51
|
Lopes M, Goupille O, Saint Cloment C, Robert B. Msx1 is expressed in retina endothelial cells at artery branching sites. Biol Open 2012; 1:376-84. [PMID: 23213427 PMCID: PMC3509462 DOI: 10.1242/bio.2012017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1(lacZ) is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2(lacZ) is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina and choroid are two highly vascularized tissues. Vessel alterations in the retina are associated with several human diseases and the retina has been intensely used for angiogenesis studies, whereas the choroid has been much less investigated. Using the Msx1(lacZ) and Msx2(lacZ) reporter alleles, we observed that Msx2 is not expressed in the eye vascular tree in contrast to Msx1, for which we establish the spatial and temporal expression pattern in these tissues. In the retina, expression of Msx1 takes place from P3, and by P10, it becomes confined to a subpopulation of ECs at branching points of superficial arterioles. These branching sites are characterized by a subpopulation of mural cells that also show specific expression programs. Specific Msx gene inactivation in the endothelium, using Msx1 and Msx2 conditional mutant alleles together with a Tie2-Cre transgene, did not lead to conspicuous structural defects in the retinal vascular network. Expression of Msx1 at branching sites might therefore be linked to vessel physiology. The retinal blood flow is autonomously regulated and perfusion of capillaries has been proposed to depend on arteriolar precapillary structures that might be the sites for Msx1 expression. On the other hand, branching sites are subject to shear stress that might induce Msx1 expression. In the choroid vascular layer Msx1(lacZ) is expressed more broadly and dynamically. At birth Msx1(lacZ) expression takes place in the endothelium but at P21 its expression has shifted towards the mural layer. We discuss the possible functions of Msx1 in the eye vasculature.
Collapse
Affiliation(s)
- Miguel Lopes
- Present address: IPSEN Innovation, Scientific affairs department, 5 Avenue du Canada, 91966 Les Ulis Cedex, France
| | | | | | | |
Collapse
|
52
|
Abstract
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle, and endothelial cells. Research into the mechanisms of SHF development has contributed significantly to our understanding of the properties of cardiac progenitor cells and the origins of congenital heart defects. Here recent data concerning the regulation, clinically relevant subpopulations, evolution and lineage relationships of the SHF are reviewed. Proliferation and differentiation of SHF cells are controlled by multiple intercellular signaling pathways and a transcriptional regulatory network that is beginning to be elucidated. Perturbation of SHF development results in common forms of congenital heart defects and particular progenitor cell subpopulations are highly relevant clinically, including cells giving rise to myocardium at the base of the pulmonary trunk and the interatrial septum. A SHF has recently been identified in amphibian, fish, and agnathan embryos, highlighting the important contribution of these cells to the evolution of the vertebrate heart. Finally, SHF-derived parts of the heart share a lineage relationship with craniofacial skeletal muscles revealing that these progenitor cells belong to a broad cardiocraniofacial field of pharyngeal mesoderm. Investigation of the mechanisms underlying the dynamic process of SHF deployment is likely to yield further insights into cardiac development and pathology.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles-Luminy, Aix-Marseille Université, CNRS UMR 7288, Marseilles, France
| |
Collapse
|
53
|
Kostuk EW, Balbir A, Fujii K, Fujioka A, Pichard LE, Shirahata M. Divergent postnatal development of the carotid body in DBA/2J and A/J strains of mice. J Appl Physiol (1985) 2011; 112:490-500. [PMID: 22074716 DOI: 10.1152/japplphysiol.01477.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that the adult DBA/2J and A/J strains of mice differ in carotid body volume and morphology. The question has arisen whether these differences develop during the prenatal or postnatal period. Investigating morphological development of the carotid body and contributing genes in these mice can provide further understanding of the appropriate formation of the carotid body. We examined the carotid body of these mice from 1 day to 4 wk old for differences in volume, morphology, and gene expression of Gdnf family, Dlx2, Msx2, and Phox2b. The two strains showed divergent morphology starting at 1 wk old. The volume of the carotid body increased from 1 wk up to 2 wk old to the level of 4 wk old in the DBA/2J mice but not in the A/J mice. This corresponds with immunoreactivity of LC3, an autophagy marker, in A/J tissues at 10 days and 2 wk. The differences in gene expression were examined at 1 wk, 10 days, and 2 wk old, because divergent growth occurred during this period. The DBA/2J's carotid body at 1 wk old showed a greater expression of Msx2 than the A/J's carotid body. No other candidate genes showed consistent differences between the ages and strains. The difference was not seen in sympathetic cervical ganglia of 1 wk old, suggesting that the difference is carotid body specific. The current study indicates the critical postnatal period for developing distinctive morphology of the carotid body in these mice. Further studies are required to further elucidate a role of Msx2 and other uninvestigated genes.
