51
|
Liu Y, Jiang H. Directed Evolution of Propionyl-CoA Carboxylase for Succinate Biosynthesis. Trends Biotechnol 2021; 39:330-331. [PMID: 33632542 DOI: 10.1016/j.tibtech.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Due to low carboxylase activity, CO2 biotransformation is challenging to achieve using natural CO2 fixation pathways. Liu et al. have improved the activity of propionyl-CoA carboxylase (PCC) 94-fold, enabling the efficient synthesis of succinate from acetyl-CoA and paving the way for CO2 assimilation via the 3-hydroxypropionate (3-HP) bicycle or 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle.
Collapse
Affiliation(s)
- Yuwan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
52
|
Lama S, Kim Y, Nguyen DT, Im CH, Sankaranarayanan M, Park S. Production of 3-hydroxypropionic acid from acetate using metabolically-engineered and glucose-grown Escherichia coli. BIORESOURCE TECHNOLOGY 2021; 320:124362. [PMID: 33186840 DOI: 10.1016/j.biortech.2020.124362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Acetate can be used as carbon feedstock for the production of 3-hydroxypropionic acid (3-HP), but the production level was low due to inefficient cell growth on acetate. To better utilize acetate, a two-stage strategy, whereby glucose is used for cell growth and acetate for 3-HP formation, was attempted. Dissected malonyl-CoA reductase of Chloroflexus aurantiacus, alone or along with acetyl-CoA carboxylase and/or transhydrogenase, was overexpressed, and by-products formation pathway, glyoxylate shunt (GS) and gluconeogenesis were modified. When GS or gluconeogenesis was disrupted, cell growth on glucose was not hampered, while on acetate it was completely abolished. Consequently, 3-HP production, at production stage, were low, though 3-HP yield on acetate was increased, especially in the case of aceA deletion. In two-stage bioreactor, strain with upregulated GS produced 7.3 g/L 3-HP with yield of 0.26 mol/mol acetate. This study suggests that two-stage cultivation is a good strategy for 3-HP production from acetate.
Collapse
Affiliation(s)
- Suman Lama
- School of Energy and Chemical Engineering, UNIST, 50, Ulsan 44919, Republic of Korea
| | - Yeonhee Kim
- School of Energy and Chemical Engineering, UNIST, 50, Ulsan 44919, Republic of Korea
| | - Dat Tuan Nguyen
- School of Energy and Chemical Engineering, UNIST, 50, Ulsan 44919, Republic of Korea
| | - Chae Ho Im
- School of Energy and Chemical Engineering, UNIST, 50, Ulsan 44919, Republic of Korea; Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, kemivagen 10, 412 96 Goteborg, Sweden
| | - Mugesh Sankaranarayanan
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, 50, Ulsan 44919, Republic of Korea.
| |
Collapse
|
53
|
Fei M, Mao X, Chen Y, Lu Y, Wang L, Yang J, Qiu J, Sun D. Development of a dual-fluorescence reporter system for high-throughput screening of L-aspartate-α-decarboxylase. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1420-1426. [PMID: 33313655 DOI: 10.1093/abbs/gmaa134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/14/2022] Open
Abstract
β-Alanine (3-aminopropionic acid) holds great potential in industrial application. It can be obtained through a chemical synthesis route, which is hazardous to the environment. It is well known that l-aspartate-α-decarboxylase (ADC) can convert l-aspartate to β-alanine in bacteria. However, due to the low activity of ADC, industrial production of β-alanine through the green biological route remains unclear. Thus, improving the activity of ADC is critical to reduce the cost of β-alanine production. In this study, we established a dual-fluorescence high-throughput system for efficient ADC screening. By measuring the amount of β-alanine and the expression level of ADC using two different fluorescence markers, we can rapidly quantify the relative activity of ADC variants. From a mutagenesis library containing 2000 ADC variants, we obtained a mutant with 33% increased activity. Further analysis revealed that mutations of K43R and P103Q in ADC significantly improved the yield of β-alanine produced by the whole-cell biocatalysis. Compared with the previous single-fluorescence method, our system can not only quantify the amount of β-alanine but also measure the expression level of ADC with different fluorescence, making it able to effectively screen out ADC variants with improved relative activity. The dual-fluorescence high-throughput system for rapid screening of ADC provides a good strategy for industrial production of β-alanine via the biological conversion route in the future.
