51
|
Aulitto M, Strazzulli A, Sansone F, Cozzolino F, Monti M, Moracci M, Fiorentino G, Limauro D, Bartolucci S, Contursi P. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Microb Cell Fact 2021; 20:71. [PMID: 33736637 PMCID: PMC7977261 DOI: 10.1186/s12934-021-01553-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
Background The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. Conclusions Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01553-y.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ferdinando Sansone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.,Institute of Biosciences and BioResources-National Research Council of Italy, Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy. .,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy.
| |
Collapse
|
52
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
54
|
Soni R, Nanjani S, Keharia H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2020; 113:861-873. [PMID: 33096257 DOI: 10.1016/j.ygeno.2020.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The legislations on the usage of antibiotics as growth promoters and prophylactic agents have compelled to develop alternative tools to upsurge the animal protection and contain antibiotic usage. Probiotics have emerged as an effective antibiotic substitute in animal farming. The present study explores the probiotic perspective of Paenibacillus polymyxa HK4 interlinking the genotypic and phenotypic characteristics. The draft genome of HK4 revealed the presence of ORFs encoding the functions associated with tolerance to gastrointestinal stress and adhesion. The biosynthetic gene clusters encoding non-ribosomally synthesized peptides, polyketides and lanthipeptides such as fusaricidin, tridecaptin, polymyxin, paenilan and paenibacillin were annotated in HK4 genome. The strain harbored the chromosomal gene conferring the resistance to lincosamides. No functional gene encoding virulence or toxins could be identified in the genome of HK4. The genome analysis data was complemented by the in vitro experiments confirming its survival during gastrointestinal transit, antimicrobial potential and antibiotic sensitivity. NUCLEOTIDE SEQUENCE ACCESSION NUMBER: The draft-genome sequence of Paenibacillus polymyxa HK4 has been deposited as whole-genome shotgun project at GenBank under the accession number PRJNA603023.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India.
| |
Collapse
|
55
|
Maity C, Gupta AK, Saroj DB, Biyani A, Bagkar P, Kulkarni J, Dixit Y. Impact of a Gastrointestinal Stable Probiotic Supplement Bacillus coagulans LBSC on Human Gut Microbiome Modulation. J Diet Suppl 2020; 18:577-596. [PMID: 32896190 DOI: 10.1080/19390211.2020.1814931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacillus coagulans LBSC showed stability in acidic pH, bile and simulated human gastrointenstinal juices. Under static gut model, when passed through oral, gastric and intestinal phases, B. coagulans LBSC was found to be stable as free viable spores and also with various foods such as milk and baby foods, as well as American and European diets. In human studies, modulation of gut microbiota by B. coagulans LBSC was comprehended by whole genome metagenome analysis of fecal samples obtained from pre- and post-treatment of irritable bowel syndrome (IBS) patients. B. coagulans LBSC treatment showed positive modulation in gut microbiota, especially up regulation of phyla such as Actinobacteria and Firmicutes, whereas down regulation of Bacteroids, Proteobacteria, Streptophyta and Verrucomicrobia. Simultaneously, it has altered various microbiota associated metabolic pathways to create the normalcy of gut microenvironment.
Collapse
Affiliation(s)
| | | | - Dina B Saroj
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | - Atul Biyani
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | - Pratik Bagkar
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | | | - Yogini Dixit
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| |
Collapse
|
56
|
Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics Antimicrob Proteins 2020; 13:468-483. [PMID: 32829420 DOI: 10.1007/s12602-020-09700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria (LAB) are important microorganisms for the food industry due to their functional activity, as starters and potential probiotic strains. With that in mind, we explored the LAB diversity in raw buffalo milk, screening for novel potential probiotic strains. A total of 11 strains were identified by combination of MALDI-TOF and partial 16S rDNA sequencing and selected as potential probiotic candidates. Bacteria innocuity assessment was performed by determining antimicrobial susceptibility and the presence of virulence factors. Antagonism activity against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus was assessed, as well as milk proteolytic activity and exopolysaccharides production. Seven strains were identified as innocuous and two of them, Lactobacillus rhamnosus LB1.5 and Lactobacillus paracasei LB6.4 were selected for further probiotic potential analyses. Both strains demonstrated adhesion ability to Caco-2 cells, coaggregated with S. aureus and E. coli and maintained cell viability after gastrointestinal simulation in vitro, suggesting their probiotic potential. Furthermore, the transcriptional response of Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 to in vitro acid stress was assessed by RT-qPCR targeting seven genes related to adhesion, aggregation, stress tolerance, DNA repair and central metabolism. The association between the transcriptional responses and the maintenance of cell viability after gastrointestinal simulation highlights the genetic ability as probiotic of the two selected strains. Finally, we have concluded that Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 are important probiotic candidates to further in vivo studies.