Collapse
Affiliation(s)
- Eric W Kostuk
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
54
|
Lopes M, Goupille O, Saint Cloment C, Lallemand Y, Cumano A, Robert B. Msx genes define a population of mural cell precursors required for head blood vessel maturation. Development 2011; 138:3055-66. [PMID: 21693521 DOI: 10.1242/dev.063214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.
Collapse
Affiliation(s)
- Miguel Lopes
- Institut Pasteur, Génétique Moléculaire de la Morphogenèse, CNRS URA 2578, Paris, France
| | | | | | | | | | | |
Collapse
|
55
|
Tzahor E, Evans SM. Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. Cardiovasc Res 2011; 91:196-202. [PMID: 21498416 DOI: 10.1093/cvr/cvr116] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pharyngeal mesoderm (PM), located in the head region of the developing embryo, recently triggered renewed interest as the major source of cells contributing to broad regions of the heart as well as to the head musculature. What exactly is PM? In this review, we describe the anatomical and molecular characteristics of this mesodermal population and its relationship to the first and second heart fields in chick and mouse embryos. The regulatory network of transcription factors and signalling molecules that regulate PM development is also discussed. In addition, we summarize recent studies into the evolutionary origins of this tissue and its multipotential contributions to both cardiac and pharyngeal muscle progenitors.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
56
|
Boogerd CJJ, Moorman AFM, Barnett P. Expression of muscle segment homeobox genes in the developing myocardium. Anat Rec (Hoboken) 2010; 293:998-1001. [PMID: 20225205 DOI: 10.1002/ar.21112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Msx1 and Msx2 are essential for the development of many organs. In the heart, they act redundantly in development of the cardiac cushions. Additionally, Msx2 is expressed in the developing conduction system. However, the exact expression of Msx1 has not been established. We show that Msx1 is expressed in the cardiac cushions, but not in the myocardium. In Msx2-null mice, Msx1 is not ectopically expressed in the myocardium. The absence of myocardial defects in the Msx2 knock-out can therefore not be attributed to a redundant action of Msx1 in the myocardium.
Collapse
Affiliation(s)
- Cornelis J J Boogerd
- Heart Failure Research Center, Academic Medical Center of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
57
|
Yen HY, Ting MC, Maxson RE. Jagged1 functions downstream of Twist1 in the specification of the coronal suture and the formation of a boundary between osteogenic and non-osteogenic cells. Dev Biol 2010; 347:258-70. [PMID: 20727876 DOI: 10.1016/j.ydbio.2010.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 01/10/2023]
Abstract
The Notch pathway is crucial for a wide variety of developmental processes including the formation of tissue boundaries. That it may function in calvarial suture development and figure in the pathophysiology of craniosynostosis was suggested by the demonstration that heterozygous loss of function of JAGGED1 in humans can cause Alagille syndrome, which has craniosynostosis as a feature. We used conditional gene targeting to examine the role of Jagged1 in the development of the skull vault. We demonstrate that Jagged1 is expressed in a layer of mesoderm-derived sutural cells that lie along the osteogenic-non-osteogenic boundary. We show that inactivation of Jagged1 in the mesodermal compartment of the coronal suture, but not in the neural crest compartment, results in craniosynostosis. Mesodermal inactivation of Jagged1 also results in changes in the identity of sutural cells prior to overt osteogenic differentiation, as well as defects in the boundary between osteogenic and non-osteogenic compartments at the coronal suture. These changes, surprisingly, are associated with increased expression of Notch2 and the Notch effector, Hes1, in the sutural mesenchyme. They are also associated with an increase in nuclear β-catenin. In Twist1 mutants, Jagged1 expression in the suture is reduced substantially, suggesting an epistatic relationship between Twist1 and Jagged1. Consistent with such a relationship, Twist1-Jagged1 double heterozygotes exhibit a substantial increase in the severity of craniosynostosis over individual heterozygotes. Our results thus suggest that Jagged1 is an effector of Twist1 in coronal suture development.
