51
|
Liang SH, Shen YC, Wu JY, Wang LJ, Wu MF, Li J. Impact of Poor Preoperative Glycemic Control on Outcomes among Patients with Cervical Cancer Undergoing a Radical Hysterectomy. Oncol Res Treat 2019; 43:10-18. [PMID: 31747660 DOI: 10.1159/000502911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 08/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND The impact of preoperative glycemic control on the survival outcomes of patients undergoing a radical hysterectomy (RH) for cervical cancer has not been investigated. PATIENTS AND METHODS We reviewed patients who underwent a type III RH for cervical cancer between January 2004 and June 2011 in our institution. RESULTS A total of 431 patients were included and 83 (19.3%) were diagnosed with diabetes mellitus (DM). Poorly controlled DM (preoperative hemoglobin A1c [HbA1c] ≥7.0%) was observed in 49 (59.0%) diabetic patients. Compared to patients without DM and diabetic patients with good glycemic control (preoperative HbA1c <7.0%), diabetic patients with poor glycemic control had significantly higher risks of tumor recurrence, cervical cancer-specific death, and overall death. In multivariate analysis, DM with poor glycemic control independently predicted recurrence-free survival (RFS), cancer-specific survival (CSS), and overall survival (OS). We excluded patients without DM and performed a sensitivity analysis. When HbA1c levels were treated as a dichotomous variable, preoperative HbA1c ≥7.0% was independently associated with RFS, CSS, and OS. When HbA1c level was treated as a continuous variable, it remained an independent predictor of RFS, CSS, and OS. CONCLUSION DM with poor glycemic control prior to RH was significantly associated with an increased risk of recurrence and mortality in cervical cancer patients. These results underscore the importance of intensive glycemic control and close follow-up for diabetic patients.
Collapse
Affiliation(s)
- Si-Hua Liang
- Operating Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Chong Shen
- Operating Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie-Ying Wu
- Operating Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Wang
- Operating Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miao-Fang Wu
- Operating Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,
| | - Jing Li
- Operating Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
52
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
53
|
Manu KA, Cao PHA, Chai TF, Casey PJ, Wang M. p21cip1/waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel) 2019; 11:cancers11081112. [PMID: 31382612 PMCID: PMC6721591 DOI: 10.3390/cancers11081112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess metabolic properties that are different from benign cells. These unique characteristics have become attractive targets that are being actively investigated for cancer therapy. p21cip1/waf1, also known as Cyclin-Dependent Kinase inhibitor 1A, is encoded by the CDKN1A gene. It is a major p53 target gene involved in cell cycle progression that has been extensively evaluated. To date, p21 has been reported to regulate various cell functions, both dependent and independent of p53. Besides regulating the cell cycle, p21 also modulates apoptosis, induces senescence, and maintains cellular quiescence in response to various stimuli. p21 transcription is induced in response to stresses, including those from oxidative and chemotherapeutic treatment. A recent study has shown that in response to metabolic stresses such as nutrient and energy depletion, p21 expression is induced to regulate various cell functions. Despite the biological significance, the mechanism of p21 regulation in cancer adaptation to metabolic stress is underexplored and thus represents an exciting field. This review focuses on the recent development of p21 regulation in response to metabolic stress and its impact in inducing cell cycle arrest and death in cancer cells.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Pham Hong Anh Cao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
54
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
55
|
Courtois S, Lehours P, Bessède E. The therapeutic potential of metformin in gastric cancer. Gastric Cancer 2019; 22:653-662. [PMID: 30900101 DOI: 10.1007/s10120-019-00952-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Metformin is a biguanide molecule used since 1957 to treat type 2 diabetes patients. In addition to its hypoglycemic effects, epidemiological studies have shown that metformin can be associated with a decrease in cancer development risk in diabetic populations. Thus, since 2005 this molecule is largely studied for its antitumoural properties in different types of cancer. The potential antitumoural effect of metformin in gastric cancer has been poorly studied. Here, we detailed the different described mechanisms implicated in the antitumoural effect of metformin in gastric cancer, from the signalling pathways to the functional effects on gastric cancer cell lines and gastric cancer stem cells.
Collapse
Affiliation(s)
- Sarah Courtois
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.
| | - Philippe Lehours
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH), University Hospital of Bordeaux, Bordeaux, France
| | - Emilie Bessède
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH), University Hospital of Bordeaux, Bordeaux, France
| |
Collapse
|
56
|
Albini A, Bassani B, Baci D, Dallaglio K, Gallazzi M, Corradino P, Bruno A, Noonan DM. Nutraceuticals and "Repurposed" Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer. Curr Med Chem 2019; 26:973-987. [PMID: 28933290 DOI: 10.2174/0929867324666170920144130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic, degenerative diseases are often characterized by inflammation and aberrant angiogenesis. For these pathologies, including rheumatoid arthritis, cardiovascular and autoimmune diseases, cancer, diabetes, and obesity, current therapies have limited efficacy. OBJECTIVES The validation of novel (chemo)preventive and interceptive approaches, and the use of new or repurposed agents, alone or in combination with registered drugs, are urgently required. RESULTS Phytochemicals (triterpenoids, flavonoids, retinoids) and their derivatives, nonsteroidal anti-inflammatory drugs (aspirin) as well as biguanides (metformin and phenformin) originally developed from phytochemical backbones, are multi-target agents showing antiangiogenic and anti-anti-inflammatory proprieties. Many of them target AMPK and metabolic pathways such as the mTOR axis. We summarize the beneficial effects of several compounds in conferring protection and supporting therapy, and as a paradigm, we present data on terpenoids & biquanides on beer hop xanthohumol and hydroxytryrosol from olive mill waste waters. CONCLUSIONS These molecules could be employed for combinatorial chemoprevention and interception approaches or chemoprevention/therapy regimens for cancer and other chronic complex diseases.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Barbara Bassani
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Denisa Baci
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Katiuscia Dallaglio
- Laboratory of Translational Research, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Matteo Gallazzi
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Corradino
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
57
|
Gong TT, Wu QJ, Lin B, Ruan SK, Kushima M, Takimoto M. Observational Studies on the Association Between Post-diagnostic Metformin Use and Survival in Ovarian Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:458. [PMID: 31192140 PMCID: PMC6549526 DOI: 10.3389/fonc.2019.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives: To summarize and quantify the relationship between post-diagnostic metformin use and ovarian cancer (OC) survival. Methods: We systematically conducted an updated meta-analysis based on observational studies published up to December 31, 2018, identified from PubMed and Web of Science. Two team members independently extracted data and assessed the quality of each study. Summary Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using a random-effects model. Results: Five cohort studies including 3,582 OC patients were included. All studies were graded as low risk of bias according to the Newcastle-Ottawa quality assessment scale. Post-diagnostic metformin use was associated with improved overall survival (summarized HR = 0.42, 95% CI = 0.31-0.56; I 2 = 0%, P = 0.842) and progression-free survival (summarized HR = 0.69, 95% CI = 0.45-1.07; I 2 = 61.9%, P = 0.049) of OC patients. For OC patients with diabetes, post-diagnostic metformin use was associated with improved overall survival (summarized HR = 0.51, 95% CI = 0.28-0.95; I 2 = 47.6%, P = 0.149) and progression-free survival (summarized HR = 0.38, 95% CI = 0.27-0.55; I 2 = 0%, P = 0.594). No significant publication bias was detected in these analyses. Conclusions: Post-diagnostic metformin use is consistently associated with better survival of OC patients regardless of diabetes status. Studies with larger sample sizes and prospective designs are required to confirm these findings and obtain detailed information, including standardized references for comparison, intensity and dose of metformin use, and further adjustment for potential confounders.
