51
|
Weng R, Tian F, Yu Z, Ma J, Lv Y, Xi B. Efficient mineralization of TBBPA via an integrated photocatalytic reduction/oxidation process mediated by MoS 2/SnIn 4S 8 photocatalyst. CHEMOSPHERE 2021; 285:131542. [PMID: 34329122 DOI: 10.1016/j.chemosphere.2021.131542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Currently, Tetrabromobisphenol A (TBBPA) has been regarded as an emerging organic pollutant and efficient TBBPA elimination technology has been attracting increasing attention. In this work, a novel photocatalyst, MoS2/SnIn4S8, was synthesized through hydrothermal method by introducing few-layer MoS2 nanosheets and then employed to establish an integrated photocatalytic reduction/oxidation system for the remediation of TBBPA under visible light. The characterization results demonstrated that the few-layer MoS2 nanosheets were well combined with SnIn4S8 and significantly lowered the recombination rate of the photo-induced electron and holes, leading to outstanding photocatalytic performance of MoS2/SnIn4S8 composite. Besides, the MoS2/SnIn4S8 composite also exhibited excellent reusability (over 10 runs) and stability. The TBBPA degradation experiments showed that the integrated photocatalytic reduction/oxidation system was able to completely degrade TBBPA and mineralize its byproducts (60.2 ± 2.9%). In the photocatalytic reduction, due to the cleavage of C-Br bonds by photo-induced electrons, TBBPA underwent stepwise debromination and finally transferred into BPA in 6 h. In the following photocatalytic oxidation, under the attack of reactive oxygen species (1O2, h+,OH and O2-), BPA was first decomposed into aromatic products (such as phenol, benzoic acid, p-hydroxybenzyl alcohol and so on) via C-C bond cracking and hydroxylation, and then further oxidized into organic acids like maleic acid and muconic acid through ring-opening, and finally mineralized into CO2 and H2O. What was noteworthy was that the final effluent from the photocatalytic reduction/oxidation system showed no toxicity to the luminescent bacteria.
Collapse
Affiliation(s)
- Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou, 350118, China.
| | - Feng Tian
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou, 350118, China.
| | - Zhendong Yu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Jiachen Ma
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Beidou Xi
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou, 350118, China.
| |
Collapse
|
52
|
Wang H, Li Z, Peng L, Tang X, Lin Y, Yang D, Geng J, Ren H, Xu K. Performance evaluation and mechanism of nitrogen removal in a packed bed reactor using micromagnetic carriers at different carbon to nitrogen ratios. BIORESOURCE TECHNOLOGY 2021; 341:125747. [PMID: 34461406 DOI: 10.1016/j.biortech.2021.125747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Advanced nitrogen removal of effluent discharged from secondary treatment systems can avoid eutrophication. However, the lack of biodegradable organics limits biodenitrification. Packed bed reactors filled with carriers with different micromagnetic field (MMF) strengths were used to perform tertiary denitrification. The results showed that MMF significantly improved the denitrification performance, especially at low C/N ratios. Total nitrogen (TN) removal was increased by 4.12% with 0.6 mT MMF when C/N = 4 and increased by 7.06% and 8.06% with 0.3 mT and 0.9 mT MMFs when C/N = 3, respectively. Zooglea, Flavobacterium, and Denitratisoma contributed to the advanced denitrification performance under MMF. In addition, 0.6 mT MMF enhanced nitrogen metabolism and ABC transporter protein and two-component system activities of microorganisms under C/N = 4; 0.3 mT and 0.9 mT MMFs increased nitrogen, carbohydrate, and amino acid metabolism and ABC transporter protein activities under C/N = 3. These findings indicate that MMF has great potential for advanced denitrification from secondary effluent.