Collapse
Affiliation(s)
- Hai-Yun Yen
- Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA
| | | | | |
Collapse
|
58
|
Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 2010; 137:2989-3000. [PMID: 20702560 DOI: 10.1242/dev.051649] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anterior heart field (AHF) encompasses a niche in which mesoderm-derived cardiac progenitors maintain their multipotent and undifferentiated nature in response to signals from surrounding tissues. Here, we investigate the signaling mechanism that promotes the shift from proliferating cardiac progenitors to differentiating cardiomyocytes in chick embryos. Genomic and systems biology approaches, as well as perturbations of signaling molecules, in vitro and in vivo, reveal tight crosstalk between the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) signaling pathways within the AHF niche: BMP4 promotes myofibrillar gene expression and cardiomyocyte contraction by blocking FGF signaling. Furthermore, inhibition of the FGF-ERK pathway is both sufficient and necessary for these processes, suggesting that FGF signaling blocks premature differentiation of cardiac progenitors in the AHF. We further revealed that BMP4 induced a set of neural crest-related genes, including MSX1. Overexpression of Msx1 was sufficient to repress FGF gene expression and cell proliferation, thereby promoting cardiomyocyte differentiation. Finally, we show that BMP-induced cardiomyocyte differentiation is diminished following cranial neural crest ablation, underscoring the key roles of these cells in the regulation of AHF cell differentiation. Hence, BMP and FGF signaling pathways act via inter- and intra-regulatory loops in multiple tissues, to coordinate the balance between proliferation and differentiation of cardiac progenitors.
Collapse
Affiliation(s)
- Libbat Tirosh-Finkel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Lanigan F, Gremel G, Hughes R, Brennan DJ, Martin F, Jirström K, Gallagher WM. Homeobox transcription factor muscle segment homeobox 2 (Msx2) correlates with good prognosis in breast cancer patients and induces apoptosis in vitro. Breast Cancer Res 2010; 12:R59. [PMID: 20682066 PMCID: PMC2949651 DOI: 10.1186/bcr2621] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/09/2010] [Accepted: 08/03/2010] [Indexed: 02/08/2023] Open
Abstract
Introduction The homeobox-containing transcription factor muscle segment homeobox 2 (Msx2) plays an important role in mammary gland development. However, the clinical implications of Msx2 expression in breast cancer are unclear. The aims of this study were to investigate the potential clinical value of Msx2 as a breast cancer biomarker and to clarify its functional role in vitro. Methods Msx2 gene expression was first examined in a well-validated breast cancer transcriptomic dataset of 295 patients. Msx2 protein expression was then evaluated by immunohistochemistry in a tissue microarray (TMA) containing 281 invasive breast tumours. Finally, to assess the functional role of Msx2 in vitro, Msx2 was ectopically expressed in a highly invasive breast tumour cell line (MDA-MB-231) and an immortalised breast cell line (MCF10a), and these cell lines were examined for changes in growth rate, cell death and cell signalling. Results Examination of Msx2 mRNA expression in a breast cancer transcriptomic dataset demonstrated that increased levels of Msx2 were associated with good prognosis (P = 0.011). Evaluation of Msx2 protein expression on a TMA revealed that Msx2 was detectable in both tumour cell nuclei and cytoplasm. Cytoplasmic Msx2 expression was associated with low grade tumours (P = 0.012) and Ki67 negativity (P = 0.018). Nuclear Msx2 correlated with low-grade tumours (P = 0.015), estrogen receptor positivity (P = 0.038), low Ki67 (P = 0.005) and high cyclin D1 expression (P = 0.037). Increased cytoplasmic Msx2 expression was associated with a prolonged breast cancer-specific survival (P = 0.049), recurrence-free survival (P = 0.029) and overall survival (P = 0.019). Ectopic expression of Msx2 in breast cell lines resulted in radically decreased cell viability mediated by induction of cell death via apoptosis. Further analysis of Msx2-expressing cells revealed increased levels of p21 and phosphorylated extracellular signal-regulated kinase (ERK) and decreased levels of Survivin and the 'split ends' (SPEN) protein family member RBM15. Conclusions We conclude that increased Msx2 expression results in improved outcome for breast cancer patients, possibly by increasing the likelihood of tumour cell death by apoptosis.