Collapse
Affiliation(s)
- Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pathology, Showa University, Tokyo, Japan
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shi-Kai Ruan
- Finance Department, Gies College of Business, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Miki Kushima
- Department of Pathology, Showa University, Tokyo, Japan
| | | |
Collapse
|
58
|
Kitson SJ, Rosser M, Fischer DP, Marshall KM, Clarke RB, Crosbie EJ. Targeting Endometrial Cancer Stem Cell Activity with Metformin Is Inhibited by Patient-Derived Adipocyte-Secreted Factors. Cancers (Basel) 2019; 11:cancers11050653. [PMID: 31083574 PMCID: PMC6562824 DOI: 10.3390/cancers11050653] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Advanced endometrial cancer continues to have a poor prognosis, due to limited treatment options, which may be further adversely impacted by obesity. Endometrial cancer stem cells have been reported to drive metastasis, chemotherapy resistance and disease relapse, but have yet to be fully characterised and no specific targeted therapies have been identified. Here, we describe the phenotype and genotype of aldehyde dehydrogenase high (ALDHhigh) and CD133+ve endometrial cancer stem cells and how adipocyte secreted mediators block the inhibitory effect of metformin on endometrial cancer stem cell activity. Ishikawa and Hec-1a cell lines were used to characterise ALDHhigh and CD133+ve endometrial cancer cells using flow cytometry, functional sphere assays and quantitative-Polymerase Chain Reaction. The comparative effect of metformin on endometrial cancer stem cell activity and bulk tumour cell proliferation was determined using an Aldefluor and cytotoxicity assay. The impact of adipocyte secreted mediators on metformin response was established using patient-derived conditioned media. ALDHhigh cells demonstrated greater endometrial cancer stem cell activity than CD133+ve cells and had increased expression of stem cell and epithelial-mesenchymal transition genes. Treatment with 0.5-1 mM metformin reduced the proportion and activity of both endometrial cancer stem cell populations (p ≤ 0.05), without affecting cell viability. This effect was, however, inhibited by exposure to patient-derived adipocyte conditioned media. These results indicate a selective and specific effect of metformin on endometrial cancer stem cell activity, which is blocked by adipocyte secreted mediators. Future studies of metformin as an adjuvant therapy in endometrial cancer should be adequately powered to investigate the influence of body mass on treatment response.
Collapse
Affiliation(s)
- Sarah J Kitson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester M13 9WL, UK.
| | - Matthew Rosser
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Deborah P Fischer
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Kay M Marshall
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK.
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester M13 9WL, UK.
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
59
|
Nwani NG, Condello S, Wang Y, Swetzig WM, Barber E, Hurley T, Matei D. A Novel ALDH1A1 Inhibitor Targets Cells with Stem Cell Characteristics in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11040502. [PMID: 30965686 PMCID: PMC6521036 DOI: 10.3390/cancers11040502] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023] Open
Abstract
A small of population of slow cycling and chemo-resistant cells referred to as cancer stem cells (CSC) have been implicated in cancer recurrence. There is emerging interest in developing targeted therapeutics to eradicate CSCs. Aldehyde-dehydrogenase (ALDH) activity was shown to be a functional marker of CSCs in ovarian cancer (OC). ALDH activity is increased in cells grown as spheres versus monolayer cultures under differentiating conditions and in OC cells after treatment with platinum. Here, we describe the activity of CM37, a newly identified small molecule with inhibitory activity against ALDH1A1, in OC models enriched in CSCs. Treatment with CM37 reduced OC cells' proliferation as spheroids under low attachment growth conditions and the expression of stemness-associated markers (OCT4 and SOX2) in ALDH+ cells fluorescence-activated cell sorting (FACS)-sorted from cell lines and malignant OC ascites. Likewise, siRNA-mediated ALDH1A1 knockdown reduced OC cells' proliferation as spheres, expression of stemness markers, and delayed tumor initiation capacity in vivo. Treatment with CM37 promoted DNA damage in OC cells, as evidenced by induction of γH2AX. This corresponded to increased expression of genes involved in DNA damage response, such as NEIL3, as measured in ALDH+ cells treated with CM37 or in cells where ALDH1A1 was knocked down. By inhibiting ALDH1A1, CM37 augmented intracellular ROS accumulation, which in turn led to increased DNA damage and reduced OC cell viability. Cumulatively, our findings demonstrate that a novel ALDH1A1 small molecule inhibitor is active in OC models enriched in CSCs. Further optimization of this new class of small molecules could provide a novel strategy for targeting treatment-resistant OC.
Collapse
Affiliation(s)
- Nkechiyere G Nwani
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Wendy M Swetzig
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Emma Barber
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Thomas Hurley
- Department of Biochemistry and molecular Biology, Indiana University, Indianapolis, IN 46202, USA.
- Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
- Robert H Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
60
|
Zhao Y, Zeng X, Tang H, Ye D, Liu J. Combination of metformin and paclitaxel suppresses proliferation and induces apoptosis of human prostate cancer cells via oxidative stress and targeting the mitochondria-dependent pathway. Oncol Lett 2019; 17:4277-4284. [PMID: 30944622 PMCID: PMC6444335 DOI: 10.3892/ol.2019.10119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Previous studies have reported that metformin (MET) has anticancer activity. In combination with chemotherapeutic drugs, MET reduces the dosage of chemotherapeutic drugs required and enhances anticancer efficacy. In the present study, the combination of MET and paclitaxel (PTX) in three human prostate cancer (PCa) cell lines (22RV1, PC-3 and LNCaP) was evaluated to investigate the effects on proliferation and apoptosis of PCa cells. The present study explored whether their effects were associated with reactive oxygen species (ROS). An MTT assay and microscopy were used to study the effect of MET + PTX on cell growth. Half maximal inhibitory concentration (IC50) values were obtained for MET (12.281±1.089 mM for 22RV1, 2.248±0.352 mM for PC-3 cells and 3.610±0.577 mM for LNCaP cells) and PTX (13.170±1.12 nM for PC-3 cells) at 48 h. Since the survival rate of 22RV1 and LNCaP cells did not decrease linearly with increasing PTX concentration, it is difficult to estimate accurate IC50; therefore, only IC50 values for PTX in PC-3 cells were given. When treating the cells with 5 mM MET, the IC50 of PTX decreased to 5.423±0.734 nM for PC-3 cells. Annexin V and propidium iodide staining was used to investigate apoptosis by flow cytometry. The apoptotic mechanisms of MET + PTX in PCa were investigated by detecting the expression of apoptosis-related proteins, activities of caspase-3/7, intracellular ROS accumulation, mitochondrial membrane potential, and intracellular levels of adenosine 5′-triphosphate (ATP). MET + PTX induced PCa apoptosis and ROS accumulation, and decreased mitochondrial membrane potential and intracellular levels of ATP. Taken together, these results indicated that MET + PTX suppressed PCa cell proliferation in a dose- and time-dependent manner. In addition, MET + PTX induced apoptosis by increasing ROS levels, reducing mitochondrial membrane potential, and activating mitochondrial-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xin Zeng
- Laboratory of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Huancheng Tang
- Laboratory of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Dongcai Ye
- Laboratory of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
61
|
Teh JT, Zhu WL, Newgard CB, Casey PJ, Wang M. Respiratory Capacity and Reserve Predict Cell Sensitivity to Mitochondria Inhibitors: Mechanism-Based Markers to Identify Metformin-Responsive Cancers. Mol Cancer Ther 2019; 18:693-705. [DOI: 10.1158/1535-7163.mct-18-0766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
|
62
|
Targeting Mitochondria for Treatment of Chemoresistant Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20010229. [PMID: 30626133 PMCID: PMC6337358 DOI: 10.3390/ijms20010229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.