Collapse
Affiliation(s)
- Mingyue Fei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xudan Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiyang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yalan Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jie Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juanping Qiu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
54
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
55
|
Characterization and directed evolution of propionyl-CoA carboxylase and its application in succinate biosynthetic pathway with two CO2 fixation reactions. Metab Eng 2020; 62:42-50. [DOI: 10.1016/j.ymben.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022]
|
56
|
Sun S, Ding Y, Liu M, Xian M, Zhao G. Comparison of Glucose, Acetate and Ethanol as Carbon Resource for Production of Poly(3-Hydroxybutyrate) and Other Acetyl-CoA Derivatives. Front Bioeng Biotechnol 2020; 8:833. [PMID: 32850713 PMCID: PMC7396591 DOI: 10.3389/fbioe.2020.00833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible thermoplastic, and synthesized from the central metabolite acetyl-CoA. The acetyl-CoA synthesis from glucose presents low atomic economy due to the release of CO2 in pyruvate decarboxylation. As ethanol and acetate can be converted into acetyl-CoA directly, they were used as carbon source for PHB production in this study. The reductase mutant AdhE A267T/E568K was introduced into Escherichia coli to enable growth on ethanol, and acetate utilization was improved by overexpression of acetyl-CoA synthetase ACS. Comparison of the PHB production using glucose, ethanol or acetate as sole carbon source showed that the production and yield from ethanol was much higher than those from glucose and acetate, and metabolome analysis revealed the differences in metabolism of glucose, ethanol and acetate. Furthermore, other acetyl-CoA derived chemicals including 3-hydroxypropionate and phloroglucinol were produced from those three feedstocks, and similar results were achieved, suggesting that ethanol could be a suitable carbon source for the production of acetyl-CoA derivatives.
Collapse
Affiliation(s)
- Shenmei Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
57
|
Kim JW, Ko YS, Chae TU, Lee SY. High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli. Biotechnol Bioeng 2020; 117:2139-2152. [PMID: 32227471 DOI: 10.1002/bit.27344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 11/09/2022]
Abstract
As climate change is an important environmental issue, the conventional petrochemical-based processes to produce valuable chemicals are being shifted toward eco-friendly biological-based processes. In this study, 3-hydroxypropionic acid (3-HP), an industrially important three carbon (C3) chemical, was overproduced by metabolically engineered Escherichia coli using glycerol as a sole carbon source. As the first step to construct a glycerol-dependent 3-HP biosynthetic pathway, the dhaB1234 and gdrAB genes from Klebsiella pneumoniae encoding glycerol dehydratase and glycerol reactivase, respectively, were introduced into E. coli to convert glycerol into 3-hydroxypropionaldehyde (3-HPA). In addition, the ydcW gene from K. pneumoniae encoding γ-aminobutyraldehyde dehydrogenase, among five aldehyde dehydrogenases examined, was selected to further convert 3-HPA to 3-HP. Increasing the expression level of the ydcW gene enhanced 3-HP production titer and reduced 1,3-propanediol production. To enhance 3-HP production, fed-batch fermentation conditions were optimized by controlling dissolved oxygen (DO) level and employing different feeding strategies including intermittent feeding, pH-stat feeding, and continuous feeding strategies. Fed-batch culture of the final engineered E. coli strain with DO control and continuous feeding strategy produced 76.2 g/L of 3-HP with the yield and productivity of 0.457 g/g glycerol and 1.89 g·L-1 ·h-1 , respectively. To the best of our knowledge, this is the highest 3-HP productivity achieved by any microorganism reported to date.