Collapse
Affiliation(s)
- Fiona Lanigan
- University College Dublin School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
60
|
Doi T, Puri P, Bannigan J, Thompson J. Msx1 and Msx2 gene expression is downregulated in the cadmium-induced omphalocele in the chick model. J Pediatr Surg 2010; 45:1187-91. [PMID: 20620318 DOI: 10.1016/j.jpedsurg.2010.02.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
Abstract
PURPOSE The administration of cadmium (Cd) induces an omphalocele phenotype in the chick embryo. The molecular mechanism by which Cd acts still remains unclear. Msx1 and Msx2 are expressed in the developing body wall and regulate cellular proliferation and differentiation. It has been reported that Msx1/Msx2 double-mutant mice display an omphalocele phenotype. We hypothesized that gene expression levels of Msx1 and Msx2 are downregulated in the Cd chick model during the critical period of embryogenesis. METHODS After 60 hours of incubation, chick embryos were exposed to either Cd or saline and harvested at 1 hour (1H), 4H, and 8H after treatment. Chicks were divided into 2 groups: control and Cd (n = 8 for each group at each time-point). Real-time polymerase chain reaction was performed to evaluate the messenger RNA levels of Msx1 and Msx2 in the Cd-induced omphalocele chick model and analyzed statistically. Immunohistochemistry was also performed to examine protein expression of Msx1 and Msx2 at each time-point. RESULTS Messenger RNA expression levels of Msx1 and Msx2 at 1H were significantly decreased in the Cd group compared with controls (P < .01), whereas there were no significant differences at the other time-points. Immunoreactivity of Msx1 and Msx2 at 1H was remarkably decreased in Cd group compared with controls. CONCLUSION Downregulation of Msx1 and Msx2 gene expression during the narrow window of early embryogenesis may cause an omphalocele by disrupting cellular proliferation and differentiation in the developing body wall.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | | | | | | |
Collapse
|
61
|
Zile MH. Vitamin A-not for your eyes only: requirement for heart formation begins early in embryogenesis. Nutrients 2010; 2:532-50. [PMID: 22254040 PMCID: PMC3257662 DOI: 10.3390/nu2050532] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/07/2010] [Accepted: 05/18/2010] [Indexed: 12/25/2022] Open
Abstract
Vitamin A insufficiency has profound adverse effects on embryonic development. Major advances in understanding the role of vitamin A in vertebrate heart formation have been made since the discovery that the vitamin A active form, all-trans-retinoic acid, regulates many genes, including developmental genes. Among the experimental models used, the vitamin A-deficient avian embryo has been an important tool to study the function of vitamin A during early heart formation. A cluster of retinoic acid-regulated developmental genes have been identified that participate in building the heart. In the absence of retinoic acid the embryonic heart develops abnormally leading to embryolethality.
Collapse
Affiliation(s)
- Maija H Zile
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
62
|
Song L, Li Y, Wang K, Zhou CJ. Cardiac neural crest and outflow tract defects in Lrp6 mutant mice. Dev Dyn 2010; 239:200-10. [PMID: 19705442 DOI: 10.1002/dvdy.22079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of a key Wnt coreceptor Lrp6 during heart development remains unclear. Here we show that ablation of Lrp6 in mice causes conotruncal anomalies including double-outlet right ventricle (DORV), outflow tract (OFT) cushion hypoplasia, and ventricular septal defect (VSD). Cardiac neural crest cells are specifically lost in the dorsal neural tube and caudal pharyngeal arches of the mutant embryos. We also demonstrate that Lrp6 is required for proliferation and survival of cardiac progenitors and for the expression of Isl1 in the secondary heart field. Other known cardiogenic regulators such as Msx1, Msx2, and Fgf8 are also significantly diminished in the mutant pharyngeal arches and/or OFT. Unexpectedly, the myocardium differentiation factors Mef2c and Myocardin are upregulated in the mutant OFT. Our results indicate that Lrp6 is essential for cardiac neural crest and OFT development upstream of multiple important cardiogenic genes in different cardiac lineage cells during early cardiogenesis.