Collapse
|
63
|
Metformin Results in Diametrically Opposed Effects by Targeting Non-Stem Cancer Cells but Protecting Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20010193. [PMID: 30621095 PMCID: PMC6337486 DOI: 10.3390/ijms20010193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) have been shown as a distinct population of cancer cells strongly implicated with resistance to conventional chemotherapy. Metformin, the most widely prescribed drug for diabetes, was reported to target cancer stem cells in various cancers. In this study, we sought to determine the effects of metformin on head and neck squamous cell carcinoma (HNSCC). CSCs and non-stem HNSCC cells were treated with metformin and cisplatin alone, and in combination, and cell proliferation levels were measured through MTS assays. Next, potential targets of metformin were explored through computational small molecule binding analysis. In contrast to the reported effects of metformin on CSCs in other cancers, our data suggests that metformin protects HNSCC CSCs against cisplatin in vitro. Treatment with metformin resulted in a dose-dependent induction of the stem cell genes CD44, BMI-1, OCT-4, and NANOG. On the other hand, we observed that metformin successfully decreased the proliferation of non-stem HNSCC cells. Computational drug–protein interaction analysis revealed mitochondrial complex III to be a likely target of metformin. Based on our results, we present the novel hypothesis that metformin targets complex III to reduce reactive oxygen species (ROS) levels, leading to the differential effects observed on non-stem cancer cells and CSCs.
Collapse
|
64
|
Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacol Res 2019; 139:298-313. [DOI: 10.1016/j.phrs.2018.11.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
65
|
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM, Rueda BR. Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol 2018; 107:92-103. [PMID: 30572025 DOI: 10.1016/j.biocel.2018.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca D Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Celeste M DiGloria
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
66
|
Kwon YS, Chun SY, Nan HY, Nam KS, Lee C, Kim S. Metformin selectively targets 4T1 tumorspheres and enhances the antitumor effects of doxorubicin by downregulating the AKT and STAT3 signaling pathways. Oncol Lett 2018; 17:2523-2530. [PMID: 30675314 DOI: 10.3892/ol.2018.9827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that metformin (Met), the first-line medication for the treatment of type 2 diabetes, exhibited anticancer and chemoprotective effects in diverse cancer cells. In this study, we investigated the effects of Met on the drug-resistance of 4T1 murine breast cancer tumorspheres (TS) and the mechanism responsible for its drug-resistance. 4T1 TS exhibited accumulations of cells at the G0/G1 phase compared with cells in monolayer culture, which suggested the majority of cells in TS were quiescent. Furthermore, it was identified that activations of the signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT) signaling pathways in 4T1 TS conferred drug-resistance to doxorubicin (Dox) and lapatinib (Lapa). However, Met selectively targeted TS rather than cells in monolayer culture and increased the cytotoxic effect of Dox on TS by inhibiting activations of the STAT3 and AKT signaling pathways. These observations suggested that inhibitions of STAT3 and AKT underlie the selective cytotoxic effects of Met on TS. In addition, Met exhibited synergistic antitumor effects with Dox on 4T1 tumor-bearing BALB/c mice. Our findings suggest that combinations of Met and cytotoxic anticancer drugs may offer an advantage for treating drug-resistant breast cancer.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| | - So-Young Chun
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| | - Hong-Yan Nan
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 380660, Republic of Korea
| |
Collapse
|
67
|
Akhavan S, Ghahghaei-Nezamabadi A, Modaresgilani M, Mousavi AS, Sepidarkish M, Tehranian A, Rezayof E. Impact of diabetes mellitus on epithelial ovarian cancer survival. BMC Cancer 2018; 18:1246. [PMID: 30541490 PMCID: PMC6291925 DOI: 10.1186/s12885-018-5162-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Background Diabetes mellitus (DM) is associated with poorer outcomes in some cancers. Its effect on ovarian cancer is less clear. We consider the effect of DM on overall survival (OS) and progression free survival (PFS) in patients with epithelial ovarian cancer (EOC). Methods A retrospective cohort study of 215 patients with EOC diagnosed between 2009 and 2016 was performed. Records were reviewed for standard demographic, pathologic and DM diagnosis data. Cox regression was used to evaluate the relationship between disease status and survival after adjustment for age, body mass index (BMI), parity, stage, grade, histology, debulking status, hypertension (HTN), menopause status and neoadjuant chemotherapy. Results Patients with DM (27.97, 95%CI: 23.63 to 32.30) had a significantly shorter OS rates compared to patients without DM (41.01, 95%CI: 38.84 to 43.17). The unadjusted hazard ratio (HR) for the association between OS time and DM was 4.76 (95%CI: 2.99 to 7.59, P < 0.001). Following adjustment for demographic and pathologic variables, the HR was 3.93 (95% CI: 2.01 to 7.68; P < 0.001). The PFS in patients with DM (14.10, 95%CI: 11.76 to 16.44) was significantly shorter compared to patients without DM (28.83, 95%CI: 26.13 to 31.54). The unadjusted HR for PFS and DM was 5.69 (95% CI: 3.05 to 10.61; P < 0.001). After adjustment for demographic and pathologic variables, the HR was 2.73 (95% CI, 1.18 to 6.95; P < 0.001). Conclusions DM can negatively effect on PFS and OS in EOC patients independent of the effect of other variables.
Collapse
Affiliation(s)
- Setareh Akhavan
- Gynecology Oncology Department, Vali-Asr Hospital, Tehran University of Medical Sciences, P.O. Box: 16635148, Tehran, Iran
| | - Akram Ghahghaei-Nezamabadi
- Gynecology Oncology Department, Vali-Asr Hospital, Tehran University of Medical Sciences, P.O. Box: 16635148, Tehran, Iran.
| | - Mitra Modaresgilani
- Gynecology Oncology Department, Vali-Asr Hospital, Tehran University of Medical Sciences, P.O. Box: 16635148, Tehran, Iran
| | - Azam Sadat Mousavi
- Gynecology Oncology Department, Vali-Asr Hospital, Tehran University of Medical Sciences, P.O. Box: 16635148, Tehran, Iran
| | - Mahdi Sepidarkish
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Afsaneh Tehranian
- Department of Obstetrics and Gynecology, Roointan-Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Rezayof
- Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
68
|
Said N. Screening of three-dimensional spheroids of ovarian cancer: identification of novel therapeutics targeting stemness and chemoresistance. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S26. [PMID: 30613601 DOI: 10.21037/atm.2018.09.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Neveen Said
- Departments of Cancer Biology, Pathology, and Urology, Wake Forest University School of Medicine and Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, USA
| |
Collapse
|
69
|
Dynamism, Sensitivity, and Consequences of Mesenchymal and Stem-Like Phenotype of Cancer Cells. Stem Cells Int 2018; 2018:4516454. [PMID: 30405720 PMCID: PMC6199882 DOI: 10.1155/2018/4516454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
There are remarkable similarities in the description of cancer stem cells (CSCs) and cancer cells with mesenchymal phenotype. Both cell types are highly tumorigenic, resistant against common anticancer treatment, and thought to cause metastatic growth. Moreover, cancer cells are able to switch between CSC and non-CSC phenotypes and vice versa, to ensure the necessary balance within the tumor. Likewise, cancer cells can switch between epithelial and mesenchymal phenotypes via well-described transition (EMT/MET) that is thought to be crucial for tumor propagation. In this review, we discuss whether, and to which extend, the CSCs and mesenchymal cancer cells are overlapping phenomena in terms of mechanisms, origin, and implication for cancer treatment. As well, we describe the dynamism of both phenotypes and involvement of the tumor microenvironment in CSC reversion and in EMT.