Collapse
|
57
|
Alayande KA, Aiyegoro OA, Nengwekhulu TM, Katata-Seru L, Ateba CN. Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1. PLoS One 2020; 15:e0235873. [PMID: 32687505 PMCID: PMC7371166 DOI: 10.1371/journal.pone.0235873] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023] Open
Abstract
This study evaluates whole-genome sequence of Lactobacillus reuteri PNW1 and identifies its safety genes that may qualify it as a putative probiotic. It further extracted the bacteriocin produced by the strain and tested its effectiveness against pathogenic STEC E. coli O177. The genomic DNA was sequenced on illuminal Miseq instrument and the sequenced data was assessed for quality reads before assembled with SPAdes. The draft assembly was annotated with Prokaryotic Genome Annotation Pipeline (PGAP) and Rapid Annotations using Subsystems Technology (RAST). Further downstream analyses were carried out using appropriate bioinformatic tools. Production of biogenic amines was biochemically confirmed through HPLC analysis. The assembled genome was 2,430,215 bp long in 420 contigs with 39% G+C content. Among all known genes, putatively responsible for the production of toxic biochemicals, only arginine deiminase (EC3.5.3.6) was spotted. Coding sequences (CDS) putative for D-lactate dehydrogenase (EC1.1.1.28), L-lactate dehydrogenase (EC1.1.1.27) and bacteriocin helveticin J were found within the genome together with plethora of other probiotic important genes. The strain harbours only resistant genes putative for Lincosamide (lnuC) and Tetracycline resistant genes (tetW). There was no hit found for virulence factors and probability of the strain being a human pathogen was zero. Two intact prophage regions were detected within the genome of L. reuteri PNW1 and nine CDS were identified for insertion sequence by OASIS which are belong to seven different families. Five putative CDS were identified for the CRISPR, each associated with Cas genes. Maximum zone of inhibition exhibited by the bacteriocin produced L. reuteri PNW1 is 20.0±1.00 mm (crude) and 23.3±1.15 mm (at 0.25 mg/ml) after being partially purified. With the strain predicted as non-human pathogen, coupled with many other identified desired features, L. reuteri PNW1 stands a chance of making good and safe candidates for probiotic, though further in-vivo investigations are still necessary.
Collapse
Affiliation(s)
- Kazeem Adekunle Alayande
- Antibiotic Resistance and Phage Biocontrol Research Group, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- * E-mail: (KAA); (CNA)
| | - Olayinka Ayobami Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Division, Agricultural Research Council, Animal Production Institute, Irene, South Africa
| | | | - Lebogang Katata-Seru
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Antibiotic Resistance and Phage Biocontrol Research Group, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- * E-mail: (KAA); (CNA)
| |
Collapse
|
58
|
A critical review of antibiotic resistance in probiotic bacteria. Food Res Int 2020; 136:109571. [PMID: 32846610 DOI: 10.1016/j.foodres.2020.109571] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics.