Collapse
Affiliation(s)
- Lanying Song
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | | | | | |
Collapse
|
63
|
Chakraborty S, Combs MD, Yutzey KE. Transcriptional regulation of heart valve progenitor cells. Pediatr Cardiol 2010; 31:414-21. [PMID: 20039031 PMCID: PMC2837124 DOI: 10.1007/s00246-009-9616-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
The development and normal function of the heart valves requires complex interactions among signaling molecules, transcription factors and structural proteins that are tightly regulated in time and space. Here we review the roles of critical transcription factors that are required for specific aspects of normal valve development. The early progenitors of the heart valves are localized in endocardial cushions that express transcription factors characteristic of mesenchyme, including Twist1, Tbx20, Msx1 and Msx2. As the valve leaflets mature, they are composed of complex stratified extracellular matrix proteins that are regulated by the transcriptional functions of NFATc1, Sox9, and Scleraxis. Each of these factors has analogous functions in differentiation of related connective tissue lineages. Together, the precise timing and localized functions of specific transcription factors control cell proliferation, differentiation, elongation, and remodeling processes that are necessary for normal valve structure and function. In addition, there is increasing evidence that these same transcription factors contribute to congenital, as well as degenerative, valve disease.
Collapse
|
64
|
Tian Y, Yuan L, Goss AM, Wang T, Yang J, Lepore JJ, Zhou D, Schwartz RJ, Patel V, Cohen ED, Morrisey EE. Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell 2010; 18:275-87. [PMID: 20159597 DOI: 10.1016/j.devcel.2010.01.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/10/2009] [Accepted: 01/11/2010] [Indexed: 12/17/2022]
Abstract
Little is understood about the molecular mechanisms underlying the morphogenesis of the posterior pole of the heart. Here we show that Wnt2 is expressed specifically in the developing inflow tract mesoderm, which generates portions of the atria and atrio-ventricular canal. Loss of Wnt2 results in defective development of the posterior pole of the heart, resulting in a phenotype resembling the human congenital heart syndrome complete common atrio-ventricular canal. The number and proliferation of posterior second heart field progenitors is reduced in Wnt2(-/-) mutants. Moreover, these defects can be rescued in a temporally restricted manner through pharmacological inhibition of Gsk-3beta. We also show that Wnt2 works in a feedforward transcriptional loop with Gata6 to regulate posterior cardiac development. These data reveal a molecular pathway regulating the posterior cardiac mesoderm and demonstrate that cardiovascular defects caused by loss of Wnt signaling can be rescued pharmacologically in vivo.
Collapse
Affiliation(s)
- Ying Tian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Thomas PS, Kim J, Nunez S, Glogauer M, Kaartinen V. Neural crest cell-specific deletion of Rac1 results in defective cell-matrix interactions and severe craniofacial and cardiovascular malformations. Dev Biol 2010; 340:613-25. [PMID: 20184871 DOI: 10.1016/j.ydbio.2010.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 11/30/2022]
Abstract
The small GTP-binding protein Rac1, a member of the Rho family of small GTPases, has been implicated in regulation of many cellular processes including adhesion, migration and cytokinesis. These functions have largely been attributed to its ability to reorganize cytoskeleton. While the function of Rac1 is relatively well known in vitro, its role in vivo has been poorly understood. It has previously been shown that in neural crest cells (NCCs) Rac1 is required in a stage-specific manner to acquire responsiveness to mitogenic EGF signals. Here we demonstrate that mouse embryos lacking Rac1 in neural crest cells (Rac1/Wnt1-Cre) showed abnormal craniofacial development including regional ectodermal detachment associated with mesenchymal acellularity culminating in cleft face at E12. Rac1/Wnt1-Cre mutants also displayed inappropriate remodelling of pharyngeal arch arteries and defective outflow tract septation resulting in the formation of a common arterial trunk ('persistent truncus arteriosus' or PTA). The mesenchyme around the aortic sac also developed acellular regions, and the distal aortic sac became grossly dysmorphic, forming a pair of bilateral, highly dilated arterial structures connecting to the dorsal aortas. Smooth muscle cells lacking Rac1 failed to differentiate appropriately, and subpopulations of post-migratory NCCs demonstrated aberrant cell death and attenuated proliferation. These novel data demonstrate that while Rac1 is not required for normal NCC migration in vivo, it plays a critical cell-autonomous role in post-migratory NCCs during craniofacial and cardiac development by regulating the integrity of the craniofacial and pharyngeal mesenchyme.
