatom ecology and fitness and regulate the dynamics of larger-scale ocean processes.
Collapse
Affiliation(s)
- Joan S. Font-Muñoz
- IFREMER, French Institute for Sea Research, DYNECO PELAGOS, 29280 Plouzané, France
- Université de Brest-UBO/CNRS/IFREMER/IRD, 29238 Brest, France
| | - Marc Sourisseau
- IFREMER, French Institute for Sea Research, DYNECO PELAGOS, 29280 Plouzané, France
| | - Amanda Cohen-Sánchez
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Miquel Marques 21, 07190 Esporles, Balearic Islands, Spain
| | - Idan Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Miquel Marques 21, 07190 Esporles, Balearic Islands, Spain
- Department of Physics, University of the Balearic Islands, Ctra. Valldemossa Km. 7.5, 07122 Palma, Balearic Islands, Spain
| | - Gotzon Basterretxea
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Miquel Marques 21, 07190 Esporles, Balearic Islands, Spain
| |
Collapse
|
87
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
88
|
Sheppard CE, Heaphy R, Cant MA, Marshall HH. Individual foraging specialization in group-living species. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
89
|
Chrétien E, Boisclair D, Cooke SJ, Killen SS. Social Group Size and Shelter Availability Influence Individual Metabolic Traits in a Social Fish. Integr Org Biol 2021; 3:obab032. [PMID: 34859193 PMCID: PMC8633746 DOI: 10.1093/iob/obab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
Group living is widespread among animal species and yields both costs and benefits. Presence of conspecifics can restrict or enhance the expression of individual behavior, and the recent social environment is thought to affect behavioral responses in later contexts, even when individuals are alone. However, little is known about how social group size influences the expression of individual physiological traits, including metabolic rates. There is some evidence that shoaling can reduce fish metabolic rates but this variable may be affected by habitat conditions such as shelter availability via density-dependent processes. We investigated how social group size and shelter availability influence Eurasian minnow (Phoxinus phoxinus) metabolic rates estimated by respirometry. Respirometry trials were conducted on fish in isolation before and after they were housed for 3 weeks in a social treatment consisting in a specific group size (n = 4 or 8) and shelter availability (presence or absence of plant shelter in the experimental tank). Plant shelter was placed over respirometers for half of the duration of the respirometry trials, allowing estimation of minimum daytime and nighttime metabolic rates in both conditions (in the presence or absence of plant shelter). Standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope were also estimated over the entire trial. Minimum daytime and nighttime metabolic rates estimated while in presence of plant shelter were lower than when estimated in absence of plant shelter, both before and after individuals were housed in their social treatment. After the social treatment, SMRs were higher for fish that were held in groups of 4 as compared with those of fish held in groups of 8, while MMR showed no difference. Plant shelter availability during the social treatments did not influence SMR or MMR. Our results suggest that social group size may directly influence energy demands of individuals, highlighting the importance of understanding the role of group size on variations in physiological traits associated with energy expenditure.
Collapse
Affiliation(s)
- Emmanuelle Chrétien
- Département de sciences biologiques, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
- Groupe interuniversitaire en limnologie et environnement aquatique (GRIL), Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Daniel Boisclair
- Département de sciences biologiques, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
- Groupe interuniversitaire en limnologie et environnement aquatique (GRIL), Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Shaun S Killen
- Groupe interuniversitaire en limnologie et environnement aquatique (GRIL), Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
90
|
Zheng YH, Fu SJ. Effects of fasting on collective movement and fission-fusion dynamics in both homogeneous and heterogeneous shoals of a group-living cyprinid fish species. JOURNAL OF FISH BIOLOGY 2021; 99:1640-1649. [PMID: 34386987 DOI: 10.1111/jfb.14872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to reveal the effect of fasting (21 days) on collective movement and interaction dynamics in both homogeneous (eight members fed a commercial diet or deprived of food) and heterogeneous (four fed + four starved members) shoals of juvenile qingbo (Spinibarbus sinensis). The authors of this study measured the shoaling behaviour in both a commonly used rectangular open arena with no spatial complexity and a radial arm maze. When measured in the open arena, the starved shoals had a faster swimming speed and acceleration rate and a longer interindividual distance than the fed shoals, possibly because of the elevated foraging motivation. Nonetheless, the values of the heterogeneous groups were similar to those of the fed groups. Furthermore, in contrast to the fish in homogeneous shoals, the starved fish in heterogeneous shoals showed a slower acceleration rate and speed than fed members in heterogeneous shoals. These results, combined with the relationships of variables at the among- and within-shoal levels, suggested that starved fish limited their motion in heterogeneous shoals to maintain group cohesion but that the fed fish contributed more to maintaining shoal structure, possibly because of the higher energy expenditure required for movement changes. When monitored in a radial arm maze, starved shoals showed more fission-fusion episodes without sacrificing group cohesion, as they adaptively adjusted the frequency and duration of each majority choice. The among-shoal variation revealed that the heterogeneous groups showed less variation in the open arena but more variation in the radius maze than did the homogeneous groups. This difference might arise because dominant members have opposite effects on shoal behaviour and consensus decisions. In conclusion, the present study showed opposite effects of feeding states on collective behaviour between homogeneous and heterogeneous shoals, possibly because of the complicated interactions among members with different energy storage levels and foraging motivations. Furthermore, the heterogeneous groups showed a difference between shoal behaviour in the open area and exploration in the radial arm maze. Future studies manipulating the personality composition of starved and fed members of heterogeneous groups might yield interesting results.