Collapse
Affiliation(s)
- Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zhihao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xi Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
53
|
Han T, Zheng J, Han Y, Xu X, Li M, Schwarz C, Zhu L. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148145. [PMID: 34119788 DOI: 10.1016/j.scitotenv.2021.148145] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Microorganisms in activated sludge are widely recognized for their roles in wastewater treatment. However, previous studies were mainly concerned with the diversity and driving factors of microbial communities within domestic wastewater treatment, and those of domestic wastewater treatment systems mixed with industrial wastewater are poorly understood. In this research, three different full-scale aerobic activated sludge (AS) wastewater treatment systems fed with municipal, textile-dyeing, and mixed wastewater, respectively, were monitored over the operation course of three months. 16S rRNA amplicon sequencing analysis revealed that the microbial communities in textile-dyeing wastewater activated sludge (AS) exhibited significantly lower richness and diversity (p < 0.01, Adonis) compared to those fed with municipal wastewater. In contrast, textile-dyeing derived AS selectively enriched microbial taxa with aromatic degradation and denitrification potentials. Further, FARPROTAX and metabolomics indicated the inhibition of 72.5% metabolic functions (p < 0.01) in AS from the system fed with textile-dyeing wastewater, including the pathways of pentose phosphate metabolism, purine metabolism, and glycerophospholipid metabolism. Overall, this study corroborates textile-dyeing wastewater is a novel microbial niche and could suppress sludge performance by inhibiting microbial activity and metabolism, raising concerns on AS-based systems for industrial wastewater treatment.
Collapse
Affiliation(s)
- Taixing Han
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
54
|
Wan R, Li X, Wang L, Yang G, Zheng X, Zha Y, Chen Y, Meng J. Ionic copper strengthens the toxicity of tetrabromobisphenol A (TBBPA) to denitrification by decreasing substrate transport and electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126203. [PMID: 34492966 DOI: 10.1016/j.jhazmat.2021.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Increasing electrical and electronic waste have raised concerns about the potential toxicity of brominated flame retardants (BFRs) and heavy metals (HMs). However, few studies have focused on the combined effect of BFRs and HMs on microorganisms, especially denitrifying bacteria, which have an essential role in N cycles and N2O emission. Herein, we investigate the combined effect of tetrabromobisphenol A (TBBPA) and Cu on model denitrifying bacteria. A further 24.5% decline in N removal efficiency was observed when 0.05 mg/L Cu were added into a denitrifying system containing 0.75 mg/L TBBPA. Further study demonstrated that Cu heightened the toxicity of TBBPA to denitrification via following aspects: (1) Cu stimulated EPS secretion induced by TBBPA during denitrification, blocked the transmembrane transport of glucose, which caused insufficient carbon substrate for bacteria growth and electron provision; (2) Cu further suppressed key denitrifying enzymes' activity and down-regulated genes involving electron transport induced by TBBPA, led to the decrease of electron transport activity. Finally, the decrease of bacterial growth, insufficient electron donor, and lower electron transport activity caused the synergetic toxic effect of TBBPA and Cu on denitrification. Overall, the present study provides new insights into the combined effect of BFRs and HMs on microorganisms.
Collapse
Affiliation(s)
- Rui Wan
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Lei Wang
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Geng Yang
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jing Meng
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| |
Collapse
|
55
|
Liu X, Wu Y, Sun R, Hu S, Qiao Z, Wang S, Zhang Z. Nitrogen species control the interaction between NO 3--N reduction and aniline degradation and microbial community structure in the oxic-anoxic transition zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29650-29664. [PMID: 33566289 DOI: 10.1007/s11356-021-12627-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Contrary to the fact that NO3--N can serve as electron acceptor to promote organics degradation, it was also found NO3--N reduction does not necessarily promote organics degradation. We speculate nitrogen (N) species may control the interaction between NO3--N reduction and organics degradation via shifting related microbial community structure. To prove the hypothesis, oxic-anoxic transition zone (OATZ) microcosms simulated by lake water and sediment were