Collapse
Affiliation(s)
- Penny S Thomas
- Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
66
|
|
67
|
Lee YH, Saint-Jeannet JP. Characterization of molecular markers to assess cardiac cushions formation in Xenopus. Dev Dyn 2009; 238:3257-65. [DOI: 10.1002/dvdy.22148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
68
|
Nagel S, Venturini L, Przybylski GK, Grabarczyk P, Meyer C, Kaufmann M, Battmer K, Schmidt CA, Drexler HG, Scherr M, Macleod RA. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells. BMC Cancer 2009; 9:371. [PMID: 19835636 PMCID: PMC2770077 DOI: 10.1186/1471-2407-9-371] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/19/2009] [Indexed: 11/16/2022] Open
Abstract
Background Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Methods Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Results Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells corresponding to the cell line data. Conclusion Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr, 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Romeih M, Cakstina I, Zile MH. Retinoic acid is a negative physiological regulator of N-cadherin during early avian heart morphogenesis. Dev Growth Differ 2009; 51:753-67. [PMID: 19843154 DOI: 10.1111/j.1440-169x.2009.01134.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vitamin A-deficient (VAD) early avian embryo has a grossly abnormal cardiovascular system that is rescued by treating the embryo with the vitamin A-active form, retinoic acid (RA). Here we examine the role of N-cadherin (N-cad) in RA-regulated early cardiovascular morphogenesis. N-cad mRNA and protein are expressed globally in the presomite through HH14 normal and VAD quail embryos. The expression in VAD embryos prior to HH10 is significantly higher than that in normal embryos. Functional analyses of the N-cad overproducing VAD embryos reveal N-cad involvement in the RA-regulated cardiovascular development and suggest that N-cad expression may be mediated by Msx1. We provide evidence that in the early avian embryo, endogenous RA is a negative physiological regulator of N-cad. We hypothesize that a critical endogenous level of N-cad is needed for normal early cardiovascular morphogenesis to occur and that this level is ensured by stage-specific, developmentally regulated RA signaling.
Collapse
Affiliation(s)
- Mahmoud Romeih
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
70
|
Abstract
In recent years, significant advances have been made in the definition of regulatory pathways that control normal and abnormal cardiac valve development. Here, we review the cellular and molecular mechanisms underlying the early development of valve progenitors and establishment of normal valve structure and function. Regulatory hierarchies consisting of a variety of signaling pathways, transcription factors, and downstream structural genes are conserved during vertebrate valvulogenesis. Complex intersecting regulatory pathways are required for endocardial cushion formation, valve progenitor cell proliferation, valve cell lineage development, and establishment of extracellular matrix compartments in the stratified valve leaflets. There is increasing evidence that the regulatory mechanisms governing normal valve development also contribute to human valve pathology. In addition, congenital valve malformations are predominant among diseased valves replaced late in life. The understanding of valve developmental mechanisms has important implications in the diagnosis and management of congenital and adult valve disease.
Collapse
Affiliation(s)
- Michelle D Combs
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center ML7020, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | | |
Collapse
|
71
|
Lallemand Y, Bensoussan V, Cloment CS, Robert B. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb. Dev Biol 2009; 331:189-98. [PMID: 19422820 DOI: 10.1016/j.ydbio.2009.04.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.
Collapse
|
72
|
Yamagishi T, Ando K, Nakamura H. Roles of TGFβ and BMP during valvulo–septal endocardial cushion formation. Anat Sci Int 2009; 84:77-87. [DOI: 10.1007/s12565-009-0027-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/05/2008] [Indexed: 01/01/2023]
|
73
|
Zhuang F, Nguyen MP, Shuler C, Liu YH. Analysis of Msx1 and Msx2 transactivation function in the context of the heat shock 70 (Hspa1b) gene promoter. Biochem Biophys Res Commun 2009; 381:241-6. [PMID: 19338779 DOI: 10.1016/j.bbrc.2009.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 02/08/2009] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent transactivation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and heat shock factors may play a contributing role.