Collapse
Affiliation(s)
- Yu-Hui Zheng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
91
|
Fay R, Authier M, Hamel S, Jenouvrier S, Pol M, Cam E, Gaillard J, Yoccoz NG, Acker P, Allen A, Aubry LM, Bonenfant C, Caswell H, Coste CFD, Larue B, Le Coeur C, Gamelon M, Macdonald KR, Moiron M, Nicol‐Harper A, Pelletier F, Rotella JJ, Teplitsky C, Touzot L, Wells CP, Sæther B. Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rémi Fay
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Matthieu Authier
- Observatoire PELAGIS UMS‐CNRS 3462Université de la Rochelle La Rochelle France
| | - Sandra Hamel
- Département de biologie Université Laval Québec City QC Canada
| | - Stéphanie Jenouvrier
- Centre d'Etudes Biologiques de Chizé UMR 7372Centre National de la Recherche Scientifique Villiers en Bois France
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA USA
| | - Martijn Pol
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- College of Science and Engineering James Cook University Townsville Qld Australia
| | | | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | - Nigel G. Yoccoz
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Paul Acker
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Andrew Allen
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Lise M. Aubry
- Fish, Wildlife and Conservation Biology Department Colorado State University Fort Collins CO USA
| | - Christophe Bonenfant
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | - Hal Caswell
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Christophe F. D. Coste
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Benjamin Larue
- Département de Biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Christie Le Coeur
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
| | - Marlène Gamelon
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | | | - Maria Moiron
- CEFE Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - Alex Nicol‐Harper
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA USA
- School of Ocean and Earth Science National Oceanography Centre University of Southampton Waterfront Campus Southampton UK
| | - Fanie Pelletier
- Département de Biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Jay J. Rotella
- Department of Ecology Montana State University Bozeman MT USA
| | | | - Laura Touzot
- Laboratoire de Biométrie et Biologie Évolutive CNRSUnité Mixte de Recherche (UMR) 5558Université Lyon 1Université de Lyon Villeurbanne France
| | - Caitlin P. Wells
- Fish, Wildlife and Conservation Biology Department Colorado State University Fort Collins CO USA
| | - Bernt‐Erik Sæther
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
92
|
Álvarez-Quintero N, Chiara V, Kim SY. Trap versus net: Behavioural sampling bias caused by capture method in three-spined sticklebacks. Behav Processes 2021; 193:104504. [PMID: 34547377 DOI: 10.1016/j.beproc.2021.104504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Wild-caught animals are often used in behavioural or other biological studies. However, different capture methods may target individuals that differ in behaviour, life history and morphology, thereby giving rise to sampling biases. Here, we investigated whether juvenile three-spined sticklebacks caught in a natural population by passive and active sampling methods using frequently used tools (i.e. trap and hand net) differ in behaviours related to cognition and personality. The fish caught by traps were more prone to take risks and shoal (i.e. bolder and more sociable), but smaller in size and mass than the fish caught by hand nets. Individual variation in boldness was greater in the fish caught by hand nets, suggesting that this active sampling method may capture more representative samples of the natural population. Our results show the importance of capture method to avoid sampling bias in behavioural studies using wild-caught animals.