conducted with the addition of N species (NO3--N, NO2--N, and NH4+-N) and aniline as typical organics. High-throughput sequencing was used to analyze the microbial community structure and functional enzyme in the microcosms. Results show that, NO2--N inhibited NO3--N reduction while enhanced aniline degradation. For NH4+-N, it promoted NO3--N reduction when NH4+-N/NO3--N concentration ratio ≤ 2 and inhibited aniline degradation when NH4+-N/aniline concentration ratio ≥ 0.5. The presence of NO2--N or NH4+-N weakened the interaction between NO3--N reduction and aniline degradation, which might be caused by significant changes in the diversity and abundance of microbial communities controlled by N species. The microbial mechanism indicates that NO2--N weakened the interaction by affecting both denitrification enzyme activity and electron transfer capability, while NH4+-N weakened the interaction mainly by affecting electron transfer capability. These results imply that N species, as well as other electron acceptors and donors, in the contaminated OATZ should be fully considered, when performing in situ remediation technology of NO3--N reduction.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zehong Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
56
|
Qi P, Sun D, Gao J, Liu S, Wu T, Li Y. Demulsification and bio-souring control of alkaline-surfactant-polymer flooding produced water by Gordonia sp. TD-4. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
57
|
Ye J, Gao H, Domingo-Félez C, Wu J, Zhan M, Yu R, Smets BF. Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential. BIORESOURCE TECHNOLOGY 2021; 327:124797. [PMID: 33592491 DOI: 10.1016/j.biortech.2021.124797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The nitrogen transformation performances and greenhouse gas nitrous oxide (N2O) emissions in a sequencing batch reactor under chronic exposure to zinc oxide nanoparticles (ZnO NPs) were quantified and the system's self-recovery potentials were assessed. ZnO NPs posed a dose-dependent depression effect on the removal efficiencies of ammonia nitrogen (NH4+-N) and total nitrogen (TN), and the N2O emissions. The suppressed N2O emissions had a positive relationship with the activity ratios of nitrite/NO reductases and N2O reductase, and were expected to be caused by the inhibited heterotrophic denitrification process. The inhibition of glucose metabolism key enzymes and electron transport chain activities would be responsible for the heterotrophic denitrification performances deterioration. Furthermore, the removal efficiencies of NH4+-N and TN were recovered to control levels through the nitrite-shunt. However, the N2O emission increased significantly above the control during the recovery period mainly due to the irreversibility of the depressed nitrite oxidation activities.
Collapse
Affiliation(s)
- Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China; Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Carlos Domingo-Félez
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China; Department of Water Supply and Drainage Science and Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
58
|
Xu G, Zhao X, Zhao S, Chen C, Rogers MJ, Ramaswamy R, He J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4205-4226. [PMID: 33705105 DOI: 10.1021/acs.est.0c05681] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
59
|
Li Y, Wu S, Wang S, Zhao S, Zhuang X. Anaerobic degradation of xenobiotic organic contaminants (XOCs): The role of electron flow and potential enhancing strategies. J Environ Sci (China) 2021; 101:397-412. [PMID: 33334534 DOI: 10.1016/j.jes.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In groundwater, deep soil layer, sediment, the widespread of xenobiotic organic contaminants (XOCs) have been leading to the concern of human health and eco-environment safety, which calls for a better understanding on the fate and remediation of XOCs in anoxic matrices. In the absence of oxygen, bacteria utilize various oxidized substances, e.g. nitrate, sulphate, metallic (hydr)oxides, humic substance, as terminal electron acceptors (TEAs) to fuel anaerobic XOCs degradation. Although there have been increasing anaerobic biodegradation studies focusing on species identification, degrading pathways, community dynamics, systematic reviews on the underlying mechanism of anaerobic contaminants removal from the perspective of electron flow are limited. In this review, we provide the insight on anaerobic biodegradation from electrons aspect - electron production, transport, and consumption. The mechanism of the coupling between TEAs reduction and pollutants degradation is deconstructed in the level of community, pure culture, and cellular biochemistry. Hereby, relevant strategies to promote anaerobic biodegradation are proposed for guiding to an efficient XOCs bioremediation.