Collapse
Affiliation(s)
- Fengfeng Zhuang
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DVRC314, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
74
|
Hong S, Kang JK, Park JJ, Ryu ES, Choi SS, Lee SH, Lee JH, Seo JS. Association of matrix metalloproteinase-3 with cardiogenic activity during Noggin-induced differentiation of mouse embryonic stem cells. Int J Cardiol 2009; 141:49-60. [PMID: 19138802 DOI: 10.1016/j.ijcard.2008.11.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 10/06/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Despite the pluripotency of embryonic stem (ES) cells, their clinical applications have been hindered due to the lack of reliable differentiation methods. Recently, it was shown that Noggin could effectively induce cardiomyocyte differentiation by transient treatment of ES cells. METHODS To determine how Noggin may induce cardiac differentiation, we compared differentially expressed genes during Noggin-induced differentiation of ES cells using microarray analysis. We found Matrix metalloproteinase-3 (Mmp-3) expression was highly up-regulated by Noggin treatment. To understand the role of Mmp-3 in the cardiac differentiation of ES cells, we inhibited Mmp-3 activity by treating with a specific Mmp-3 inhibitor during Noggin-induced cardiac differentiation of ES cells. We also analyzed the expression levels of cardiac markers and the ratio of spontaneously beating embryoid bodies (EBs) in the presence of the Mmp-3 inhibitor. RESULTS We analyzed EB samples from zero, two, and four days with or without Noggin treatment, and found that the expression levels of 2 (0 day), 56 (2 days), and 805 (4 days) genes were altered with Noggin treatment. Up-regulation of Mmp-3 was closely associated with relative increases of cardiogenic, vasculogenic, and hematopoietic genes in EB treated with Noggin. By inhibiting Mmp-3 activity, we verified that Mmp-3 activation is partly responsible for both the expression of cardiac markers and the elevated ratio of spontaneously beating to non-beating EBs. CONCLUSIONS The concurrent expression of Mmp-3 with many cardiogenic genes and the specific inhibition of Mmp-3 revealed a critical role for Mmp-3 in Noggin-induced cardiac differentiation of ES cells.
Collapse
Affiliation(s)
- Su Hong
- Macrogen Inc, World Meridian Venture Center, 60-24 Gasan-dong, Seoul 153-023, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC DEVELOPMENTAL BIOLOGY 2008; 8:75. [PMID: 18667074 PMCID: PMC2518925 DOI: 10.1186/1471-213x-8-75] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 07/30/2008] [Indexed: 11/25/2022]
Abstract
Background Msx1 and Msx2, which belong to the highly conserved Nk family of homeobox genes, display overlapping expression patterns and redundant functions in multiple tissues and organs during vertebrate development. Msx1 and Msx2 have well-documented roles in mediating epithelial-mesenchymal interactions during organogenesis. Given that both Msx1 and Msx2 are crucial downstream effectors of Bmp signaling, we investigated whether Msx1 and Msx2 are required for the Bmp-induced endothelial-mesenchymal transformation (EMT) during atrioventricular (AV) valve formation. Results While both Msx1-/- and Msx2-/- single homozygous mutant mice exhibited normal valve formation, we observed hypoplastic AV cushions and malformed AV valves in Msx1-/-; Msx2-/- mutants, indicating redundant functions of Msx1 and Msx2 during AV valve morphogenesis. In Msx1/2 null mutant AV cushions, we found decreased Bmp2/4 and Notch1 signaling as well as reduced expression of Has2, NFATc1 and Notch1, demonstrating impaired endocardial activation and EMT. Moreover, perturbed expression of chamber-specific genes Anf, Tbx2, Hand1 and Hand2 reveals mispatterning of the Msx1/2 double mutant myocardium and suggests functions of Msx1 and Msx2 in regulating myocardial signals required for remodelling AV valves and maintaining an undifferentiated state of the AV myocardium. Conclusion Our findings demonstrate redundant roles of Msx1 and Msx2 in regulating signals required for development of the AV myocardium and formation of the AV valves.
Collapse
|
76
|
Boogerd KJ, Wong LYE, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AFM, Barnett P. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. Cardiovasc Res 2008; 78:485-93. [PMID: 18285513 DOI: 10.1093/cvr/cvn049] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. METHODS AND RESULTS Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. CONCLUSION Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.
Collapse
Affiliation(s)
- Kees-Jan Boogerd
- Department of Anatomy and Embryology, Heart Failure Research Centre, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|