Collapse
Affiliation(s)
- Náyade Álvarez-Quintero
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Campus de Vigo, Universidade de Vigo, 36310 Vigo, Spain.
| | - Violette Chiara
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Campus de Vigo, Universidade de Vigo, 36310 Vigo, Spain
| | - Sin-Yeon Kim
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Campus de Vigo, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
93
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:40. [PMID: 34321114 PMCID: PMC8320048 DOI: 10.1186/s40462-021-00244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182 Cedex 5, Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Bergen, Germany
| |
Collapse
|
94
|
Harel R, Loftus JC, Crofoot MC. Locomotor compromises maintain group cohesion in baboon troops on the move. Proc Biol Sci 2021; 288:20210839. [PMID: 34315256 PMCID: PMC8316813 DOI: 10.1098/rspb.2021.0839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When members of a group differ in locomotor capacity, coordinating collective movement poses a challenge: some individuals may have to move faster (or slower) than their preferred speed to remain together. Such compromises have energetic repercussions, yet research in collective behaviour has largely neglected locomotor consensus costs. Here, we integrate high-resolution tracking of wild baboon locomotion and movement with simulations to demonstrate that size-based variation in locomotor capacity poses an obstacle to the collective movement. While all baboons modulate their gait and move-pause dynamics during collective movement, the costs of maintaining cohesion are disproportionately borne by smaller group members. Although consensus costs are not distributed equally, all group-mates do make locomotor compromises, suggesting a shared decision-making process drives the pace of collective movement in this highly despotic species. These results highlight the importance of considering how social dynamics and locomotor capacity interact to shape the movement ecology of group-living species.
Collapse
Affiliation(s)
- Roi Harel
- Department of Ecology, Evolution and Behavior, The Life Sciences institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 9190401.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Anthropology, University of California, Davis, CA 95616, USA
| | - J Carter Loftus
- Department of Ecology, Evolution and Behavior, The Life Sciences institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 9190401.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Anthropology, University of California, Davis, CA 95616, USA
| | - Margaret C Crofoot
- Department of Ecology, Evolution and Behavior, The Life Sciences institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 9190401.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Anthropology, University of California, Davis, CA 95616, USA.,Center for the Advanced Study of Collective Behavior, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
95
|
Sbragaglia V, Jolles JW, Coll M, Arlinghaus R. Fisheries-induced changes of shoaling behaviour: mechanisms and potential consequences. Trends Ecol Evol 2021; 36:885-888. [PMID: 34304927 DOI: 10.1016/j.tree.2021.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
We outline key mechanisms by which fishing can change the shoaling tendency and collective behaviour of exploited species - an issue that is rarely considered and poorly understood. We highlight potential consequences for fish populations and food webs, and discuss possible repercussions for fisheries and conservation strategies.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Marine Renewable Resources, Institute of Marine Sciences, Passeig Marítim de la Barceloneta, 37-49, Barcelona, Spain.
| | - Jolle W Jolles
- Zukunftskolleg, Institute of Advanced Study, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany; Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Edifici C 08193 Cerdanyola del Vallès, Bellaterra, Barcelona, Spain
| | - Marta Coll
- Department of Marine Renewable Resources, Institute of Marine Sciences, Passeig Marítim de la Barceloneta, 37-49, Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 7, 10115 Berlin, Germany
| |
Collapse
|
96
|
Wu S, Jiang L, He X, Jin Y, Griffin CH, Wu R. A quantitative decision theory of animal conflict. Heliyon 2021; 7:e07621. [PMID: 34381893 PMCID: PMC8339242 DOI: 10.1016/j.heliyon.2021.e07621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/18/2021] [Accepted: 07/15/2021] [Indexed: 11/03/2022] Open
Abstract
Interactions between individuals are thought to shape evolution and speciation through natural selection, but little is known about how an individual (or player) strategically interacts with others to maximize its payoff. We develop a simple decision-theoretic model that generates four hypotheses about the choice of an optimal behavioral strategy by a player in response to the strategies of other players. The golden threshold hypothesis suggests that 62% is the critical threshold determining the transition of a larger player's strategy in reaction to its smaller dove-like partner. Below this critical point, the larger one exploits the smaller one, whereas above it, the larger one chooses to cooperate with the smaller one. The competition-to-cooperation shift hypothesis states that a larger player never cooperates with a smaller hawk-like player unless the former is reversely surpassed in size by the latter by 75%. The Fibonacci retracement mark hypothesis proposes that, faced with a larger dove-like player, a smaller player chooses to either cooperate or cheat, depending on whether its size relative to the larger player is less or more than 38%. The surrender-resistance hypothesis suggests that, in reaction to a larger hawk-like player, a smaller player can either gain some benefit from resistance or is sacrificed by choosing to surrender. We test these hypotheses by re-analyzing body mass data of full-sib fishes that were co-cultured in a common water pool. Pairwise analysis of these co-existing fishes broadly suggests the prediction of our hypotheses. Taken together, our model unveils detectable yet previously unknown quantitative mechanisms that mediate the strategic choice of animal behavior in populations or communities. Given the ubiquitous nature of biological interactions occurring at different levels of organizations and the paucity of quantitative approaches to understand them, results by our decision-theoretic model represent an initial step towards the deeper understanding of how biological entities interact with each other to drive their evolution.