Collapse
Affiliation(s)
- Je Woong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Tong Un Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea.,BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
58
|
Li P, Liu C, Li B, Ma Q. Structural analysis of the CARB β-lactamase from Vibrio parahaemolyticus facilitates application of the β-lactam/β-lactamase inhibitor therapy. Biochimie 2020; 171-172:213-222. [DOI: 10.1016/j.biochi.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
59
|
An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun 2020; 11:1496. [PMID: 32198415 PMCID: PMC7083825 DOI: 10.1038/s41467-020-15350-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/05/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to grow at moderate acidic conditions (pH 4.0–5.0) is important to Escherichia coli colonization of the host’s intestine. Several regulatory systems are known to control acid resistance in E. coli, enabling the bacteria to survive under acidic conditions without growth. Here, we characterize an acid-tolerance response (ATR) system and its regulatory circuit, required for E. coli exponential growth at pH 4.2. A two-component system CpxRA directly senses acidification through protonation of CpxA periplasmic histidine residues, and upregulates the fabA and fabB genes, leading to increased production of unsaturated fatty acids. Changes in lipid composition decrease membrane fluidity, F0F1-ATPase activity, and improve intracellular pH homeostasis. The ATR system is important for E. coli survival in the mouse intestine and for production of higher level of 3-hydroxypropionate during fermentation. Furthermore, this ATR system appears to be conserved in other Gram-negative bacteria. The ability to grow at acidic pH is crucial for E. coli colonization of the host’s intestine. Here, the authors identify an acid-tolerance response system that is important for E. coli exponential growth at pH 4.2, survival in the mouse intestine, and production of 3-hydroxypropionate during fermentation.
Collapse
|
60
|
Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts 2020. [DOI: 10.3390/catal10020203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) has been recognized as one of the top value-added building block chemicals, due to its numerous potential applications. Over the past decade, biosynthesis of 3-HP via the malonyl-CoA pathway has been increasingly favored because it is balanced in terms of ATP and reducing equivalents, does not require the addition of costly coenzymes, and can utilize renewable lignocellulosic biomass. In this study, gene mcr encoding malonyl-CoA reductase from Chloroflexus aurantiacus was introduced into Corynebacterium glutamicum ATCC13032 to construct the strain Cgz1, which accumulated 0.30 g/L 3-HP. Gene ldhA encoding lactate dehydrogenase was subsequently deleted to eliminate lactate accumulation, but this decreased 3-HP production and greatly increased acetate accumulation. Then, different acetate utilization genes were overexpressed to reuse the acetate, and the best candidate Cgz5 expressing endogenous gene pta could effectively reduce the acetate accumulation and produced 0.68 g/L 3-HP. To enhance the supply of the precursor acetyl-CoA, acetate was used as an ancillary carbon source to improve the 3-HP production, and 1.33 g/L 3-HP could be produced from a mixture of glucose and acetate, with a 2.06-fold higher yield than from glucose alone. Finally, to inhibit the major 3-HP competing pathway-fatty acid synthesis, 10 μM cerulenin was added and strain Cgz5 produced 3.77 g/L 3-HP from 15.47 g/L glucose and 4.68 g/L acetate with a yield of 187 mg/g substrate in 48 h, which was 12.57-fold higher than that of Cgz1. To our best knowledge, this is the first report on engineering C. glutamicum to produce 3-HP via the malonyl-CoA pathway. The results indicate that the innocuous biosafety level I microorganism C. glutamicum is a potential industrial 3-HP producer.