Collapse
Affiliation(s)
- Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Zhao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
60
|
Yuan H, Huang S, Yuan J, You Y, Zhang Y. Characteristics of microbial denitrification under different aeration intensities: Performance, mechanism, and co-occurrence network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141965. [PMID: 32911146 DOI: 10.1016/j.scitotenv.2020.141965] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to explore how dissolved oxygen (DO) affected the characteristics and mechanisms of denitrification in mixed bacterial consortia. We analyzed denitrification efficiency, intracellular nicotinamide adenine dinucleotide (NADH), relative expression of functional genes, and potential co-occurrence network of microorganisms. Results showed that the total nitrogen (TN) removal rates at different aeration intensities (0.00, 0.25, 0.63, and 1.25 L/(L·min)) were 0.93, 1.45, 0.86, and 0.53 mg/(L·min), respectively, which were higher than previously reported values for pure culture. The optimal aeration intensity was 0.25 L/(L·min), at which the maximum NADH accumulation rate and highest relative abundance of napA, nirK, and nosZ were achieved. With increased aeration intensity, the amount of electron flux to nitrate decreased and nitrate assimilation increased. On one hand, nitrate reduction was primarily inhibited by oxygen through competition for electron donors of a certain single strain. On the other hand, oxygen was consumed rapidly by bacteria by stimulating carbon metabolism to create an optimal denitrification niche for denitrifying microorganisms. Denitrification was performed via inter-genus cooperation (competitive interactions and symbiotic relationships) between keystone taxa (Azoarcus, Paracoccus, Thauera, Stappia, and Pseudomonas) and other heterotrophic bacteria (OHB) in aeration reactors. However, in the non-aeration case, which was primarily carried out based on intra-genus syntrophy within genus Propionivibrio, the co-occurrence network constructed the optimal niche contributing to the high TN removal efficiency. Overall, this study enhanced our knowledge about the molecular ecological mechanisms of aerobic denitrification in mixed bacterial consortia and has theoretical guiding significance for further practical application.
Collapse
Affiliation(s)
- Haiguang Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, PR China.
| | - Jianqi Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yingying You
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
61
|
Jia Y, Qian D, Chen Y, Hu Y. Intra/extracellular electron transfer for aerobic denitrification mediated by in-situ biosynthesis palladium nanoparticles. WATER RESEARCH 2021; 189:116612. [PMID: 33189971 DOI: 10.1016/j.watres.2020.116612] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The slow electron transfer rate is the bottleneck to the biological wastewater treatment process, and the nanoparticles (NPs) has been verified as a feasible strategy to improve the biological degradation efficiency by accelerating the electron transfer. Here, we employed the Gram-positive Bacillus megaterium Y-4, capable of synthetizing Pd(0), to investigate the intra/extracellular electron transfer (IET/EET) mechanisms mediated by NPs in aerobic denitrification for the first time. Kinetic and thermodynamic results showed that the bio-Pd(0) could significantly promote the removal of both nitrate and nitrite by improving affinity and decreasing activation energy. The enzymic activity and the respiration chain inhibition experiment indicated that the bio-Pd(0) could facilitate the nitrate biotic reduction by improving the Fe-S center activity and serving as parallel H carriers to replace coenzyme Q to selectively increase the electron flux toward nitrate in IET, while promoting the nitrite reduction by abiotic catalysis. Most importantly, the detection of DPV peak at -226~-287 mV proved that the one-electron EET via multiheme cytochrome-bound flavins also occurred in Gram-positive bacteria and enhanced in Pd-loaded cells. In addition, the remarkable increase of the formal charge in EPS indicated that the bio-Pd(0) could act as an electron shuttle to increase the redox site in EPS, eventually accelerating the electron hopping in long-distance electron transfer. Overall, this study expanded our understanding of the roles of bio-Pd(0) on the aerobic denitrification process and provided an insight into the IET/EET of Gram-positive strains.
