51
|
Freeman G. Is the remodeling of the polyp prepattern in a hydrozoan planula a function of larval age or size and is it of “adaptive” significance? ZOOLOGY 2009; 112:169-84. [DOI: 10.1016/j.zool.2008.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/16/2008] [Accepted: 07/16/2008] [Indexed: 11/28/2022]
|
52
|
Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci U S A 2009; 106:4290-5. [PMID: 19237582 DOI: 10.1073/pnas.0812847106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/beta-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans.
Collapse
|
53
|
Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009; 332:184-209. [DOI: 10.1016/j.crvi.2008.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
54
|
Three distinct RNA localization mechanisms contribute to oocyte polarity establishment in the cnidarian Clytia hemisphaerica. Dev Biol 2008; 327:191-203. [PMID: 19121303 DOI: 10.1016/j.ydbio.2008.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/10/2008] [Accepted: 12/09/2008] [Indexed: 11/23/2022]
Abstract
Egg animal-vegetal polarity in cnidarians is less pronounced than in most bilaterian species, and its normal alignment with the future embryonic axis can be disturbed by low-speed centrifugation. We have analyzed the development of oocyte polarity within the transparent and autonomously functioning gonads of Clytia medusae, focusing on the localization of three recently identified maternal mRNAs coding for axis-directing Wnt pathway regulators. Animal-vegetal polarity was first detectable in oocytes committed to their final growth phase, as the oocyte nucleus (GV) became positioned at the future animal pole. In situ hybridization analyses showed that during this first, microtubule-dependent polarization event, CheFz1 RNA adopts a graded cytoplasmic distribution, most concentrated around the GV. CheFz3 and CheWnt3 RNAs adopt their polarized cortical localizations later, during meiotic maturation. Vegetal localization of CheFz3 RNA was found to require both microtubules and an intact gonad structure, while animal localization of CheWnt3 RNA was microtubule independent and oocyte autonomous. The cortical distribution of both these RNAs was sensitive to microfilament-disrupting drugs. Thus, three temporally and mechanistically distinct RNA localization pathways contribute to oocyte polarity in Clytia. Unlike the two cortical RNAs, CheFz1 RNA was displaced in fertilized eggs upon centrifugation, potentially explaining how this treatment re-specifies the embryonic axis.
Collapse
|
55
|
Rebscher N, Volk C, Teo R, Plickert G. The germ plasm component vasa allows tracing of the interstitial stem cells in the cnidarianHydractinia echinata. Dev Dyn 2008; 237:1736-45. [DOI: 10.1002/dvdy.21562] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
56
|
Momose T, Derelle R, Houliston E. A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 2008; 135:2105-13. [PMID: 18480163 DOI: 10.1242/dev.021543] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regionalised activation of canonical Wnt signalling via beta-catenin stabilisation is a key early step in embryonic patterning in many metazoans, including the basally diverging cnidarians, but the upstream maternal cues appear surprisingly variable. In Clytia, regionalised beta-catenin stabilisation defining a presumptive 'oral' territory is determined by two maternally coded Frizzled family Wnt receptors of opposite localisation and function. We have identified a maternally coded ligand, CheWnt3, the RNA of which is localised to the animal cortex (future oral side) of the egg. Antisense morpholino oligonucleotide experiments showed that CheWnt3 is required maternally for regionalised oral beta-catenin stabilisation in the early embryo, being only the second clear example of a maternally required Wnt ligand after Xenopus Xwnt11. In line with the determinant role of the maternally localised Frizzleds, CheWnt3 overexpression by RNA injection initially had little effect on establishing the oral domain. Subsequently, however, overexpression had dramatic consequences for axis development, causing progressive expansion of beta-catenin stabilisation to yield spherical 'oralised' larvae. Upregulation of both CheFz1 and CheFz3 RNAs in CheWnt3 morpholino embryos indicated that CheWnt3 participates in an active axial patterning system involving reciprocal downregulation of the receptors to maintain oral and aboral territories. Localised introduction of CheWnt3 RNA induced ectopic oral poles in CheWnt3 morpholino embryos, demonstrating its importance in directing oral fate. These findings suggest that the complete ligand-dependent Wnt signalling cascade is involved in axial patterning in ancestral eumetazoans. In Clytia, two variant Frizzled receptors and one Wnt ligand produced from localised RNAs cooperate to initiate regionalised Wnt pathway activation.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- UMR7009 Laboratory of Developmental Biology, CNRS and Université Pierre et Marie Curie (Paris 6), Observatoire Océanologique, Villefranche-sur-mer, France.