Collapse
|
61
|
Son HF, Kim S, Seo H, Hong J, Lee D, Jin KS, Park S, Kim KJ. Structural insight into bi-functional malonyl-CoA reductase. Environ Microbiol 2019; 22:752-765. [PMID: 31814251 DOI: 10.1111/1462-2920.14885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
The bi-functional malonyl-CoA reductase is a key enzyme of the 3-hydroxypropionate bi-cycle for bacterial CO2 fixation, catalysing the reduction of malonyl-CoA to malonate semialdehyde and further reduction to 3-hydroxypropionate. Here, we report the crystal structure and the full-length architecture of malonyl-CoA reductase from Porphyrobacter dokdonensis. The malonyl-CoA reductase monomer of 1230 amino acids consists of four tandemly arranged short-chain dehydrogenases/reductases, with two catalytic and two non-catalytic short-chain dehydrogenases/reductases, and forms a homodimer through paring contact of two malonyl-CoA reductase monomers. The complex structures with its cofactors and substrates revealed that the malonyl-CoA substrate site is formed by the cooperation of two short-chain dehydrogenases/reductases and one novel extra domain, while only one catalytic short-chain dehydrogenase/reductase contributes to the formation of the malonic semialdehyde-binding site. The phylogenetic and structural analyses also suggest that the bacterial bi-functional malonyl-CoA has a structural origin that is completely different from the archaeal mono-functional malonyl-CoA and malonic semialdehyde reductase, and thereby constitute an efficient enzyme.
Collapse
Affiliation(s)
- Hyeoncheol Francis Son
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea
| | - Sangwoo Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea
| | - Hogyun Seo
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea
| | - Jiyeon Hong
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea
| | - Donghoon Lee
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
62
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
63
|
Tokuyama K, Toya Y, Matsuda F, Cress BF, Koffas MAG, Shimizu H. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Metab Eng 2018; 52:215-223. [PMID: 30529031 DOI: 10.1016/j.ymben.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Starvation of essential nutrients, such as nitrogen, sulfur, magnesium, and phosphorus, leads cells into stationary phase and potentially enhances target metabolite production because cells do not consume carbon for the biomass synthesis. The overall metabolic behavior changes depend on the type of nutrient starvation in Escherichia coli. In the present study, we determined the optimum nutrient starvation type for producing malonyl-CoA-derived metabolites such as 3-hydroxypropionic acid (3HP) and naringenin in E. coli. For 3HP production, high production titer (2.3 or 2.0 mM) and high specific production rate (0.14 or 0.28 mmol gCDW-1 h-1) was observed under sulfur or magnesium starvation, whereas almost no 3HP production was detected under nitrogen or phosphorus starvation. Metabolic profiling analysis revealed that the intracellular malonyl-CoA concentration was significantly increased under the 3HP producing conditions. This accumulation should contribute to the 3HP production because malonyl-CoA is a precursor of 3HP. Strong positive correlation (r = 0.95) between intracellular concentrations of ATP and malonyl-CoA indicates that the ATP level is important for malonyl-CoA synthesis due to the ATP requirement by acetyl-CoA carboxylase. For naringenin production, magnesium starvation led to the highest production titer (144 ± 15 μM) and specific productivity (127 ± 21 μmol gCDW-1). These results demonstrated that magnesium starvation is a useful approach to improve the metabolic state of strains engineered for the production of malonyl-CoA derivatives.