Collapse
|
59
|
ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol 2020; 104:6363-6373. [DOI: 10.1007/s00253-020-10703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
|
60
|
Zhou Y, Zeng Z, Xu Y, Ying J, Wang B, Majeed M, Majeed S, Pande A, Li W. Application of Bacillus coagulans in Animal Husbandry and Its Underlying Mechanisms. Animals (Basel) 2020; 10:E454. [PMID: 32182789 PMCID: PMC7143728 DOI: 10.3390/ani10030454] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
In recent decades, probiotics have attracted widespread attention and their application in healthcare and animal husbandry has been promising. Among many probiotics, Bacillus coagulans (B. coagulans) has become a key player in the field of probiotics in recent years. It has been demonstrated to be involved in regulating the balance of the intestinal microbiota, promoting metabolism and utilization of nutrients, improving immunity, and more importantly, it also has good industrial properties such as high temperature resistance, acid resistance, bile resistance, and the like. This review highlights the effects of B. coagulans in animal husbandry and its underlying mechanisms.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Jiafu Ying
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Muhammed Majeed
- Sami Labs Limited, Bangalore, Karnataka 560058, India;
- Sabinsa Corporation, East Windsor, NJ 08520, USA; (S.M.); (A.P.)
- Sabinsa Corporation, Payson, UT 84651, USA
| | - Shaheen Majeed
- Sabinsa Corporation, East Windsor, NJ 08520, USA; (S.M.); (A.P.)
- Sabinsa Corporation, Payson, UT 84651, USA
| | - Anurag Pande
- Sabinsa Corporation, East Windsor, NJ 08520, USA; (S.M.); (A.P.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| |
Collapse
|
61
|
Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J 2019; 10:337-350. [PMID: 31832110 DOI: 10.1007/s13167-019-00184-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023]
Abstract
Background Probiotics belonging to Lactobacillus and Bifidobacterium spp. have been exploited for their health benefits in treatment and prevention of many pathological conditions and promoting human health. Recent advances in understanding probiotics-human interaction through microbiome research in the context of various medical conditions suggest their provisional role in preventive, personalized, and predictive medicine. To streamline their application in disease prevention, development of personalized-based treatments, or their use as biomarkers for predictive diagnosis, in vitro screening for strains with potential probiotic properties should be performed. In this work, we aimed to emphasize the probiotic features of four Lactobacillus and two Bifidobacterium probiotic strains which showed antagonistic properties against microbial pathogens. Methods Firstly, cytotoxicity assessment of cell-free preparations from these strains was performed using a baby hamster kidney (BHK) cells and cell viability was measured by means of sulfo-rhodamine B stain. Secondly, Newcastle disease (ND) and infectious bursal disease (IBD) viruses which pose a great threat in infected poultry were used for assessing antiviral activity of probiotics. Thirdly, the genomes of six probiotic strains were used to identify genes encoding host adherence factors that mediate interaction with human tissues. Results Probiotic preparations exhibited insignificant toxicity as indicated by the high survival rate of BHK cells (surviving fraction varied from 0.82 to 0.99) as compared to the untreated control. Cell-free preparations of probiotics mixed with equal volume of ND and IBD viruses (106 and 104 Tissue Culture Infectious Dose 50, respectively) reduced the titer of ND and IBD viruses on chicken embryo fibroblast cells. Genome mining analysis revealed that the draft genomes of these strains were predicted to encode LPXTG-containing proteins, surface layer proteins, tight adherence pili, sortase-dependent pili, fibronectin, or collagen binding proteins and other factors that adhere to human tissues such as mucus. Such adherence factors enable probiotic bacteria to interact and colonize the host. Conclusion Taken together, safety privileges, antiviral activities, and genomically encoded host interaction factors confirmed probiotic features of the six probiotic strains and their potential in promoting human health.
Collapse
|
62
|
Castillo-Escandón V, Fernández-Michel SG, Cueto- Wong MC, Ramos-Clamont Montfort G. Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Los alimentos a los que se les añaden probióticos (bacterias benéficas) constituyen uno de los sectores más importantes de los alimentos funcionales. Los productos lácteos son los principales vehículos para estas bacterias que producen un efecto benéfico a la salud, cuando se consumen vivas y en cantidades suficientes para adherirse al colon. Sin embargo, cada día crece el interés por desarrollar alimentos no lácteos como vehículo para probióticos. Los productos de origen vegetal son una buena alternativa para estas innovaciones. Tienen la ventaja de que son muy aceptados y accesibles para la población. Adicionalmente, representan una alternativa de consumo para poblaciones con dietas restringidas. Sin embargo, la incorporación de probióticos a estos productos requiere considerar varios criterios y vencer retos tecnológicos con la finalidad de conservarlos funcionalmente activos.
Collapse
|