51
|
Pownall HJ, Hamilton JA. Physical aspects of fatty acid transport between and through biological membranes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
52
|
Abreu MSC, Estronca LMBB, Moreno MJ, Vaz WLC. Binding of a fluorescent lipid amphiphile to albumin and its transfer to lipid bilayer membranes. Biophys J 2003; 84:386-99. [PMID: 12524292 PMCID: PMC1302620 DOI: 10.1016/s0006-3495(03)74859-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kinetics and thermodynamics of the binding of a fluorescent lipid amphiphile, Rhodamine Green(TM)-tetradecylamide (RG-C(14:0)), to bovine serum albumin were characterized in an equilibrium titration and by stopped-flow fluorimetry. The binding equilibrium of RG-C(14:0) to albumin was then used to reduce its concentration in the aqueous phase to a value below its critical micelle concentration. Under these conditions, the only two species of RG-C(14:0) in the system were the monomer in aqueous solution in equilibrium with the protein-bound species. After previous determination of the kinetic and thermodynamic parameters for association of RG-C(14:0) with albumin, the kinetics of insertion of the amphiphile into and desorption off lipid bilayer membranes in different phases (solid, liquid-ordered, and liquid-disordered phases, presented as large unilamellar vesicles) were studied by stopped-flow fluorimetry at 30 degrees C. Insertion and desorption rate constants for association of the RG-C(14:0) monomer with the lipid bilayers were used to obtain lipid/water equilibrium partition coefficients for this fluorescent amphiphile. The direct measurement of these partition coefficients is shown to provide a new method for the indirect determination of the equilibrium partition coefficient of similar molecules between two defined lipid phases if they coexist in the same membrane.
Collapse
|
53
|
Ho JK, Duclos RI, Hamilton JA. Interactions of acyl carnitines with model membranes: a (13)C-NMR study. J Lipid Res 2002; 43:1429-39. [PMID: 12235174 DOI: 10.1194/jlr.m200137-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Esterification of fatty acids with the small polar molecule carnitine is a required step for the regulated flow of fatty acids into mitochondrial inner matrix. We have studied the interactions of acyl carnitines (ACs) with model membranes [egg yolk phosphatidylcholine (PC) vesicles] by (13)C-nuclear magnetic resonance (NMR) spectroscopy. Using AC with (13)C-enrichment of the carbonyl carbon of the acyl chain, we detected NMR signals from AC on the inside and outside leaflets of the bilayer of small unilamellar vesicles prepared by cosonication of PC and AC. However, when AC was added to the outside of pre-formed PC vesicles, only the signal for AC bound to the outer leaflet was observed, even after hours at equilibrium. The extremely slow transmembrane diffusion ("flip-flop") is consistent with the zwitterionic nature of the carnitine head group and the known requirement of transport proteins for movement of ACs through the mitochondrial membrane. The partitioning of ACs (8-18 carbons) between water and PC vesicles was studied by monitoring the [(13)C]carbonyl chemical shift of ACs as a function of pH and concentration of vesicles. Significant partitioning into the water phase was detected for ACs with chain lengths of 12 carbons or less. The effect of ACs on the integrity of the bilayer was examined in vesicles with up to 25 mol% myristoyl carnitine; no gross disruption of the bilayer was observed. We hypothesize that the effects of high levels of long-chain AC (as found in ischemia or in certain diseases) on cell membranes result from molecular effects on membrane functions rather than from gross disruption of the lipid bilayer.
Collapse
Affiliation(s)
- Jet K Ho
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
54
|
Abstract
Pyrene is one of the most frequently used lipid-linked fluorophores. Its most characteristic features are a long excited state lifetime and (local) concentration-dependent formation of excimers. Pyrene is also hydrophobic and thus does not significantly distort the conformation of the labeled lipid molecule. These characteristics make pyrene lipids well-suited for studies on a variety of biophysical phenomena like lateral diffusion, inter- or transbilayer movement of lipids and lateral organization of membranes. Pyrene lipids have also been widely employed to determine protein binding to membranes, lipid conformation and the activity of lipolytic enzymes. In cell biology, pyrene lipids are promising tools for studies on lipid trafficking and metabolism, as well as for microscopic mapping of membrane properties. The main disadvantage of pyrene lipids is the relatively large size of the fluorophore. Another disadvantage is that they require UV-excitation, which is not feasible with all microscopes.
