51
|
Serum sPD1 and sPDL1 as Biomarkers for Evaluating the Immune State of Lung Adenocarcinoma Patients. J Immunol Res 2022; 2022:9101912. [PMID: 36479137 PMCID: PMC9720235 DOI: 10.1155/2022/9101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
A large proportion of cancer patients benefit from immune checkpoint therapy, while few studies focused on the relationship between soluble PD1 (sPD1) and soluble PDL1 (sPDL1) in serum and immune status of patients. ILC2 and M2 were confirmed to be related to immunosuppression in tumor patients. To determine whether sPD1 and sPDL1 are correlated with the ratio of ILC2 and M2 is helpful to explore the possibility of using sPD1 and sPDL1 as tumor molecular markers. Our results showed an immune balance toward ILC2 and M2-like monocytes in patients with LUAD compared with healthy controls. Meanwhile, decreased CD4+T and CD8+T cells, as well as elevated PD1+CD8+T cells, were found in patients with LUAD. The relative mRNA expression levels of ILC2- and M2-characteristic cytokines were also upregulated accompanied by decreased mRNA expression levels of ILC1- and M1-characteristic cytokines in patients with LUAD compared to healthy controls. Moreover, elevated ILC2 frequencies as well as the amount of IL-13 were positively correlated with the amount of sPD1, however, there was no correlation between them and sPDL1. These results suggested that sPD1 and sPDL1 can serve as diagnostic markers to predict the immune state of cancer patients.
Collapse
|
52
|
Cai X, Zha H, Yang Z, Du Y, Dai X, Yang B, Wang J, He Q, Weng Q. Genetic dominance of transforming growth factor-β1 polymorphisms in chronic liver disease. Front Immunol 2022; 13:1058532. [DOI: 10.3389/fimmu.2022.1058532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic liver disease (CLD) is an extremely common clinical condition accompanied by sustained inflammatory response leading to tissue damage. Transforming growth factor-β1 (TGF-β1) is known as a master immune regulator in CLDs, but the association between TGF-β1 polymorphisms and CLD risk is controversial and inconclusive, and the genetic dominance of CLDs remains unknown. In this study, the relationship between TGF-β1 polymorphisms and CLD susceptibility is systematically analyzed based on 35 eligible studies. Individuals with the TGF-β1-509 allele (TT or CT) or codon 10 allele (Pro/Pro) show an increased risk of CLDs. Subgroup analyses indicate TGF-β1-509C/T has a significant correlation with cirrhosis and chronic hepatitis C, codon 10 is associated with chronic hepatitis B occurrence, and codon 25 exhibits a relationship with autoimmune hepatitis risk. Missense mutations in G29E, A105S, D191N, and F321L of TGF-β1 are the genetic factors of HCC susceptibility. Furthermore, the TGF-β1 gene expression is significantly elevated in CLD patients, and the TGF-β1 codon 263 is located close to the region where the TGF-β1 dimerization interacts, indicating the TGF-β1 codon 263 variant may affect the secretion of TGF-β1 by altering its dimerization. Together, our findings provide new insights into the immune regulator gene TGF-β1 polymorphisms as susceptibility factors for CLD occurrence and regulators for TGF-β1 expression, which have implications for the regulation of immune factors during CLD development.
Collapse
|
53
|
The Prognostic Significance of FKBP1A and Its Related Immune Infiltration in Liver Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232112797. [PMID: 36361587 PMCID: PMC9659304 DOI: 10.3390/ijms232112797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan–Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.