Collapse
|
70
|
Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J Control Release 2018; 288:62-83. [DOI: 10.1016/j.jconrel.2018.08.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
|
71
|
Prognosis of ovarian cancer in women with type 2 diabetes using metformin and other forms of antidiabetic medication or statins: a retrospective cohort study. BMC Cancer 2018; 18:767. [PMID: 30055585 PMCID: PMC6064082 DOI: 10.1186/s12885-018-4676-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022] Open
Abstract
Background Ovarian cancer is one of the most lethal cancers and women with type 2 diabetes (T2D) have even poorer survival from it. We assessed the prognosis of ovarian cancer in women with type 2 diabetes treated with metformin, other forms of antidiabetic medication, or statins. Methods Study cohort consisted of women with T2D diagnosed with ovarian cancer in Finland 1998–2011. They were identified from a nationwide diabetes database (FinDM), being linked to several national registers. Patients were grouped according to their medication in the three years preceding ovarian cancer diagnosis. The Aalen–Johansen estimator was used to describe cumulative mortality from ovarian cancer and from other causes in different medication groups. Mortality rates were analysed by Cox models, and adjusted hazard ratios (HR) with 95% confidence intervals (95% CIs) were estimated in relation to the use of different forms of medication. Main outcome measures were death from ovarian cancer and death from other causes. Results During the accrual period 421 newly diagnosed ovarian cancers were identified in the FinDM database. No evidence was found for any differences in mortality from ovarian cancer or other causes between different antidiabetic medication groups. Pre-diagnostic use of statins was observed to be associated with decreased mortality from ovarian cancer compared with no such use (HR 0.72, 95% CI 0.56–0.93). Conclusions Our findings are inconclusive as regards the association between metformin and ovarian cancer survival. However, some evidence was found for improved prognosis of ovarian cancer with pre-diagnostic statin use, requiring cautious interpretation, though. Electronic supplementary material The online version of this article (10.1186/s12885-018-4676-z) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Liu Y, Feng Y, Liu H, Wu J, Tang Y, Wang Q. Real-time assessment of platinum sensitivity of primary culture from a patient with ovarian cancer with extensive metastasis and the platinum sensitivity enhancing effect by metformin. Oncol Lett 2018; 16:4253-4262. [PMID: 30250536 PMCID: PMC6144930 DOI: 10.3892/ol.2018.9223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/14/2018] [Indexed: 01/30/2023] Open
Abstract
The aim of the present study was to perform a rapid evaluation of the efficiency of commonly used platinum-based chemotherapy regimens for patients with ovarian cancer with extensive metastases using an in vitro method combined with culturing primary cells and real-time monitoring, and to further explore the enhanced effect of metformin on susceptibility of ovarian cancer cells to platinum-based chemotherapy. The primary omental metastatic (OM) cells were isolated from the omentum metastasis of a surgical patient with stage IIIc ovarian carcinoma. Drug sensitivity was evaluated using the xCELLigence system, and screening of the most effective platinum chemotherapy was performed through analysis of cell susceptibility to cisplatin, carboplatin, nedaplatin and paclitaxel or docetaxel alone or in combination. At the same time, this system was used to determine whether metformin was able to increase the sensitivity of cancer cells to platinum chemotherapy. The results revealed that nedaplatin exhibited the most marked cytotoxic effect on the OM cells, followed by those of carboplatin and cisplatin. The addition of docetaxel enhanced the cytotoxic effect, and the combination of platinum and paclitaxel also enhanced the effect. Metformin rapidly increased the sensitivity of cells to platinum-based chemotherapy, and this effect was dose-dependent. The sensitivity of OM cells to different platinum-based regimens was varied. The effect of metformin on chemotherapeutic sensitization of cancer cells is clear in vitro, and the real-time cell analyzer assay has the potential to assist in determining individualized drug regimens for patients with metastatic ovarian cancer.
Collapse
Affiliation(s)
- Yingzhao Liu
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Feng
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hongmei Liu
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianyong Wu
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Tang
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Urology Department, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530199, P.R. China
| | - Qi Wang
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
73
|
Cuyàs E, Verdura S, Folguera-Blasco N, Bastidas-Velez C, Martin ÁG, Alarcón T, Menendez JA. Mitostemness. Cell Cycle 2018; 17:918-926. [PMID: 29886796 DOI: 10.1080/15384101.2018.1467679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Unraveling the key mechanisms governing the retention versus loss of the cancer stem cell (CSC) state would open new therapeutic avenues to eradicate cancer. Mitochondria are increasingly recognized key drivers in the origin and development of CSC functional traits. We here propose the new term "mitostemness" to designate the mitochondria-dependent signaling functions that, evolutionary rooted in the bacterial origin of mitochondria, regulate the maintenance of CSC self-renewal and resistance to differentiation. Mitostemness traits, namely mitonuclear communication, mitoproteome components, and mitochondrial fission/fusion dynamics, can be therapeutically exploited to target the CSC state. We briefly review the pre-clinical evidence of action of investigational compounds on mitostemness traits and discuss ongoing strategies to accelerate the clinical translation of new mitostemness drugs. The recognition that the bacterial origin of present-day mitochondria can drive decision-making signaling phenomena may open up a new therapeutic dimension against life-threatening CSCs. New therapeutics aimed to target mitochondria not only as biochemical but also as biophysical and morpho-physiological hallmarks of CSC might certainly guide improvements to cancer treatment.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Sara Verdura
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | | | | | | | - Tomás Alarcón
- c Centre de Recerca Matemàtica , Barcelona , Spain.,e Barcelona Graduate School of Mathematics (BGSMath) , Barcelona , Spain.,f ICREA , Barcelona , Spain.,g Departament de Matemàtiques , Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Javier A Menendez
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| |
Collapse
|
74
|
Ma W, Chen J, Meng Y, Yang J, Cui Q, Zhou Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Front Microbiol 2018; 9:1336. [PMID: 29988362 PMCID: PMC6023991 DOI: 10.3389/fmicb.2018.01336] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023] Open
Abstract
In recent years, the first-line anti-diabetic drug metformin has been shown to be also useful for the treatment of other diseases like cancer. To date, few reports were about the impact of metformin on gut microbiota. To fully understand the mechanism of action of metformin in treating diseases other than diabetes, it is especially important to investigate the impact of long-term metformin treatment on the gut microbiome in non-diabetic status. In this study, we treated healthy mice with metformin for 30 days, and observed 46 significantly changed gut microbes by using the 16S rRNA-based microbiome profiling technique. We found that microbes from the Verrucomicrobiaceae and Prevotellaceae classes were enriched, while those from Lachnospiraceae and Rhodobacteraceae were depleted. We further compared the altered microbiome profile with the profiles under various disease conditions using our recently developed comparative microbiome tool known as MicroPattern. Interestingly, the treatment of diabetes patients with metformin positively correlates with colon cancer and type 1 diabetes, indicating a confounding effect on the gut microbiome in patients with diabetes. However, the treatment of healthy mice with metformin exhibits a negative correlation with multiple inflammatory diseases, indicating a protective anti-inflammatory role of metformin in non-diabetes status. This result underscores the potential effect of metformin on gut microbiome homeostasis, which may contribute to the treatment of non-diabetic diseases.
Collapse
Affiliation(s)
- Wei Ma
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Central Laboratory, PLA Navy General Hospital, Beijing, China
| | - Ji Chen
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhong Meng
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jichun Yang
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
| |
Collapse
|
75
|
Zhao L, Au JLS, Wientjes MG. Method to Assess Interactivity of Drugs with Nonparallel Concentration Effect Relationships. Curr Cancer Drug Targets 2018; 17:735-755. [PMID: 28359247 DOI: 10.2174/1568009617666170330154054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Commonly used methods for analyzing interactivity between drugs (e.g. synergy, antagonism) such as isobologram, combination index, and curve shift are based on the Loewe Additivity principle of dose equivalence and the inherent assumption of similar concentration- effect (C-E) including parallel curves and equal maximum effects (Emax), and therefore are not suitable for drugs with dissimilar C-E. This study describes a new method that is without this limitation and has the additional advantage of enabling statistical analysis. METHODS AND RESULTS The method comprises two steps. First, based on the dose equivalence principle, the experimentally obtained C-E of one drug was used to calculate the equally effective C-E of the other drug at no interactivity; the resulting two zero-interactivity C-E formed the upper and lower boundaries of Additivity Envelope. Next, 95% confidence intervals calculated from experimental data were added to Additivity Envelope to obtain Uncertainty Envelope (UE). Experimentally observed effects of drug combinations (C-Ecomb,observed) located within UE indicate additivity whereas C-Ecomb,observed located above or below UE indicate statistically significant (p<0.05) synergy or antagonism, respectively. Additional in silico studies demonstrated the shape and size of Additivity Envelope, which determines the ability to detect drug interactivity, depended on the Drug A-to-B concentration ratios and the ratios of their C-E curve shape parameter. Analyses of experimental results of combinations of drugs with nonparallel C-E and/or unequal Emax indicated UE as more versatile and provided more information, compared to earlier methods. CONCLUSION UE is a broadly applicable method for analysis, including statistical significance assessment, of drug interactivity.