Collapse
Affiliation(s)
- Pentti Somerharju
- Institute of Biomedicine, Biomedicum, Room C205b, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
55
|
Demant EJF, Richieri GV, Kleinfeld AM. Stopped-flow kinetic analysis of long-chain fatty acid dissociation from bovine serum albumin. Biochem J 2002; 363:809-15. [PMID: 11964183 PMCID: PMC1222535 DOI: 10.1042/0264-6021:3630809] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The kinetics of the interaction of long-chain fatty acids (referred to as fatty acids) with albumin is critical to understanding the role of albumin in fatty acid transport. In this study we have determined the kinetics of fatty acid dissociation from BSA and the BSA-related fatty acid probe BSA-HCA (BSA labelled with 7-hydroxycoumarin-4-acetic acid) by stopped-flow methods. Fatty acid-albumin complexes of a range of natural fatty acid types and albumin molecules (donors) were mixed with three fatty acid-binding acceptor proteins. Dissociation of fatty acids from the donor was monitored by either the time course of donor fluorescence/absorbance or the time course of acceptor fluorescence. The results of these measurements indicate that fatty acid dissociation from BSA as well as BSA-HCA is well described by a single exponential function over the entire range of fatty acid/albumin molar ratios used in these measurements, from 0.5:1 to 6:1. The observed rate constants (k(obs)) for the dissociation of each fatty acid type reveal little or no dependence on the initial fatty acid/albumin ratio. However, dissociation rates were dependent upon the type of fatty acid. In the case of native BSA with an initial fatty acid/BSA molar ratio of 3:1, the order of k(obs) values was stearic acid (1.5 s(-1)) < oleic acid < palmitic acid congruent with linoleic acid<arachidonic acid (8 s(-1)) at 37 degrees C. The corresponding values for BSA-HCA were about half the values for BSA. The results of this study show that the rate of fatty acid dissociation from native BSA is more than 10-fold faster than reported previously and that the off-rate constants for the five primary fatty acid-binding sites differ by less than a factor of 2. We conclude that for reported rates of fatty acid transport across cell membranes, dissociation of fatty acids from the fatty acid-BSA complexes used in the transport studies should not be rate-limiting.
Collapse
Affiliation(s)
- Erland J F Demant
- Department of Medical Biochemistry and Genetics, Biochemistry Laboratory C, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
56
|
Thomas RM, Baici A, Werder M, Schulthess G, Hauser H. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems. Biochemistry 2002; 41:1591-601. [PMID: 11814353 DOI: 10.1021/bi011555p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of long-chain fatty acid (FA) transfer from three different donor systems to unilamellar egg phosphatidylcholine (EPC) vesicles containing the pH-sensitive fluorophore pyranine in the vesicle cavity were determined. The transfer of long-chain FA from three FA donors, FA vesicles, unilamellar EPC vesicles containing FA, and bovine serum albumin-FA complexes to pyranine-containing EPC vesicles is a true first-order process, indicating that the FA transfer proceeds through the aqueous phase and not through collisional contacts between the donor and acceptor. A collisional mechanism would be at least bimolecular, giving rise to second-order kinetics. Evidence from stopped-flow fluorescence spectroscopy using the pyranine assay (as developed by Kamp, F., and Hamilton, J. A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11367-11370) shows that the transverse or flip-flop motion of long-chain FA (from 14 to 22 C atoms) is immeasurably fast in both small and large unilamellar EPC vesicles and characterized by half-times t(1/2) < 5 ms. The rate-limiting step of FA transfer from these different donor systems to pyranine-containing EPC vesicles is the dissociation or desorption of the FA molecule from the donor. The desorption of the FA molecule is chain-length-dependent, confirming published data (Zhang et al. (1996) Biochemistry 35, 16055-16060): the first-order rate constant k(1) decreases by a factor of about 10 with elongation of the FA chain by two CH(2) groups. Similar rates of desorption are observed for the transfer of oleic acid from the three donors to pyranine-containing EPC vesicles with rate constants k(1) ranging from 0.4 to 1.3 s(-1). We also show that osmotically stressed, pyranine-containing EPC vesicles can give rise to artifacts. In the presence of a chemical potential gradient across the lipid bilayer of these vesicles, fast kinetic processes are observed with stopped-flow fluorescence spectroscopy which are probably due to electrostatic and/or osmotic effects.ne
Collapse
Affiliation(s)
- Richard M Thomas
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH Center, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
57
|
Igal RA, Wang S, Gonzalez-Baró M, Coleman RA. Mitochondrial glycerol phosphate acyltransferase directs the incorporation of exogenous fatty acids into triacylglycerol. J Biol Chem 2001; 276:42205-12. [PMID: 11546763 DOI: 10.1074/jbc.m103386200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [(14)C]oleate ( approximately 3 microm), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [(14)C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 microm oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species.