| | | | | |
Collapse
|
57
|
Adell T, Marsal M, Saló E. Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 2008; 218:89-103. [PMID: 18202849 DOI: 10.1007/s00427-007-0199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 12/10/2007] [Indexed: 01/18/2023]
Abstract
Glycogen synthase kinase-3 (GSK3) is a key element in several signaling cascades that is known to be involved in both patterning and neuronal organization. It is, therefore, a good candidate to play a role in neural regeneration in planarians. We report the characterization of three GSK3 genes in Schmidtea mediterranea. Phylogenetic analysis shows that Smed-GSK3.1 is highly conserved compared to GSK3 sequences from other species, whereas Smed-GSK3.2 and Smed-GSK3.3 are more divergent. Treatment of regenerating planarians with 1-azakenpaullone, a synthetic GSK3 inhibitor, suggests that planarian GSK3s are essential for normal differentiation and morphogenesis of the nervous system. Cephalic ganglia appear smaller and disconnected in 1-azakenpaullone-treated animals, whereas visual axons are ectopically projected, and the pharynx does not regenerate properly. This phenotype is consistent with a role for Smed-GSK3s in neuronal polarization and axonal growth.
Collapse
Affiliation(s)
- Teresa Adell
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | | | | |
Collapse
|
58
|
|
59
|
Verkade H, Heath JK. Wnt signaling mediates diverse developmental processes in zebrafish. Methods Mol Biol 2008; 469:225-51. [PMID: 19109714 DOI: 10.1007/978-1-60327-469-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A combination of forward and reverse genetic approaches in zebrafish has revealed novel roles for canonical Wnt and Wnt/PCP signaling during vertebrate development. Forward genetics in zebrafish provides an exceptionally powerful tool to assign roles in vertebrate developmental processes to novel genes, as well as elucidating novel roles played by known genes. This has indeed turned out to be the case for components of the canonical Wnt signaling pathway. Non-canonical Wnt signaling in the zebrafish is also currently a topic of great interest, due to the identified roles of this pathway in processes requiring the integration of cell polarity and cell movement, such as the directed migration movements that drive the narrowing and lengthening (convergence and extension) of the embryo during early development.
Collapse
Affiliation(s)
- Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
60
|
Abstract
Cnidarians are an ancient group of animals at the base of metazoan evolution. They exhibit a simple body plan with only one well-defined body axis and a small number of cell types. Cnidarians are also well known for their enormous regeneration capacity. Recent work in the freshwater polyp Hydra and in the sea anemone Nematostella has identified an unexpectedly high level of genetic complexity of wnt genes. Canonical Wnt signaling acts in pattern formation and regeneration of Hydra and also in gastrulation and early embryogenesis of Nematostella. Vertebrate-specific Wnt-antagonists were also identified from cnidarians and exhibit similar conserved functions. The simple cnidarian body plan and the now available genomes from Hydra and Nematostella, together with new functional approaches, make these animals an attractive model for studying the basic functions of canonical and non-canonical Wnt signaling.