Collapse
Affiliation(s)
- Liang Zhao
- The Ohio State University, Columbus, OH. United States
| | - Jessie L-S Au
- The Ohio State University, Columbus, OH. United States
| | - M Guillaume Wientjes
- Optimum Therapeutics, LLC, 1815 Aston Ave STE 107, Carlsbad, CA 92008. United States
| |
Collapse
|
76
|
Xu S, Yang Z, Jin P, Yang X, Li X, Wei X, Wang Y, Long S, Zhang T, Chen G, Sun C, Ma D, Gao Q. Metformin Suppresses Tumor Progression by Inactivating Stromal Fibroblasts in Ovarian Cancer. Mol Cancer Ther 2018; 17:1291-1302. [PMID: 29545331 DOI: 10.1158/1535-7163.mct-17-0927] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Sen Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zongyuan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ya Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sixiang Long
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taoran Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
77
|
Yang SH, Li S, Lu G, Xue H, Kim DH, Zhu JJ, Liu Y. Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget 2018; 7:78787-78803. [PMID: 27791206 PMCID: PMC5346677 DOI: 10.18632/oncotarget.12859] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM). However, the molecular mechanism underlying how metformin exerts its anti-cancer effects remains elusive. We used a combined experimental and bioinformatics approach to identify genes and complex regulatory/signal transduction networks that are involved in restoring TMZ sensitivity of GBM cells after metformin treatment. First, we established TMZ resistant GBM cell lines and found that the resistant cells regained TMZ sensitivity after metformin treatment. We further identified that metformin down-regulates SOX2 expression in TMZ-resistant glioma cells, reduces neurosphere formation capacity of glioblastoma cells, and inhibits GBM xenograft growth in vivo. Finally, the global gene expression profiling data reveals that multiple pathways are involved in metformin treatment related gene expression changes, including fatty acid metabolism and RNA binding and splicing pathways. Our work provided insight of the mechanisms on potential synergistic effects of TMZ and metformin in the treatment of glioblastoma, which will in turn yield potentially translational value for clinical applications.
Collapse
Affiliation(s)
- Seung Ho Yang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangrong Lu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Haipeng Xue
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dong H Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jay-Jiguang Zhu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ying Liu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
78
|
Mondal S, Samajdar RN, Mukherjee S, Bhattacharyya AJ, Bagchi B. Unique Features of Metformin: A Combined Experimental, Theoretical, and Simulation Study of Its Structure, Dynamics, and Interaction Energetics with DNA Grooves. J Phys Chem B 2018; 122:2227-2242. [DOI: 10.1021/acs.jpcb.7b11928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rudra N. Samajdar
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Saumyak Mukherjee
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aninda J. Bhattacharyya
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
79
|
Saini N, Yang X. Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:133-143. [PMID: 29342230 DOI: 10.1093/abbs/gmx106] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Metformin, a first line medication for type II diabetes, initially entered the spotlight as a promising anti-cancer agent due to epidemiologic reports that found reduced cancer risk and improved clinical outcomes in diabetic patients taking metformin. To uncover the anti-cancer mechanisms of metformin, preclinical studies determined that metformin impairs cellular metabolism and suppresses oncogenic signaling pathways, including receptor tyrosine kinase, PI3K/Akt, and mTOR pathways. Recently, the anti-cancer potential of metformin has gained increasing interest due to its inhibitory effects on cancer stem cells (CSCs), which are associated with tumor metastasis, drug resistance, and relapse. Studies using various cancer models, including breast, pancreatic, prostate, and colon, have demonstrated the potency of metformin in attenuating CSCs through the targeting of specific pathways involved in cell differentiation, renewal, metastasis, and metabolism. In this review, we provide a comprehensive overview of the anti-cancer actions and mechanisms of metformin, including the regulation of CSCs and related pathways. We also discuss the potential anti-cancer applications of metformin as mono- or combination therapies.
Collapse
Affiliation(s)
- Nipun Saini
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
80
|
Di Pietro M, Pascuali N, Parborell F, Abramovich D. Ovarian angiogenesis in polycystic ovary syndrome. Reproduction 2018; 155:R199-R209. [PMID: 29386378 DOI: 10.1530/rep-17-0597] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS.
Collapse
Affiliation(s)
- Mariana Di Pietro
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| |
Collapse
|
81
|
Lee JE, Lim JH, Hong YK, Yang SH. High-Dose Metformin Plus Temozolomide Shows Increased Anti-tumor Effects in Glioblastoma In Vitro and In Vivo Compared with Monotherapy. Cancer Res Treat 2018; 50:1331-1342. [PMID: 29334602 PMCID: PMC6192919 DOI: 10.4143/crt.2017.466] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
Purpose The purpose of the study is to investigate the efficacy of combined treatment with temozolomide (TMZ) and metformin for glioblastoma (GBM) in Vitro and in vivo. Materials and Methods We investigated the efficacy of combined treatment with TMZ and metformin using cell viability and apoptosis assays. A GBM orthotopic mice model was established by inoculation of 5×105 U87 cells and treatedwith metformin, TMZ, and the combination for 4weeks. Western blotting and immunofluorescence of tumor specimens were analyzed to investigate AMP-activated protein kinase (AMPK) and AKT pathway. Results The combination of TMZ and metformin showed higher cytotoxicity than single agents in U87, U251, and A172 cell lines. A combination of high-dose metformin and TMZ showed the highest apoptotic activity. The combination of TMZ and metformin enhanced AMPK phosphorylation and inhibited mammalian target of rapamycin phosphorylation, AKT phosphorylation, and p53 expression. The median survival of each group was 43.6, 55.2, 53.2, 65.2, and 71.3 days for control, metformin treatment (2 mg/25 g/day or 10 mg/25 g/day), TMZ treatment (15 mg/kg/day), combination treatment with low-dose metformin and TMZ, and combination treatment with high-dose metformin and TMZ, respectively. Expression of fatty acid synthase (FASN) was significantly decreased in tumor specimens treated with metformin and TMZ. Conclusion The combination of metformin and TMZ was superior to monotherapy using metformin or TMZ in terms of cell viability in Vitro and survival in vivo. The combination of high-dose metformin and TMZ inhibited FASN expression in an orthotopic model. Inhibition of FASN might be a potential therapeutic target of GBM.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
82
|
Hodeib M, Ogrodzinski MP, Vergnes L, Reue K, Karlan BY, Lunt SY, Aspuria PJP. Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells. Oncotarget 2018; 9:4044-4060. [PMID: 29423103 PMCID: PMC5790520 DOI: 10.18632/oncotarget.23661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Metformin is a widely used agent for the treatment of diabetes and infertility, however, it has been found to have anti-cancer effects in a variety of malignancies including high grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular metabolism of both HGSC cells and their precursor, normal fallopian tube secretory epithelial cells (FTSECs), is lacking. We addressed the effects of metformin and the more potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic analyses were used to metabolically differentiate the metformin-sensitive and metformin-resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic analysis revealed that metformin and phenformin generally induce similar changes in metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were also found in metformin sensitive cells relative to metformin resistant cells. These data identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin sensitivity and novel metabolic avenues for possible therapeutic intervention.