Collapse
|
54
|
Xia JK, Tang N, Wu XY, Ren HZ. Deregulated bile acids may drive hepatocellular carcinoma metastasis by inducing an immunosuppressive microenvironment. Front Oncol 2022; 12:1033145. [PMID: 36338764 PMCID: PMC9634065 DOI: 10.3389/fonc.2022.1033145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Bile acids (BAs) are physiological detergents that can not only promote the digestion and absorption of lipids, but also may be a potential carcinogen. The accumulation of BAs in the body can lead to cholestatic liver cirrhosis and even liver cancer. Recently, studies demonstrated that BAs are highly accumulated in metastatic lymph nodes, but not in normal healthy lymph nodes or primary tumors. Lymph node metastasis is second only to hematogenous metastasis in liver cancer metastasis, and the survival and prognosis of hepatocellular carcinoma (HCC) patients with lymph node metastasis are significantly worse than those without lymph node metastasis. Meanwhile, component of BAs was found to significantly enhance the invasive potential of HCC cells. However, it is still poorly understood how deregulated BAs fuel the metastasis process of liver cancer. The tumor microenvironment is a complex cellular ecosystem that evolves with and supports tumor cells during their malignant transformation and metastasis progression. Aberrant BAs metabolism were found to modulate tumor immune microenvironment by preventing natural killer T (NKT) cells recruitment and increasing M2-like tumor-associated macrophages (TAMs) polarization, thus facilitate tumor immune escape and HCC development. Based on these available evidence, we hypothesize that a combination of genetic and epigenetic factors in cancerous liver tissue inhibits the uptake and stimulates the synthesis of BAs by the liver, and excess BAs further promote liver carcinogenesis and HCC metastasis by inducing immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Jin-kun Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Hepatobiliary Surgery, Nanjing University, Nanjing, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing-yu Wu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Hepatobiliary Surgery, Nanjing University, Nanjing, China
| |
Collapse
|
55
|
Chen G, Li X, Ji C, Liu P, Zhou L, Xu D, Wang D, Li J, Yu J. Early myeloid-derived suppressor cells accelerate epithelial-mesenchymal transition by downregulating ARID1A in luminal A breast cancer. Front Bioeng Biotechnol 2022; 10:973731. [PMID: 36329699 PMCID: PMC9623091 DOI: 10.3389/fbioe.2022.973731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Early myeloid-derived suppressor cells (eMDSCs) are a newly characterized subclass of MDSCs, which exhibit more potent immunosuppressive capacity than classical MDSCs. Previously, we found high eMDSCs infiltration was correlated with poor prognosis of breast cancer, though the regulatory mechanisms have not been fully understood. Here, we constructed a 21-gene signature to evaluate the status of eMDSCs infiltration within breast cancer tissues and found that highly infiltrated eMDSCs affected the prognosis of breast cancer patients, especially in luminal A subtype. We also found that eMDSCs promoted epithelial-mesenchymal transition (EMT) and accelerated cell migration and invasion in vitro. Meanwhile, eMDSCs significantly downregulated ARID1A expression in luminal A breast cancer, which was closely associated with EMT and was an important prognostic factor in breast cancer patients. Moreover, significant changes of EMT-related genes were detected in luminal A breast cancer cells after co-cultured with eMDSCs or ARID1A knock-down and overexpression of ARID1A significantly reversed this procedure. These results implied that eMDSCs might suppress the ARID1A expression to promote EMT in luminal A breast cancer cells, which might provide a new light on developing novel treatment regimens for relapsed luminal A breast cancer after conventional therapies.
Collapse
Affiliation(s)
- Guidong Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xingchen Li
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chenyan Ji
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Li Zhou
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dechen Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
56
|
Ortuño-Sahagún D, Enterría-Rosales J, Izquierdo V, Griñán-Ferré C, Pallàs M, González-Castillo C. The Role of the miR-17-92 Cluster in Autophagy and Atherosclerosis Supports Its Link to Lysosomal Storage Diseases. Cells 2022; 11:cells11192991. [PMID: 36230953 PMCID: PMC9564236 DOI: 10.3390/cells11192991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Establishing the role of non-coding RNA (ncRNA), especially microRNAs (miRNAs), in the regulation of cell function constitutes a current research challenge. Two to six miRNAs can act in clusters; particularly, the miR-17-92 family, composed of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a is well-characterized. This cluster functions during embryonic development in cell differentiation, growth, development, and morphogenesis and is an established oncogenic cluster. However, its role in the regulation of cellular metabolism, mainly in lipid metabolism and autophagy, has received less attention. Here, we argue that the miR-17-92 cluster is highly relevant for these two processes, and thus, could be involved in the study of pathologies derived from lysosomal deficiencies. Lysosomes are related to both processes, as they control cholesterol flux and regulate autophagy. Accordingly, we compiled, analyzed, and discussed current evidence that highlights the cluster's fundamental role in regulating cellular energetic metabolism (mainly lipid and cholesterol flux) and atherosclerosis, as well as its critical participation in autophagy regulation. Because these processes are closely related to lysosomes, we also provide experimental data from the literature to support our proposal that the miR-17-92 cluster could be involved in the pathogenesis and effects of lysosomal storage diseases (LSD).