Collapse
Affiliation(s)
- Kento Tokuyama
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Brady F Cress
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
64
|
Takayama S, Ozaki A, Konishi R, Otomo C, Kishida M, Hirata Y, Matsumoto T, Tanaka T, Kondo A. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe. Microb Cell Fact 2018; 17:176. [PMID: 30424766 PMCID: PMC6234659 DOI: 10.1186/s12934-018-1025-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
Background Economical production of value-added chemicals from renewable biomass is a promising path to sustainability. 3-Hydroxypropionic acid (3-HP) is an important chemical for building a bio-sustainable society. Establishment of 3-HP production from renewable resources such as glucose would provide a bio-sustainable alternative to the production of acrylic acid from fossil resources. Results Here, we describe metabolic engineering of the fission yeast Schizosaccharomyces pombe to enhance 3-HP production from glucose and cellobiose via the malonyl-CoA pathway. The mcr gene, encoding the malonyl-CoA reductase of Chloroflexus aurantiacus, was dissected into two functionally distinct fragments, and the activities of the encoded protein were balanced. To increase the cellular supply of malonyl-CoA and acetyl-CoA, we introduced genes encoding endogenous aldehyde dehydrogenase, acetyl-CoA synthase from Salmonella enterica, and endogenous pantothenate kinase. The resulting strain produced 3-HP at 1.0 g/L from a culture starting at a glucose concentration of 50 g/L. We also engineered the sugar supply by displaying beta-glucosidase (BGL) on the yeast cell surface. When grown on 50 g/L cellobiose, the beta-glucosidase-displaying strain consumed cellobiose efficiently and produced 3-HP at 3.5 g/L. Under fed-batch conditions starting from cellobiose, this strain produced 3-HP at up to 11.4 g/L, corresponding to a yield of 11.2% (g-3-HP/g-glucose; given that 1 g cellobiose corresponds to 1.1 g glucose upon digestion). Conclusions In this study, we constructed a series of S. pombe strains that produced 3-HP via the malonyl-CoA pathway. Our study also demonstrated that BGL display using cellobiose and/or cello-oligosaccharides as a carbon source has the potential to improve the titer and yield of malonyl-CoA- and acetyl-CoA-derived compounds. Electronic supplementary material The online version of this article (10.1186/s12934-018-1025-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seiya Takayama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Aiko Ozaki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Rie Konishi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Chisako Otomo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Mayumi Kishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Yuuki Hirata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Takuya Matsumoto
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
65
|
Efficient Conversion of Acetate to 3-Hydroxypropionic Acid by Engineered Escherichia coli. Catalysts 2018. [DOI: 10.3390/catal8110525] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acetate, which is an abundant carbon source, is a potential feedstock for microbial processes that produce diverse value-added chemicals. In this study, we produced 3-hydroxypropionic acid (3-HP) from acetate with engineered Escherichia coli. For the efficient conversion of acetate to 3-HP, we initially introduced heterologous mcr (encoding malonyl-CoA reductase) from Chloroflexus aurantiacus. Then, the acetate assimilating pathway and glyoxylate shunt pathway were activated by overexpressing acs (encoding acetyl-CoA synthetase) and deleting iclR (encoding the glyoxylate shunt pathway repressor). Because a key precursor malonyl-CoA is also consumed for fatty acid synthesis, we decreased carbon flux to fatty acid synthesis by adding cerulenin. Subsequently, we found that inhibiting fatty acid synthesis dramatically improved 3-HP production (3.00 g/L of 3-HP from 8.98 g/L of acetate). The results indicated that acetate can be used as a promising carbon source for microbial processes and that 3-HP can be produced from acetate with a high yield (44.6% of the theoretical maximum yield).
Collapse
|
66
|
Liu B, Xiang S, Zhao G, Wang B, Ma Y, Liu W, Tao Y. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metab Eng 2018; 51:121-130. [PMID: 30343047 DOI: 10.1016/j.ymben.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 11/25/2022]
Abstract
The production of chemicals from renewable biomass resources is usually limited by factors including high-cost processes and low efficiency of biosynthetic pathways. Fatty acids (FAs) are an ideal alternative biomass. Their advantages include high-efficiently producing acetyl-CoA and reducing power, coupling chemical production with CO2 fixation, and the fact that they are readily obtained from inexpensive feedstocks. The important platform chemical 3-hydroxypropionate (3HP) can be produced from FAs as the feedstock with a theoretical yield of 2.49 g/g, much higher than the theoretical yield from other feedstocks. In this study, we first systematically analyzed the limiting factors in FA-utilization pathways in Escherichia coli. Then, we optimized FA utilization in Escherichia coli by using a combination of metabolic engineering and optimization of fermentation conditions. The 3HP biosynthesis module was introduced into a FA-utilizing strain, and the flux balance was finely optimized to maximize 3HP production. The resulting strain was able to produce 3HP from FAs with a yield of 1.56 g/g, and was able to produce 3HP to a concentration of 52 g/L from FAs in a 5-L fermentation process. The strain also could produce 3HP from various type of FAs feedstock including gutter oil. This is the first report of a technique for the efficient production of the platform chemical 3HP from FAs.