Collapse
Affiliation(s)
- Melissa Hodeib
- Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Martin P. Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth Y. Karlan
- Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul-Joseph P. Aspuria
- Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
83
|
Zi F, Zi H, Li Y, He J, Shi Q, Cai Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol Lett 2018; 15:683-690. [PMID: 29422962 PMCID: PMC5772929 DOI: 10.3892/ol.2017.7412] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/22/2017] [Indexed: 12/17/2022] Open
Abstract
Metformin is a standard clinical drug used to treat type 2 diabetes mellitus (T2DM) and polycystic ovary syndrome. Recently, epidemiological studies and meta-analyses have revealed that patients with T2DM have a lower incidence of tumor development than healthy controls and that patients diagnosed with cancer have a lower risk of mortality when treated with metformin, demonstrating an association between metformin and tumorigenesis. In vivo and in vitro studies have revealed that metformin has a direct antitumor effect, which may depress tumor proliferation and induce the apoptosis, autophagy and cell cycle arrest of tumor cells. The mechanism underpinning the antitumor effect of metformin has not been well established. Studies have demonstrated that reducing insulin and insulin-like growth factor levels in the peripheral blood circulation may lead to the inhibition of phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin (mTOR) signaling or activation of AMP-activated protein kinase, which inhibits mTOR signaling, a process that may be associated with the antitumor effect of metformin. The present review primarily focuses on the recent progress in understanding the function of metformin in tumor development.
Collapse
Affiliation(s)
- Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Huapu Zi
- Department of Oncology, Rizhao Traditional Chinese Medicine Hospital of Shandong Traditional Chinese Medicine University, Rizhao, Shandong 276800, P.R. China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qingzhi Shi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
84
|
Sanada Y, Sasanuma H, Takeda S, Tano K, Masunaga SI. Disruption of Hif-1α enhances cytotoxic effects of metformin in murine squamous cell carcinoma. Int J Radiat Biol 2017; 94:88-96. [DOI: 10.1080/09553002.2018.1409443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yu Sanada
- Particle Radiation Biology, Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Keizo Tano
- Particle Radiation Biology, Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka, Japan
| | - Shin-ichiro Masunaga
- Particle Radiation Biology, Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka, Japan
| |
Collapse
|
85
|
Jackson AL, Sun W, Kilgore J, Guo H, Fang Z, Yin Y, Jones HM, Gilliam TP, Zhou C, Bae-Jump VL. Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer. Oncotarget 2017; 8:100113-100127. [PMID: 29245964 PMCID: PMC5725006 DOI: 10.18632/oncotarget.22012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/30/2017] [Indexed: 01/07/2023] Open
Abstract
Obesity and diabetes have been associated with increased risk and worse outcomes in ovarian cancer (OC). The biguanide metformin is used in the treatment of type 2 diabetes and is also believed to have anti-tumorigenic benefits. Metformin is highly hydrophilic and requires organic cation transporters (OCTs) for entry into human cells. Phenformin, another biguanide, was taken off the market due to an increased risk of lactic acidosis over metformin. However, phenformin is not reliant on transporters for cell entry; and thus, may have increased potency as both an anti-diabetic and anti-tumorigenic agent than metformin. Thus, our goal was to evaluate the effect of phenformin on established OC cell lines, primary cultures of human OC cells and in an orthotopic mouse model of high grade serous OC. In three OC cell lines, phenformin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, inhibited adhesion and invasion, and activation of AMPK and inhibition of the mTOR pathway. Phenformin also exerted anti-proliferative effects in seven primary cell cultures of human OC. Lastly, phenformin inhibited tumor growth in an orthotopic mouse model of serous OC, coincident with decreased Ki-67 staining and phosphorylated-S6 expression and increased expression of caspase 3 and phosphorylated-AMPK. Our findings demonstrate that phenformin has anti-tumorigenic effects in OC as previously demonstrated by metformin but it is yet to be determined if it is superior to metformin for the potential treatment of this disease.
Collapse
Affiliation(s)
- Amanda L. Jackson
- Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua Kilgore
- Houston Methodist Gynecologic Oncology Associates, Houston, TX, USA
| | - Hui Guo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Shandong Cancer Hospital & Institute, Jinan, P.R. China
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah M. Jones
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Gilliam
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
86
|
Metformin synergistically enhances antitumor activity of cisplatin in gallbladder cancer via the PI3K/AKT/ERK pathway. Cytotechnology 2017; 70:439-448. [PMID: 29110119 DOI: 10.1007/s10616-017-0160-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Metformin (Met) is a widely used antidiabetic drug and has demonstrated interesting anticancer effects in various cancer models, alone or in combination with chemotherapeutic drugs. The aim of the present study is to investigate the synergistic effect of Met with cisplatin (Cis) on the tumor growth inhibition of gallbladder cancer cells (GBC-SD and SGC-996) and explore the underlying mechanism. Cells were treated with Met and/or Cis and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that Met and Cis inhibited the proliferation of gallbladder cancer cells, and combination treatment with Met and Cis resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with Met and Cis caused G0/G1 phase arrest by upregulating P21, P27 and downregulating CyclinD1, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, and p-ERK. In addition, pretreatment with a specific AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of Met + Cis, suggesting the key role of AKT in this process. More importantly, in nude mice model, Met and Cis in combination displayed more efficient inhibition of tumor weight and volume in the SGC-996 xenograft mouse model than Met or Cis alone. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which is consistent with our in vitro results. In conclusion, our findings indicate that the combination therapy with Met and Cis exerted synergistic antitumor effects in gallbladder cancer cells through PI3K/AKT/ERK pathway, and combination treatment with Met and Cis would be a promising therapeutic strategy for gallbladder cancer patients.
Collapse
|
87
|
Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, Furusawa Y, Hase K, Sasaki A, Udono H. Attenuation of CD4 +CD25 + Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug. EBioMedicine 2017. [PMID: 29066174 DOI: 10.1016/j.ebiom.2017.10.009.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Treg), an essential subset for preventing autoimmune diseases, is implicated as a negative regulator in anti-tumor immunity. We found that metformin (Met) reduced tumor-infiltrating Treg (Ti-Treg), particularly the terminally-differentiated CD103+KLRG1+ population, and also decreased effector molecules such as CTLA4 and IL-10. Met inhibits the differentiation of naïve CD4+ T cells into inducible Treg (iTreg) by reducing forkhead box P3 (Foxp3) protein, caused by mTORC1 activation that was determined by the elevation of phosphorylated S6 (pS6), a downstream molecule of mTORC1. Rapamycin and compound C, an inhibitor of AMP-activated protein kinase (AMPK) restored the iTreg generation, further indicating the involvement of mTORC1 and AMPK. The metabolic profile of iTreg, increased Glut1-expression, and reduced mitochondrial membrane-potential and ROS production of Ti-Treg aided in identifying enhanced glycolysis upon Met-treatment. The negative impact of Met on Ti-Treg may help generation of the sustained antitumor immunity.