Collapse
|
61
|
Ryan JF, Baxevanis AD. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2007; 2:37. [PMID: 18078518 PMCID: PMC2222619 DOI: 10.1186/1745-6150-2-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/12/2022] Open
Abstract
The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less specialized along their primary body axis. As such, they present an attractive outgroup from which to investigate how evolutionary changes in the genetic toolkit may have contributed to the emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa. Specifically, we examine these data in the context of how they may explain the evolutionary development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Joseph F Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
62
|
Momose T, Houliston E. Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 2007; 5:e70. [PMID: 17355179 PMCID: PMC1820609 DOI: 10.1371/journal.pbio.0050070] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/08/2007] [Indexed: 01/22/2023] Open
Abstract
In phylogenetically diverse animals, including the basally diverging cnidarians, “determinants” localised within the egg are responsible for directing development of the embryonic body plan. Many such determinants are known to regulate the Wnt signalling pathway, leading to regionalised stabilisation of the transcriptional coregulator β-catenin; however, the only strong molecular candidate for a Wnt-activating determinant identified to date is the ligand Wnt11 in Xenopus. We have identified embryonic “oral–aboral” axis determinants in the cnidarian Clytia hemisphaerica in the form of RNAs encoding two Frizzled family Wnt receptors, localised at opposite poles of the egg. Morpholino-mediated inhibition of translation showed that CheFz1, localised at the animal pole, activates the canonical Wnt pathway, promotes oral fates including gastrulation, and may also mediate global polarity in the ectoderm. CheFz3, whose RNA is localised at the egg vegetal cortex, was found to oppose CheFz1 function and to define an aboral territory. Active downregulation mechanisms maintained the reciprocal localisation domains of the two RNAs during early development. Importantly, ectopic expression of either CheFz1 or CheFz3 was able to redirect axis development. These findings identify Frizzled RNAs as axis determinants in Clytia, and have implications for the evolution of embryonic patterning mechanisms, notably that diverse Wnt pathway regulators have been adopted to initiate asymmetric Wnt pathway activation. How do different animal body parts form in the correct arrangement during development? Often, the explanation is provided by “determinant” molecules, prepositioned in the egg cell before it is fertilised. These determinant molecules initiate spatially localized programmes of gene expression, causing the various body parts to form in the appropriate place. Many determinants work by activating the Wnt signalling pathway; however, few concrete examples of determinant molecules have yet been discovered. We have found a new example of such a molecule by studying embryos of a jellyfish called Clytia. This molecule, found on one side of the egg, belongs to the “Frizzled” group of membrane proteins that activate Wnt signalling. Unexpectedly, we also found a second type of Frizzled molecule on the other side of the egg, which has a counterbalancing role in the embryo. Comparison of our findings in Clytia with those in other animals suggests that the molecular mechanisms responsible for body patterning via asymmetric Wnt pathway activation have not been tightly constrained during evolution. The axis of a cnidarian is specified by the location of two maternal Frizzled mRNAs, revising the view that cnidarian axes are specified by the first cleavage initiation site.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique Unité 7009 “Biologie du Développement,” Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique Unité 7009 “Biologie du Développement,” Observatoire Océanologique, Villefranche-sur-Mer, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
63
|
Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH. Asymmetric developmental potential along the animal–vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 2007; 310:169-86. [PMID: 17716645 DOI: 10.1016/j.ydbio.2007.05.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 11/16/2022]
Abstract
The relationship between egg polarity and the adult body plan is well understood in many bilaterians. However, the evolutionary origins of embryonic polarity are not known. Insight into the evolution of polarity will come from understanding the ontogeny of polarity in non-bilaterian forms, such as cnidarians. We examined how the axial properties of the starlet sea anemone, Nematostella vectensis (Anthozoa, Cnidaria), are established during embryogenesis. Egg-cutting experiments and sperm localization show that Nematostella eggs are only fertilized at the animal pole. Vital marking experiments demonstrate that the egg animal pole corresponds to the sites of first cleavage and gastrulation, and the oral pole of the adult. Embryo separation experiments demonstrate an asymmetric segregation of developmental potential along the animal-vegetal axis prior to the 8-cell stage. We demonstrate that Dishevelled (Dsh) plays an important role in mediating this asymmetric segregation of developmental fate. Although NvDsh mRNA is ubiquitously expressed during embryogenesis, the protein is associated with the female pronucleus at the animal pole in the unfertilized egg, becomes associated with the unipolar first cleavage furrow, and remains enriched in animal pole blastomeres. Our results suggest that at least one mechanism for Dsh enrichment at the animal pole is through its degradation at the vegetal pole. Functional studies reveal that NvDsh is required for specifying embryonic polarity and endoderm by stabilizing beta-catenin in the canonical Wnt signaling pathway. The localization of Dsh to the animal pole in Nematostella and two other anthozoan cnidarians (scleractinian corals) provides a possible explanation for how the site of gastrulation has changed in bilaterian evolution while other axial components of development have remained the same and demonstrates that modifications of the Wnt signaling pathway have been used to pattern a wide variety of metazoan embryos.