Collapse
Affiliation(s)
- Bo Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuman Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bojun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Zhu J, Xie J, Wei L, Lin J, Zhao L, Wei D. Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003. BIORESOURCE TECHNOLOGY 2018; 265:328-333. [PMID: 29913287 DOI: 10.1016/j.biortech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
Gluconobacter oxydans can be efficiently used to produce 3-hydroxypropionic acid (3-HP) from 1,3-propanediol (1,3-PDO). However, the enzymes involved remain unclear. In this study, transcription analysis of two mutants of strain DSM 2003, obtained by UV-mutagenesis, revealed that membrane-bound alcohol dehydrogenase (mADH) and membrane-bound aldehyde dehydrogenase (mALDH) might be the main enzymes involved. Through deletion and complementation of the genes adhA and aldh, mADH and mALDH were verified as the main enzymes responsible for 3-HP production. Then mALDH was verified as the rate-limiting enzyme in 3-HP production. Since that overexpression of mADH had no effect on 3-HP production, whereas overexpression of mALDH increased 23.6% 3-HP production. Finally, the 3-HP titer of 45.8 g/L and the highest productivity 1.86 g/L/h were achieved when the two mutants DSM 2003/adhAB and DSM 2003/aldh were mixed at a ratio of 1:2 (cell density) and used as whole cell catalysts for 3-HP production.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
68
|
Ji RY, Ding Y, Shi TQ, Lin L, Huang H, Gao Z, Ji XJ. Metabolic Engineering of Yeast for the Production of 3-Hydroxypropionic Acid. Front Microbiol 2018; 9:2185. [PMID: 30298059 PMCID: PMC6160737 DOI: 10.3389/fmicb.2018.02185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023] Open
Abstract
The beta-hydroxy acid 3-hydroxypropionic acid (3-HP) is an attractive platform compound that can be used as a precursor for many commercially interesting compounds. In order to reduce the dependence on petroleum and follow sustainable development, 3-HP has been produced biologically from glucose or glycerol. It is reported that 3-HP synthesis pathways can be constructed in microbes such as Escherichia coli, Klebsiella pneumoniae and the yeast Saccharomyces cerevisiae. Among these host strains, yeast is prominent because of its strong acid tolerance which can simplify the fermentation process. Currently, the malonyl-CoA reductase pathway and the β-alanine pathway have been successfully constructed in yeast. This review presents the current developments in 3-HP production using yeast as an industrial host. By combining genome-scale engineering tools, malonyl-CoA biosensors and optimization of downstream fermentation, the production of 3-HP in yeast has the potential to reach or even exceed the yield of chemical production in the future.
Collapse
Affiliation(s)
- Rong-Yu Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lu Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| |
Collapse
|
69
|
Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase. J Biotechnol 2018; 280:49-54. [DOI: 10.1016/j.jbiotec.2018.06.304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
|
70
|
de Fouchécour F, Sánchez-Castañeda AK, Saulou-Bérion C, Spinnler HÉ. Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnol Adv 2018; 36:1207-1222. [DOI: 10.1016/j.biotechadv.2018.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/23/2018] [Accepted: 03/25/2018] [Indexed: 10/17/2022]
|
71
|
Tarasava K, Liu R, Garst A, Gill RT. Combinatorial pathway engineering using type I-E CRISPR interference. Biotechnol Bioeng 2018. [PMID: 29537074 DOI: 10.1002/bit.26589] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Optimization of metabolic flux is a difficult and time-consuming process that often involves changing the expression levels of multiple genes simultaneously. While some pathways have a known rate limiting step, more complex metabolic networks can require a trial-and-error approach of tuning the expression of multiple genes to achieve a desired distribution of metabolic resources. Here we present an efficient method for generating expression diversity on a combinatorial scale using CRISPR interference. We use a modified native Escherichia coli Type I-E CRISPR-Cas system and an iterative cloning strategy for construction of guide RNA arrays. This approach allowed us to build a combinatorial gene expression library three orders of magnitude larger than previous studies. In less than 1 month, we generated ∼12,000 combinatorial gene expression variants that target six different genes and screened these variants for increased malonyl-CoA flux and 3-hydroxypropionate (3HP) production. We were able to identify a set of variants that exhibited a significant increase in malonyl-CoA flux and up to a 98% increase in 3HP production. This approach provides a fast and easy-to-implement strategy for engineering metabolic pathway flux for development of industrially relevant strains, as well as investigation of fundamental biological questions.