Collapse
Affiliation(s)
- Yuki Kunisada
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shingo Eikawa
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shohei Domae
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takenori Uehara
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Keio University Graduate School of Pharmaceutical Science, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Keio University Graduate School of Pharmaceutical Science, Tokyo, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan. @cc.okayama-u.ac.jp
| |
Collapse
|
88
|
Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, Furusawa Y, Hase K, Sasaki A, Udono H. Attenuation of CD4 +CD25 + Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug. EBioMedicine 2017; 25:154-164. [PMID: 29066174 PMCID: PMC5704053 DOI: 10.1016/j.ebiom.2017.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
CD4+ CD25+ regulatory T cells (Treg), an essential subset for preventing autoimmune diseases, is implicated as a negative regulator in anti-tumor immunity. We found that metformin (Met) reduced tumor-infiltrating Treg (Ti-Treg), particularly the terminally-differentiated CD103+ KLRG1+ population, and also decreased effector molecules such as CTLA4 and IL-10. Met inhibits the differentiation of naïve CD4+ T cells into inducible Treg (iTreg) by reducing forkhead box P3 (Foxp3) protein, caused by mTORC1 activation that was determined by the elevation of phosphorylated S6 (pS6), a downstream molecule of mTORC1. Rapamycin and compound C, an inhibitor of AMP-activated protein kinase (AMPK) restored the iTreg generation, further indicating the involvement of mTORC1 and AMPK. The metabolic profile of iTreg, increased Glut1-expression, and reduced mitochondrial membrane-potential and ROS production of Ti-Treg aided in identifying enhanced glycolysis upon Met-treatment. The negative impact of Met on Ti-Treg may help generation of the sustained antitumor immunity. Metformin downregulates CD4+ CD25+ regulatory T cells (Treg) in tumors but not in peripheral lymphoid tissues. Metformin administration results in activation of mTORC1 in Treg in tumors. Metformin administration results in elevation of glycolysis, while suppressing oxidative phosphorylation in Treg in tumors.
CD4+ CD25+ regulatory T cells (Treg) is a negative regulator that inhibits T cell mediated anti-tumor immunity. Therefore, targeting Treg is one of the important therapeutic intervention in cancers. We found that metformin reduces Treg in the number and the function in tumors. Metabolism of Treg is usually dependent on oxidative phosphorylation through fatty acid oxidation (FAO). However, metformin treatment causes metabolic reprogramming of Treg toward the glycolysis, resulting in the failure in survival in tumors. Metformin as a metabolic modifier for Treg may contribute to generation of sustained anti-tumor immunity, combined with currently emerging cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Kunisada
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shingo Eikawa
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shohei Domae
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takenori Uehara
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Keio University Graduate School of Pharmaceutical Science, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Keio University Graduate School of Pharmaceutical Science, Tokyo, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan. @cc.okayama-u.ac.jp
| |
Collapse
|
89
|
Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Eur J Med Chem 2017; 142:87-94. [PMID: 28651817 DOI: 10.1016/j.ejmech.2017.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Failure in ovarian cancer therapy, following cytoreduction and chemotherapy, is related to the presence of cancer stem cells - a small subpopulation of cells resistant to chemotherapy and irradiation - in the tumour which may cause cancer relapse and manifestation of metastases. Therapies targeted at Cancer Stem Cells (CSCs), such as those employing metformin (a drug used in the treatment of diabetes type II) and salinomycin, an antibiotic isolated from Streptococcus albus bacteria, seem promising. Anti-angiogenic therapy with bevacizumab was found to be effective in all phases of ovarian cancer treatment. The presence of CSCs has been associated with angiogenesis. Several CSC biomarkers correlate with the markers of angiogenesis and some signalling pathways, e.g. Notch, and are used by both CSCs and by pro-angiogenic factors.
Collapse
|
90
|
Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 2017; 8:56546-56557. [PMID: 28915611 PMCID: PMC5593582 DOI: 10.18632/oncotarget.17798] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin is most widely prescribed for type 2 diabetes. Recently, evidences have shown that metformin has anticancer effects on pancreatic-, colorectal-, ovarian-, and other cancers. Because metformin has less adverse effects and is inexpensive, it could be a useful chemo-therapeutic agent with anticancer effects. In this study, we demonstrated metformin inhibited by cell proliferation, cell migration ability, clonogenic ability, and cancer stem cell population. Metformin also induced cell cycle arrest in parental-(SNU-C5), and 5-Fu resistant-colorectal cancer cell line (SNU-C5_5FuR). Moreover, a treatment that combines 5-Fu and metformin was found to have a synergistic effect on the cell proliferation rate, especially in SNU-C5_5FuR, which was mediated by the activation of AMPK pathway and NF-ƙB pathway, well-known metformin mechanisms. In this study, we suggested novel anticancer mechanism of metformin that inhibited DNA replication machinery, such as the MCM family in SNU-C5_5FuR. In conclusion, we provided that how metformin acts as not only a chemo-sensitizer, but also as a synergistic effector of 5-Fu in the 5-Fu resistant-cell line. We speculate that metformin used for adjuvant therapy is effective on 5-Fu resistant cancer cells.
Collapse
|
91
|
Wokoun U, Hellriegel M, Emons G, Gründker C. Co-treatment of breast cancer cells with pharmacologic doses of 2-deoxy-D-glucose and metformin: Starving tumors. Oncol Rep 2017; 37:2418-2424. [PMID: 28350075 DOI: 10.3892/or.2017.5491] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 11/05/2022] Open
Abstract
A characteristic of tumor cells is the increased aerobic glycolysis for energy production. Thus, inhibition of glycolysis represents a selective therapeutic option. It has been shown that glycolysis inhibitor 2-deoxy-D-glucose (2DG) induces apoptotic cell death in different tumor entities. In addition, the antitumor activity of the anti-diabetic drug metformin has been demonstrated. In the present study, we aimed to ascertain whether the combination of pharmacologic doses of 2DG with metformin increases the antitumor efficacy. Cell viability of MDA-MB-231 and HCC1806 triple-negative breast cancer (TNBC) cells treated without or with 2DG or with metformin alone or with the combination of both agents was measured using Alamar Blue assay. Induction of apoptosis was quantified by measurement of the loss of mitochondrial membrane potential and cleavage of PARP. Treatment of breast cancer cells with glycolysis inhibitor 2DG or with the anti-diabetic drug metformin resulted in a significant decrease in cell viability and an increase in apoptosis. Treatment with 2DG in combination with metformin resulted in significantly reduced viability compared with the single agent treatments. The observed reduction in viability was due to induction of apoptosis. In addition, in regards to apoptosis induction a stronger effect in the case of co-treatment compared with single agent treatments was observed. The glycolytic phenotype of human breast cancer cells can be targeted for therapeutic intervention. Co-treatment with doses of the glycolysis inhibitor 2DG and anti-diabetic drug metformin is tolerable in humans and may be a suitable therapy for human breast cancers.
Collapse
Affiliation(s)
- Ulrike Wokoun
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| | - Martin Hellriegel
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, Georg-August-University, D-37075 Göttingen, Germany
| |
Collapse
|
92
|
Gwak H, Kim Y, An H, Dhanasekaran DN, Song YS. Metformin induces degradation of cyclin D1 via AMPK/GSK3β axis in ovarian cancer. Mol Carcinog 2017; 56:349-358. [PMID: 27128966 DOI: 10.1002/mc.22498] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Metformin, which is widely used as an anti-diabetic drug, reduces cancer related morbidity and mortality. However, the role of metformin in cancer is not fully understood. Here, we first describe that the anti-cancer effect of metformin is mediated by cyclin D1 deregulation via AMPK/GSK3β axis in ovarian cancer cells. Metformin promoted cytotoxic effects only in the cancer cells irrespective of the p53 status and not in the normal primary-cultured cells. Metformin induced the G1 cell cycle arrest, in parallel with a decrease in the protein expressions of cyclin D1 without affecting its transcriptional levels. Using a proteasomal inhibitor, we could address that metformin-induced decrease in cyclin D1 through the ubiquitin/proteasome process. Cyclin D1 degradation by metformin requires the activation of GSK3β, as determined based on the treatment with GSK3β inhibitors. The activation of GSK3β correlated with the inhibitory phosphorylation by Akt as well as p70S6K through AMPK activation in response to metformin. These findings suggested that the anticancer effects of metformin was induced due to cyclin D1 degradation via AMPK/GSK3β signaling axis that involved the ubiquitin/proteasome pathway specifically in ovarian cancer cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- HyeRan Gwak
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngmin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Haein An
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Danny N Dhanasekaran
- Department of Cell Biology, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yong Sang Song
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
93
|
He M, Sui J, Chen Y, Bian S, Cui Y, Zhou C, Sun Y, Liang J, Fan Y, Zhang X. Localized multidrug co-delivery by injectable self-crosslinking hydrogel for synergistic combinational chemotherapy. J Mater Chem B 2017; 5:4852-4862. [DOI: 10.1039/c7tb01026e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The multidrug co-loaded injectable hydrogels against tumor showed superiority and potential application values.