Collapse
Affiliation(s)
- Yating Jia
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Danshi Qian
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
62
|
Chen H, Zou M, Zhou Y, Zeng L, Yang X. Monitoring the nitrous oxide emissions and biological nutrient removal from wastewater treatment: Impact of perfluorooctanoic acid. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123469. [PMID: 32702618 DOI: 10.1016/j.jhazmat.2020.123469] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The impacts of perfluorooctanoic acid (PFOA) on biological nutrient removal and nitrous oxide (N2O) emissions have been specifically studied. The experimental results show that PFOA inhibited nitrification, but promoted denitrification and reduced N2O emissions without significantly affecting phosphorus removal. The existence of 20 mg/L of PFOA increased total nitrogen removal efficiency from 78.7 ± 6.89 % to 86.8 ± 6.39 % and reduced N2O emission factor from 6.02 ± 0.24 % to 4.43 ± 0.10 %. The mechanism studies reveal that microorganisms released extracellular polymeric substances (EPS) under PFOA exposure to protect sludge cells against PFOA toxicity. The generated PFOA-EPS conjugates reduced the nitrification rate, but increased the denitrification rate by regulating the activity of oxidoreductases. In addition, PFOA reduced the activity of polyphosphate accumulating organisms and glycogen accumulating organisms to save carbon source for denitrification, which reduced the electronic competition between reductases, thereby achieving complete denitrification and N2O mitigation. The promotion of PFOA for denitrification and N2O mitigation can gain a more comprehensive cognition of the role of PFOA in wastewater treatment. The release mechanism of EPS can afford new insights for the development of effective methods to enhance nitrogen removal and reduce N2O emissions.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mei Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
63
|
Wang S, Zhi L, Shan W, Lu H, Xu Q, Li J. Correlation of extracellular polymeric substances and microbial community structure in denitrification biofilm exposed to adverse conditions. Microb Biotechnol 2020; 13:1889-1903. [PMID: 32700468 PMCID: PMC7533329 DOI: 10.1111/1751-7915.13633] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Microbial community may respond to different adverse conditions and result in the variation of extracellular polymeric substances (EPS) in denitrification biofilm; this study discovered the role of EPS in accordance with the analysis of cyclic diguanylate (c-di-GMP) and electron equilibrium (EE) under low organic loading rate, shock organic loading rate and low temperature conditions. Good nitrate removal performance could be achieved under shock organic loading rate and low temperature conditions; however, owing to the low organic loading rate, the carbon source was preferentially utilized for biomass growth. Tightly bound EPS (TB-EPS) contents progressively increased and facilitated cell adhesion and biofilm formation. The stable TB protein (TB-PN) content in TB-EPS built a cross-linked network to maintain internal biofilm structure and led to the rapid biosynthesis of polysaccharides, which could further enhance microbial adhesion and improve nitrate removal. C-di-GMP played an important role in biomass retention and biofilm formation, based on the correlation analysis of c-di-GMP and EPS. TB polysaccharide (TB-PS) contents presented a significant positive correlation with c-di-GMP content, microbial adhesion and biofilm stabilization was further enhanced through c-di-GMP regulation. In addition, a remarkable negative correlation between electron deletion rate (EDR) and TB-PN and TB-PS was discovered, and TB-PS was required to serve as energy source to enhance denitrification according to EE analysis. Surprisingly, dynamic microbial community was observed due to the drastic community succession under low temperature conditions, and the discrepancy between the dominant species for denitrification was found under shock organic loading rate and low temperature conditions. The notable increase in bacterial strains Simlicispira, Pseudomonas and Chryseobacterium was conducive to biofilm formation and denitrification under shock organic loading rate, while Dechloromonas and Zoogloea dramatically enriched for nitrate removal under low temperature conditions. The high abundance of Dechloromonas improved the secretion of EPS through the downstream signal transduction, and the c-di-GMP conserved in Pseudomonas concurrently facilitated to enhance exopolysaccharide production to shock organic loading rate and low temperature conditions.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxi214122China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation CenterSuzhou215009China
- Department of Civil EngineeringSchulich School of EngineeringUniversity of CalgaryCalgaryT2N 1N4Canada
| | - Liling Zhi
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
| | - Wei Shan
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
| | - Hui Lu
- School of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510006China
| | - Qiao Xu
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic BiotechnologySchool of Environment and Civil EngineeringJiangnan UniversityWuxi214122China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxi214122China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation CenterSuzhou215009China