Collapse
Affiliation(s)
- Katia Tarasava
- Chemical and Biological Engineering Department, University of Colorado Boulder, Boulder, Colorado
| | - Rongming Liu
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado
| | | | - Ryan T Gill
- Chemical and Biological Engineering Department, University of Colorado Boulder, Boulder, Colorado.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
72
|
|
73
|
Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb Cell Fact 2017; 16:179. [PMID: 29084554 PMCID: PMC5663086 DOI: 10.1186/s12934-017-0798-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/24/2017] [Indexed: 12/01/2022] Open
Abstract
Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical, serving as a precursor for a wide range of industrial applications such as the production of acrylic acid and 1,3-propanediol. Although Escherichia coli or Saccharomyces cerevisiae are the primary industrial microbes for the production of 3-HP, alternative engineered hosts have the potential to generate 3-HP from other carbon feedstocks. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, is a model system for assessing the possibility of generating 3-HP from one-carbon feedstock methanol. Results Here we constructed a malonyl-CoA pathway by heterologously overexpressing the mcr gene to convert methanol into 3-HP in M. extorquens AM1. The engineered strains demonstrated 3-HP production with initial titer of 6.8 mg/l in shake flask cultivation, which was further improved to 69.8 mg/l by increasing the strength of promoter and mcr gene copy number. In vivo metabolic analysis showed a significant decrease of the acetyl-CoA pool size in the strain with the highest 3-HP titer, suggesting the supply of acetyl-CoA is a potential bottleneck for further improvement. Notably, 3-HP was rapidly degraded after the transition from exponential phase to stationary phase. Metabolomics analysis showed the accumulation of intracellular 3-hydroxypropionyl-CoA at stationary phase with the addition of 3-HP into the cultured medium, indicating 3-HP was first converted to its CoA derivatives. In vitro enzymatic assay and β-alanine pathway dependent 13C-labeling further demonstrated that a reductive route sequentially converted 3-HP-CoA to acrylyl-CoA and propionyl-CoA, with the latter being reassimilated into the ethylmalonyl-CoA pathway. The deletion of the gene META1_4251 encoding a putative acrylyl-CoA reductase led to reduced degradation rate of 3-HP in late stationary phase. Conclusions We demonstrated the feasibility of constructing the malonyl-CoA pathway in M. extorquens AM1 to generate 3-HP. Furthermore, we showed that a reductive route coupled with the ethylmalonyl-CoA pathway was the major channel responsible for degradation of the 3-HP during the growth transition. Engineered M. extorquens AM1 represents a good platform for 3-HP production from methanol. Electronic supplementary material The online version of this article (10.1186/s12934-017-0798-2) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
Zou H, Shi M, Zhang T, Li L, Li L, Xian M. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production. Appl Microbiol Biotechnol 2017; 101:7417-7426. [DOI: 10.1007/s00253-017-8485-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 01/30/2023]
|
75
|
Zhang R, Liu W, Cao Y, Xu X, Xian M, Liu H. An in vitro synthetic biosystem based on acetate for production of phloroglucinol. BMC Biotechnol 2017; 17:66. [PMID: 28789688 PMCID: PMC5549284 DOI: 10.1186/s12896-017-0376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Background Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology. Results By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus, the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus and phloroglucinol synthase (PhlD) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with a yield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible maximum. Conclusions In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from acetate was demonstrated. The system’s performance suggests that in vitro synthesis of phloroglucinol has some advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from acetate, which could work as a versatile biosynthetic platform.