Collapse
Affiliation(s)
- Shuang Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing 100083, China
| | - Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing 100083, China
| | - Xiaoqing He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing 100083, China
| | - Yi Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Technology, Beijing 100083, China
| | - Christopher H Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rongling Wu
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
97
|
Forsythe AB, Day T, Nelson WA. Demystifying individual heterogeneity. Ecol Lett 2021; 24:2282-2297. [PMID: 34288328 DOI: 10.1111/ele.13843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022]
Abstract
Among-individual variation in vital rates, such as mortality and birth rates, exists in nearly all populations. Recent studies suggest that this individual heterogeneity produces substantial life-history and fitness differences among individuals, which in turn scale up to influence population dynamics. However, our ability to understand the consequences of individual heterogeneity is limited by inconsistencies across conceptual frameworks in the field. Studies of individual heterogeneity remain filled with contradicting and ambiguous terminology that introduces risks of misunderstandings, conflicting models and unreliable conclusions. Here, we synthesise the existing literature into a single and comparatively straightforward framework with explicit terminology and definitions. This work introduces a distinction between potential vital rates and realised vital rates to develop a coherent framework that maps directly onto mathematical models of individual heterogeneity. We suggest the terms "fixed condition" and "dynamic condition" be used to distinguish potential vital rates that are permanent from those that can change throughout an individual's life. To illustrate, we connect the framework to quantitative genetics models and to common classes of statistical models used to infer individual heterogeneity. We also develop a population projection matrix model that provides an example of how our definitions are translated into precise quantitative terms.
Collapse
Affiliation(s)
- Amy B Forsythe
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada
| | - Troy Day
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada.,Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada
| | - William A Nelson
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada
| |
Collapse
|
98
|
Killen SS, Nadler LE, Grazioso K, Cox A, McCormick MI. The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish. Ecol Evol 2021. [DOI: 10.1002/ece3.7672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shaun S. Killen
- College of Medical, Veterinary and Life Sciences Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Lauren E. Nadler
- Department of Marine Biology and Aquaculture ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Kathryn Grazioso
- Department of Marine Biology and Ecology Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Amy Cox
- Biological and Chemical Sciences The University of the West Indies St. Michael Barbados
| | - Mark I. McCormick
- Department of Marine Biology and Aquaculture ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| |
Collapse
|
99
|
Ulrich Y, Kawakatsu M, Tokita CK, Saragosti J, Chandra V, Tarnita CE, Kronauer DJC. Response thresholds alone cannot explain empirical patterns of division of labor in social insects. PLoS Biol 2021; 19:e3001269. [PMID: 34138839 PMCID: PMC8211278 DOI: 10.1371/journal.pbio.3001269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
The effects of heterogeneity in group composition remain a major hurdle to our understanding of collective behavior across disciplines. In social insects, division of labor (DOL) is an emergent, colony-level trait thought to depend on colony composition. Theoretically, behavioral response threshold models have most commonly been employed to investigate the impact of heterogeneity on DOL. However, empirical studies that systematically test their predictions are lacking because they require control over colony composition and the ability to monitor individual behavior in groups, both of which are challenging. Here, we employ automated behavioral tracking in 120 colonies of the clonal raider ant with unparalleled control over genetic, morphological, and demographic composition. We find that each of these sources of variation in colony composition generates a distinct pattern of behavioral organization, ranging from the amplification to the dampening of inherent behavioral differences in heterogeneous colonies. Furthermore, larvae modulate interactions between adults, exacerbating the apparent complexity. Models based on threshold variation alone only partially recapitulate these empirical patterns. However, by incorporating the potential for variability in task efficiency among adults and task demand among larvae, we account for all the observed phenomena. Our findings highlight the significance of previously overlooked parameters pertaining to both larvae and workers, allow the formulation of theoretical predictions for increasing colony complexity, and suggest new avenues of empirical study. This study uses automated tracking of clonal raider ants and mathematical modeling to reveal how previously overlooked traits of larvae and workers might shape social organization in heterogeneous ant colonies. By incorporating the potential for variability in task efficiency among adults and task demand among larvae, the authors were able to account for all empirically observed phenomena.
Collapse
Affiliation(s)
- Yuko Ulrich
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Mari Kawakatsu
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey, United States of America
| | - Christopher K. Tokita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan Saragosti
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Vikram Chandra
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Corina E. Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (CET); (DJCK)
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- * E-mail: (CET); (DJCK)
| |
Collapse
|
100
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|