| |
Collapse
|
64
|
Wang J, Liu X, Jiang X, Zhang L, Hou C, Su G, Wang L, Mu Y, Shen J. Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. WATER RESEARCH 2020; 186:116306. [PMID: 32861183 DOI: 10.1016/j.watres.2020.116306] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Due to highly recalcitrant and toxicological nature of N,N-dimethylformamide (DMF), efficient removal of DMF is challenging for biological wastewater treatment. In this study, an anoxic denitrification system was developed and continuously operated for 220 days in order to verify the enhanced DMF biodegradation mechanism. As high as 41.05 mM DMF could be thoroughly removed in the anoxic denitrification reactor at hydraulic residence time (HRT) of 24 h, while the total organic carbon (TOC) and nitrate removal efficiencies were as high as 95.7 ± 2.5% and 98.4 ± 1.1%, respectively. Microbial community analyses indicated that the species related to DMF hydrolysis (Paracoccus, Brevundimonas and Chryseobacterium) and denitrification (Paracoccus, Arenimonas, Hyphomicrobium, Aquamicrobium and Bosea) were effectively enriched in the anoxic denitrification system. Transcriptional analysis coupled with enzymatic activity assay indicated that both hydrolysis and mineralization of DMF were largely enhanced in the anoxic denitrification system. Moreover, the occurrence of microbial denitrification distinctly facilitated carbon source utilization to produce electron and energy, which was rather beneficial for better reactor performance. This study demonstrated that the anoxic denitrification system would be a potential alternative for efficient treatment of wastewater polluted by recalcitrant pollutants such as DMF.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaolin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Libin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
65
|
Chen X, Huang G, Li Y, An C, Feng R, Wu Y, Shen J. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery. WATER RESEARCH 2020; 181:115952. [PMID: 32497754 DOI: 10.1016/j.watres.2020.115952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol-A (TBBPA) is one of the most important brominated flame retardants (BFRs), accounting for 60% of the total commercial BFR market. Increasing amounts of TBBPA and byproducts are released to the aquatic environment due to their extensive utilization in various sectors. However, research on the treatment of TBBPA contaminated wastewater using membrane filtration is still lacked. Herein, a PVDF10-PAA-ZrO2 membrane was successfully developed and applied for the treatment of high-concentration TBBPA wastewater with super-high water recovery. The membrane was obtained through surface functionalization with nano-ZrO2 from commercial PVDF ultrafiltration (UF) membrane. Compared to the commercial PVDF membrane, the developed membrane exhibited 4 times of permeate flux which was up to 200 L/m2 min with comparable TBBPA rejection rate. Furthermore, the mechanisms of membrane development and TBBPA rejection were explored through synchrotron-based ATR-FTIR and X-ray analyses. It was revealed that ZrO2 NPs were immobilized into membrane surface through binding with PAA layer, where the O of the carboxyl group combined with the Zr4+ on the ZrO2 NP surface to form C-O-Zr bond through monodentate and bridging-bidentate modes. The sieving function of membrane could be the main mechanism of TBBPA removal. This research demonstrated a practical route and solid insight toward the development of highly efficient membrane for TBBPA removal. The proposed PVDF10-PAA-ZrO2 membrane can also be promising for other industrial separation and purification applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Gordon Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; International Society for Environmental Information Sciences, 9803A Jingshidasha-BNU, 19 Xinwaidajie, Beijing 100875, China.
| | - Yongping Li
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Yinghui Wu
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| | - Jian Shen
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
66
|
Hu B, Wang Y, Quan J, Huang K, Gu X, Zhu J, Yan Y, Wu P, Yang L, Zhao J. Effects of static magnetic field on the performances of anoxic/oxic sequencing batch reactor. BIORESOURCE TECHNOLOGY 2020; 309:123299. [PMID: 32289656 DOI: 10.1016/j.biortech.2020.123299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Two anoxic/oxic (A/O) sequencing batch reactor (SBR) processes were utilized to study the effects of static magnetic field (SMF) on biological wastewater treatment process. Except for conventional indices, the reduced nicotinamide adenine dinucleotide (NADH)/oxidized nicotinamide adenine dinucleotide (NAD+) ratio and electron transport system activity (ETSA), as well as poly-beta-hydroxybutyrate (PHB) and extracellular polymetric substance (EPS) contents in two reactors which were with and without SMF under two cyclic times (12 h and 8 h) were monitored. When the process was enhanced by SMF, the total nitrogen removal efficiency can be improved (>80%), and the NADN/NAD+ ratio, ESTA, the maximum EPS content and the maximum PHB content in the reactor with SMF were higher. Besides, SMF can reduce the microorganism community diversity and make species distribute more even and abundant. SMF can promote the performance of A/O SBR process via improving electron transport and microbial community.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China.
| | - Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Kun Huang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Jitao Zhu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Yi Yan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; School of Water and Environment, Chang' an University, Xi'an, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, China
| |
Collapse
|
67
|
Koju R, Miao S, Liang B, Joshi DR, Bai Y, Liu R, Qu J. Transcriptional and metabolic response against hydroxyethane-(1,1-bisphosphonic acid) on bacterial denitrification by a halophilic Pannonibacter sp. strain DN. CHEMOSPHERE 2020; 252:126478. [PMID: 32197179 DOI: 10.1016/j.chemosphere.2020.126478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Biological denitrification is an environmentally sound pathway for the elimination of nitrogen pollution in wastewater treatment. Extreme environmental conditions, such as the co-existence of toxic organic pollutants, can affect biological denitrification. However, the potential underlying mechanism remains largely unexplored. Herein, the effect of a model pollutant, hydroxyethane-(1,1-bisphosphonic acid) (HEDP), a widely applied and consumed bisphosphonate, on microbial denitrification was investigated by exploring the metabolic and transcriptional responses of an isolated denitrifier, Pannonibacter sp. strain DN. Results showed that nitrate removal efficiency decreased from 85% to 50% with an increase in HEDP concentration from 0 to 3.5 mM, leading to nitrite accumulation of 204 mg L-1 in 3.5 mM HEDP. This result was due to the lower bacterial population count and reduction in the live cell percentage. Further investigation revealed that HEDP caused a decrease in membrane potential from 0.080 ± 0.005 to 0.020 ± 0.002 with the increase in HEDP from 0 to 3.5 mM. This hindered electron transfer, which is required for nitrate transformation into nitrogen gas. Moreover, transcriptional profiling indicated that HEDP enhanced the genes involved in ROS (O2-) scavenging, thus protecting cells against oxidative stress damage. However, the suppression of genes responsible for the production of NADH/FADH2 in tricarboxylic acid cycle (TCA), NADH catalyzation (NADH dehydrogenase) in (electron transport chain) ETC system and denitrifying genes, especially nor and nir, in response to 2.5 mM HEDP were identified as the key factor inhibiting transfer of electron from TCA cycle to denitrifying enzymes through ETC system.
Collapse
Affiliation(s)
- Rashmi Koju
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Miao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kritipur, 44613, Nepal
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China.
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China
| | - Juihui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China
| |
Collapse
|
68
|
Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y. Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress. BIORESOURCE TECHNOLOGY 2020; 305:123073. [PMID: 32145698 DOI: 10.1016/j.biortech.2020.123073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The environmental risks of the sulfonamide antibiotics have attracted much attention recently. In this study, the inhibition effects of sulfadiazine (SDZ) on denitrification electron transfer system (ETS) and ameliorative mechanisms of phosphomolybdic acid (PMo12) were first explored. When denitrification was under 2 mg/L SDZ stress, experiments indicated that PMo12 enhanced NO3--N reduction efficiency and rate from 68.30% to 100.00% and 124.22 to 184.59 N/g VSS/h, respectively. Electron transfer rate and consumption efficiency in denitrification ETS were enhanced to ameliorate SDZ inhibition, which was due to the more secreted riboflavin and cytochrome c and the increased denitrifying enzymes activity with PMo12 mediation. In addition, the microbial growth inhibition and cell membrane damage were ameliorated due to the more EPS surrounding microbe with PMo12 mediation. Higher diversity of denitrifying microbe with PMo12 mediation also promoted denitrification under SDZ stress. This work provided promising strategy to ameliorate antibiotics inhibition in the wastewater bio-treatment.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Jianbo Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
69
|
Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J. Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135063. [PMID: 31810663 DOI: 10.1016/j.scitotenv.2019.135063] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The microbial reduction of nitrate in the presence of nanoscale zero-valent iron (nZVI) was evaluated to assess the feasibility of employing nZVI for biological denitrification treatment. The effect of modified nZVI on the growth, metabolism, and denitrification performance of Alcaligenes sp. TB under aerobic conditions was studied. Results showed that Alcaligenes sp. TB with nZVI/Pd had 31.5% increase in nitrate removal and 18.1% decrease in nitrite accumulation within 28 h. nZVI/Pd exhibited less inhibition on the cell growth (OD600 = 0.725), NADH/NAD+ ratio (86% of control), and electron transfer system activity (68.5% of control). In addition, nZVI/Pd decreased the membrane fluidity by increasing the trans/cis isomerization ratio (317.7% of control) to enhance the resistance of nZVI. This study underlines the effects of nZVI/Pd on membrane susceptibility via membrane fatty acid transformation during denitrification and suggests the influence of engineered nanomaterials on denitrification.
Collapse
Affiliation(s)
- Zeyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Huan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, PR China.
| |
Collapse
|