Collapse
Affiliation(s)
- Mengmeng He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Shaoquan Bian
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
94
|
Ning X, Du Y, Ben Q, Huang L, He X, Gong Y, Gao J, Wu H, Man X, Jin J, Xu M, Li Z. Bulk pancreatic cancer cells can convert into cancer stem cells(CSCs) in vitro and 2 compounds can target these CSCs. Cell Cycle 2016; 15:403-12. [PMID: 26709750 DOI: 10.1080/15384101.2015.1127471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the "yin-yang" model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.
Collapse
Affiliation(s)
- Xiaoyan Ning
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China.,b Department of Gastroenterology , Guangdong No.2 Provincial People' s Hospital , Guangzhou, China
| | - Yiqi Du
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Qiwen Ben
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Ling Huang
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoping He
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yanfang Gong
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jun Gao
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Hongyu Wu
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaohua Man
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jing Jin
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Ming Xu
- b Department of Gastroenterology , Guangdong No.2 Provincial People' s Hospital , Guangzhou, China
| | - Zhaoshen Li
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| |
Collapse
|
95
|
Daugan M, Dufaÿ Wojcicki A, d’Hayer B, Boudy V. Metformin: An anti-diabetic drug to fight cancer. Pharmacol Res 2016; 113:675-685. [DOI: 10.1016/j.phrs.2016.10.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
|
96
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
97
|
Patel S, Singh N, Kumar L. Evaluation of Effects of Metformin in Primary Ovarian Cancer Cells. Asian Pac J Cancer Prev 2016; 16:6973-9. [PMID: 26514477 DOI: 10.7314/apjcp.2015.16.16.6973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer is the third most common cause of cancer in Indian women. Despite an initial 70-80% response rate, most patients relapse within 1-2 years and develop chemoresistance. Hence, identification or repositioning of drugs to resensitise ovarian cancer cells to existing chemotherapy is needed. Traditionally immortalized cell lines have been used in research, but these may contain genetic aberrations and chromosomal abnormalities serving as poor indicators of normal cell phenotype and progression of early-stage disease. The use of primary cells, maintained for only short periods of time in vitro, may serve as the best representative for studying in vivo conditions of the tissues from which they are derived. In this study we have attempted to evaluate the effect of metformin (an antidiabetic drug) in primary ovarian cancer cells because of its promising effect in other solid tumours. MATERIALS AND METHODS Primary cultures of epithelial ovarian cancer cells established from ascitic fluid of untreated ovarian cancer patients were used. The cells were treated with metformin at doses standardized by MTT assay and its ability to induce apoptosis was studied. The cells were analysed for apoptosis and apoptosis related proteins by flow cytometry and western blotting respectively. RESULTS Metformin induced apoptosis in ovarian cancer cells, provoking cell cycle arrest in the G0/G1 and S phase. It induced apoptosis in ovarian cancer cells by, down-regulating Bcl-2 and up-regulating Bax expression. CONCLUSIONS Metformin was able to induce apoptosis in primary ovarian cancer cells by modulating the expression of Bcl-2 family proteins. These data are relevant to ongoing translational research efforts exploring the chemotherapeutic potential of metformin.
Collapse
Affiliation(s)
- Seema Patel
- Department of Biochemistry, AIIMS, New Delhi, India E-mail : ,
| | | | | |
Collapse
|
98
|
Delaney JR, Patel C, McCabe KE, Lu D, Davis MA, Tancioni I, von Schalscha T, Bartakova A, Haft C, Schlaepfer DD, Stupack DG. A strategy to combine pathway-targeted low toxicity drugs in ovarian cancer. Oncotarget 2016; 6:31104-18. [PMID: 26418751 PMCID: PMC4741591 DOI: 10.18632/oncotarget.5093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023] Open
Abstract
Serous Ovarian Cancers (SOC) are frequently resistant to programmed cell death. However, here we describe that these programmed death-resistant cells are nonetheless sensitive to agents that modulate autophagy. Cytotoxicity is not dependent upon apoptosis, necroptosis, or autophagy resolution. A screen of NCBI yielded more than one dozen FDA-approved agents displaying perturbed autophagy in ovarian cancer. The effects were maximized via combinatorial use of the agents that impinged upon distinct points of autophagy regulation. Autophagosome formation correlated with efficacy in vitro and the most cytotoxic two agents gave similar effects to a pentadrug combination that impinged upon five distinct modulators of autophagy. However, in a complex in vivo SOC system, the pentadrug combination outperformed the best two, leaving trace or no disease and with no evidence of systemic toxicity. Targeting the autophagy pathway in a multi-modal fashion might therefore offer a clinical option for treating recalcitrant SOC.
Collapse
Affiliation(s)
- Joe R Delaney
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Chandni Patel
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Katelyn E McCabe
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Dan Lu
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Mitzie-Ann Davis
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Isabelle Tancioni
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Tami von Schalscha
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Alena Bartakova
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Carley Haft
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - David D Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
99
|
A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers. Cancers (Basel) 2016; 8:cancers8070066. [PMID: 27429001 PMCID: PMC4963808 DOI: 10.3390/cancers8070066] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant WNT signaling underlies cancerous transformation and growth in many tissues, such as the colon, breast, liver, and others. Downregulation of the WNT pathway is a desired mode of development of targeted therapies against these cancers. Despite the urgent need, no WNT signaling-directed drugs currently exist, and only very few candidates have reached early phase clinical trials. Among different strategies to develop WNT-targeting anti-cancer therapies, repositioning of existing drugs previously approved for other diseases is a promising approach. Nonsteroidal anti-inflammatory drugs like aspirin, the anti-leprotic clofazimine, and the anti-trypanosomal suramin are among examples of drugs having recently revealed WNT-targeting activities. In total, 16 human-use drug compounds have been found to be working through the WNT pathway and show promise for their prospective repositioning against various cancers. Advances, hurdles, and prospects of developing these molecules as potential drugs against WNT-dependent cancers, as well as approaches for discovering new ones for repositioning, are the foci of the current review.
Collapse
|
100
|
Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, Kaplan J, Kalyan A, Altman JK, Platanias L, Giles F. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget 2016; 7:40767-40780. [PMID: 27004404 PMCID: PMC5130043 DOI: 10.18632/oncotarget.8194] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/06/2016] [Indexed: 12/13/2022] Open
Abstract
In recent years, several studies have presented evidence suggesting a potential role for metformin in anti-cancer therapy. Preclinical studies have demonstrated several anticancer molecular mechanisms of metformin including mTOR inhibition, cytotoxic effects, and immunomodulation. Epidemiologic data have demonstrated decreased cancer incidence and mortality in patients taking metformin. Several clinical trials, focused on evaluation of metformin as an anti-cancer agent are presently underway. Data published from a small number of completed trials has put forth intriguing results. Clinical trials in pre-surgical endometrial cancer patients exhibited a significant decrease in Ki67 with metformin monotherapy. Another interesting observation was made in patients with breast cancer, wherein a trend towards improvement in cancer proliferation markers was noted in patients without insulin resistance. Data on survival outcomes with the use of metformin as an anti-cancer agent is awaited. This manuscript will critically review the role of metformin as a potential cancer treatment.
Collapse
Affiliation(s)
- Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ayush Arya
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary-Kate Malecek
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Sanghoon Shin
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benedito Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jessica K. Altman
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leonidas Platanias
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology-Oncology, Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Francis Giles
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|