Collapse
Affiliation(s)
- Patricia N Lee
- Kewalo Marine Lab, Pacific Biosciences Research Center/University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
64
|
Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U. Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 2007; 310:264-79. [PMID: 17716644 DOI: 10.1016/j.ydbio.2007.07.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 11/30/2022]
Abstract
We investigated the early development of the sea anemone Nematostella vectensis, an emerging model system of the Cnidaria. Early cleavage stages are characterized by substantial variability from embryo to embryo, yet invariably lead to the formation of a coeloblastula. The coeloblastula undergoes a series of unusual broad invaginations-evaginations which can be blocked by cell cycle inhibitors suggesting a causal link of the invagination cycles to the synchronized cell divisions. Blastula invagination cycles stop as cell divisions become asynchronous. Marking experiments show a clear correspondence of the animal-vegetal axis of the egg to the oral-aboral axis of the embryo. The animal pole gives rise to the concave side of the blastula and later to the blastopore of the gastrula, and hence the oral pole of the future polyp. Asymmetric distribution of granules in the unfertilized egg suggest an animal-vegetal asymmetry in the egg in addition to the localized position of the pronucleus. To determine whether this asymmetry reflects asymmetrically distributed determinants along the animal-vegetal axis, we carried out blastomere isolations and embryonic divisions at various stages. Our data strongly indicate that normal primary polyps develop only if cellular material from the animal hemisphere is included, whereas the vegetal hemisphere alone is incapable to differentiate an oral pole. Molecular marker analysis suggests that also the correct patterning of the aboral pole depends on signals from the oral half. This suggests that in Nematostella embryos the animal hemisphere contains organizing activity to form a normal polyp.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, N-5008, Bergen, Norway
| | | | | | | |
Collapse
|
65
|
Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW. The Wnt code: cnidarians signal the way. Oncogene 2006; 25:7450-60. [PMID: 17143289 DOI: 10.1038/sj.onc.1210052] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cnidarians are the simplest metazoans with a nervous system. They are well known for their regeneration capacity, which is based on the restoration of a signalling centre (organizer). Recent work has identified the canonical Wnt pathway in the freshwater polyp Hydra, where it acts in organizer formation and regeneration. Wnt signalling is also essential for cnidarian embryogenesis. In the sea anemone Nematostella vectensis 11 of the 12 known wnt gene subfamilies were identified. Different wnt genes exhibit serial and overlapping expression domains along the oral-aboral axis of the embryo (the 'wnt code'). This is reminiscent of the hox code (cluster) in bilaterian embryogenesis that is, however, absent in cnidarians. It is proposed that the common ancestor of cnidarians and bilaterians invented a set of wnt genes that patterned the ancient main body axis. Major antagonists of Wnt ligands (e.g. Dkk 1/2/4) that were previously known only from chordates, are also present in cnidarians and exhibit a similar conserved function. The unexpectedly high level of genetic complexity of wnt genes evolved in early multi-cellular animals about 650 Myr ago and suggests a radical expansion of the genetic repertoire, concurrent with the evolution of multi-cellularity and the diversification of eumetazoan body plans.
Collapse
Affiliation(s)
- C Guder
- Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|