Collapse
Affiliation(s)
- Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (D.O.-S.); (C.G.-C.)
| | - Julia Enterría-Rosales
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Vanesa Izquierdo
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
- Correspondence: (D.O.-S.); (C.G.-C.)
| |
Collapse
|
57
|
Sun Z, Zhang R, Zhang X, Sun Y, Liu P, Francoeur N, Han L, Lam WY, Yi Z, Sebra R, Walsh M, Yu J, Zhang W. LINE-1 promotes tumorigenicity and exacerbates tumor progression via stimulating metabolism reprogramming in non-small cell lung cancer. Mol Cancer 2022; 21:147. [PMID: 35842613 PMCID: PMC9288060 DOI: 10.1186/s12943-022-01618-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (LINE-1, L1) is increasingly regarded as a genetic risk for lung cancer. Transcriptionally active LINE-1 forms a L1-gene chimeric transcript (LCTs), through somatic L1 retrotransposition (LRT) or L1 antisense promoter (L1-ASP) activation, to play an oncogenic role in cancer progression. METHODS Here, we developed Retrotransposon-gene fusion estimation program (ReFuse), to identify and quantify LCTs in RNA sequencing data from TCGA lung cancer cohort (n = 1146) and a single cell RNA sequencing dataset then further validated those LCTs in an independent cohort (n = 134). We next examined the functional roles of a cancer specific LCT (L1-FGGY) in cell proliferation and tumor progression in LUSC cell lines and mice. RESULTS The LCT events correspond with specific metabolic processes and mitochondrial functions and was associated with genomic instability, hypomethylation, tumor stage and tumor immune microenvironment (TIME). Functional analysis of a tumor specific and frequent LCT involving FGGY (L1-FGGY) reveal that the arachidonic acid (AA) metabolic pathway was activated by the loss of FGGY through the L1-FGGY chimeric transcript to promote tumor growth, which was effectively targeted by a combined use of an anti-HIV drug (NVR) and a metabolic inhibitor (ML355). Lastly, we identified a set of transcriptomic signatures to stratify the LUSC patients with a higher risk for poor outcomes who may benefit from treatments using NVR alone or combined with an anti-metabolism drug. CONCLUSIONS This study is the first to characterize the role of L1 in metabolic reprogramming of lung cancer and provide rationale for L1-specifc prognosis and potential for a therapeutic strategy for treating lung cancer. TRIAL REGISTRATION Study on the mechanisms of the mobile element L1-FGGY promoting the proliferation, invasion and immune escape of lung squamous cell carcinoma through the 12-LOX/Wnt pathway, Ek2020111. Registered 27 March 2020 - Retrospectively registered.
Collapse
Affiliation(s)
- Zeguo Sun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Nancy Francoeur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wan Yee Lam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zhengzi Yi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
58
|
Zhou L, Shen M, Fan X, Liu Y, Yang L. Pathogenic and Potential Therapeutic Roles of Exosomes Derived From Immune Cells in Liver Diseases. Front Immunol 2022; 13:810300. [PMID: 35185900 PMCID: PMC8854144 DOI: 10.3389/fimmu.2022.810300] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Liver diseases, such as viral hepatitis, alcoholic hepatitis and cirrhosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma place a heavy burden on many patients worldwide. However, the treatment of many liver diseases is currently insufficient, and the treatment may be associated with strong side effects. Therapies for liver diseases targeting the molecular and cellular levels that minimize adverse reactions and maximize therapeutic effects are in high demand. Immune cells are intimately involved in the occurrence, development, and prognosis of liver diseases. The immune response in the liver can be suppressed, leading to tolerance in homeostasis. When infection or tissue damage occurs, immunity in the liver is activated rapidly. As small membrane vesicles derived from diverse cells, exosomes carry multiple cargoes to exert their regulatory effects on recipient cells under physiological or pathological conditions. Exosomes from different immune cells exert different effects on liver diseases. This review describes the biology of exosomes and focuses on the effects of exosomes from different immune cells on pathogenesis, diagnosis, and prognosis and their therapeutic potential in liver diseases.
Collapse
|
59
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W, Wang X. Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol 2021; 9:775462. [PMID: 34869376 PMCID: PMC8633569 DOI: 10.3389/fcell.2021.775462] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.
Collapse
Affiliation(s)
- Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|