Collapse
Affiliation(s)
- Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Xu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
76
|
Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q, Zhao G. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis. Crit Rev Biotechnol 2017; 37:933-941. [PMID: 28078904 DOI: 10.1080/07388551.2016.1272093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxypropionate (3HP) is an attractive platform chemical, serving as a precursor to a variety of commodity chemicals like acrylate and acrylamide, as well as a monomer of a biodegradable plastic. To establish a sustainable way to produce these commercially important chemicals and materials, fermentative production of 3HP is widely investigated in recent years. It is reported that 3HP can be produced from several intermediates, such as glycerol, malonyl-CoA, and β-alanine. Among all these biosynthetic routes, the malonyl-CoA pathway has some distinct advantages, including a broad feedstock spectrum, thermodynamic feasibility, and redox neutrality. To date, this pathway has been successfully constructed in various species including Escherichia coli, yeast and cyanobacteria, and optimized through carbon flux redirection, enzyme screening and engineering, and an increasing supply of energy and cofactors, resulting in significantly enhanced 3HP titer up to 40 g/L. These results show the feasibility of commercial manufacturing of 3HP and its derivatives in the future.
Collapse
Affiliation(s)
- Changshui Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Yamei Ding
- b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Mo Xian
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Min Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Huizhou Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Qingjun Ma
- b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Guang Zhao
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
77
|
Liu M, Ding Y, Chen H, Zhao Z, Liu H, Xian M, Zhao G. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. BMC Microbiol 2017; 17:10. [PMID: 28061812 PMCID: PMC5219675 DOI: 10.1186/s12866-016-0913-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/13/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Acetyl-CoA-derived chemicals are suitable for multiple applications in many industries. The bio-production of these chemicals has become imperative owing to the economic and environmental problems. However, acetate overflow is the major drawback for acetyl-CoA-derived chemicals production. Approaches for overcoming acetate overflow may be beneficial for the production of acetyl-CoA-derived chemicals. RESULTS In this study, a transcriptional regulator iclR was knocked out in E.coli BL21(DE3) to overcome acetate overflow and improve the chemicals production. Two important acetyl-CoA-derived chemicals, phloroglucinol (PG) and 3-hydroxypropionate (3HP) were used to evaluate it. It is revealed that knockout of iclR significantly increased expressions of aceBAK operon. The cell yields and glucose utilization efficiencies were higher than those of control strains. The acetate concentrations were decreased by more than 50% and the productions of PG and 3HP were increased more than twice in iclR mutants. The effects of iclR knockout on cell physiology, cell metabolism and production of acetyl-CoA-derived chemicals were similar to those of arcA knockout in our previous study. However, the arcA-iclR double mutants couldn't gain higher productions of PG and 3HP. The mechanisms are unclear and needed to be resolved in future. CONCLUSIONS Knockout of iclR significantly increased gene expression of aceBAK operon and concomitantly activated glyoxylate pathway. This genetic modification may be a good way to overcome acetate overflow, and improve the production of a wide range of acetyl-CoA-derived chemicals.
Collapse
Affiliation(s)
- Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hailin Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Randian Technology Company Limited, Tianjin, 300457, China.
| |
Collapse
|
78
|
Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng 2017; 39:151-158. [DOI: 10.1016/j.ymben.2016.11.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
|
79
|
Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli. ACTA ACUST UNITED AC 2016; 43:1659-1670. [DOI: 10.1007/s10295-016-1843-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Abstract
Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M. sedula was accompanied by overexpression of succinyl-CoA synthetase (SCS) from E. coli. The engineered strain produced 13.28 ± 0.12 mg/L of acrylic acid. To construct a propionic acid-producing pathway, the same five genes were expressed, with the addition of M. sedula acryloyl-CoA reductase (ACR). The engineered strain produced 1430 ± 30 mg/L of propionic acid. This approach can be expanded to synthesize many important organic chemicals, creating new opportunities for the production of chemicals by carbon dioxide fixation.
Collapse
|