Collapse
Affiliation(s)
- R A Igal
- Instituto de Investigaciones Bioquimicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CC 455, calles 60 y 120, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|
58
|
Zucker SD, Goessling W, Bootle EJ, Sterritt C. Localization of bilirubin in phospholipid bilayers by parallax analysis of fluorescence quenching. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30269-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
59
|
Ek-Von Mentzer BA, Zhang F, Hamilton JA. Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J Biol Chem 2001; 276:15575-80. [PMID: 11278949 DOI: 10.1074/jbc.m011623200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transport and utilization of fatty acids (FA) in cells is a multistep process that includes adsorption to and movement across the plasma membrane and binding to intracellular fatty acid binding proteins (FABP) in the cytosol. We monitored the transbilayer movement of several polyunsaturated FA and oxidation products (13-hydroxy octadecadienoic acid (HODE) and 15-hydroxytetraenoic acid (HETE)) in unilamellar protein-free phospholipid vesicles containing a fluorescent pH probe. All FA diffused rapidly by the flip-flop mechanism across the model membrane, as revealed by pH changes inside the vesicle. This result suggests that FA oxidation products generated in the cell could cross the plasma or nuclear membrane spontaneously without a membrane transporter. To illuminate features of extra- and intracellular transport, the partitioning of unsaturated FA and oxidized FA between phospholipid vesicles and albumin or FABP was studied by the pyranin assay. These experiments showed that all polyunsaturated FA and oxidized FA (13-HODE and 15-HETE) desorbed rapidly from the phospholipid bilayer to bind to bovine serum albumin, which showed a slight preference for the unsaturated FA over the oxidized FA. FABP rapidly bound FA in the presence of phospholipid bilayers, with a preference of 13-HODE over the unsaturated FA and with a specificity depending on the type of FABP. Liver FABP was significantly more effective than intestinal FABP in binding 13-HODE in the presence of vesicles. The more effective binding of the FA metabolite, 13-HODE, than its precursor 18:2 by FABP may help protect cellular membranes from potential damage by monohydroxy fatty acids and may contribute a pathway for entry of 13-HODE into the nucleus.
Collapse
Affiliation(s)
- B A Ek-Von Mentzer
- Departments of Preclinical Research and Development, Astrazeneca, 431 83 Mölndal, Sweden
| | | | | |
Collapse
|
60
|
Pownall HJ. Cellular transport of nonesterified fatty acids. J Mol Neurosci 2001; 16:109-15; discussion 151-7. [PMID: 11478365 DOI: 10.1385/jmn:16:2-3:109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2000] [Accepted: 11/01/2000] [Indexed: 11/11/2022]
Abstract
Transport of nonesterified fatty acids (NEFA) is an important component of whole-body energy metabolism, and derangements in NEFA transport have been linked to several diseases. NEFA are transferred from their sites of production to cells in hepatic and peripheral tissues by mechanisms that are regulated in part by cell status and as determined by the covalent structure of the NEFA species. Major barriers to physical transport are transfer from the hydrophobic surfaces on cell membranes and NEFA-binding proteins, such as albumin, into the surrounding aqueous phase and translocation across a membrane that contains a very hydrophobic interior; this process could be purely diffusive or require specific protein cofactors. Herein evidence is provided suggesting that this step is driven by intracellular metabolism that supports a NEFA gradient across the cell membrane. According to current models of NEFA transfer, the rate-limiting step is likely to be desorption of NEFA from the inner leaflet of the cell membrane or intracellular metabolism; for very long chain NEFA, the former is more likely.
Collapse
Affiliation(s)
- H J Pownall
- Department of Medicine, Baylor College of Medicine and The Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
61
|
Liver and intestinal fatty acid-binding proteins obtain fatty acids from phospholipid membranes by different mechanisms. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32413-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
62
|
McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33379-4] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
63
|
Weisiger RA. Saturable stimulation of fatty acid transport through model cytoplasm by soluble binding protein. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G109-19. [PMID: 10409157 DOI: 10.1152/ajpgi.1999.277.1.g109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
To better define the role of soluble binding proteins in the cytoplasmic transport of amphipathic molecules, we measured the diffusional mobility of a fluorescent long-chain fatty acid, 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazol)aminostearate (NBD-stearate), through model cytoplasm as a function of soluble binding protein concentration. Diffusional mobilities were correlated with the partition of the fatty acid between membrane and protein binding sites. Cytoplasm was modeled as a dense suspension of liposomes, and albumin was used as a model binding protein. Albumin saturably increased NBD-stearate mobility through the membrane suspension approximately eightfold. Fatty acid mobility in the absence of albumin was identical to the mobility of the membrane vesicles (1.99 +/- 0.33 x 10(-8) cm(2)/s), whereas the mobility at saturating concentrations was identical to the mobility of albumin (1.65 +/- 0.12 x 10(-7) cm(2)/s). The protein concentration producing half-maximal stimulation of NBD-stearate diffusion (42.8 +/- 0.3 microM) was unexpectedly greater than that required to solubilize half of the NBD-stearate (17.9 +/- 3.0 microM). These results support a proposed mechanism for cytoplasmic transport of small amphipathic molecules in which aqueous diffusion of the protein-bound form of the molecule largely determines the transport rate. However, slow interchange of fatty acid between the binding protein and membranes also appears to influence the transport rate in this model system.
Collapse
Affiliation(s)
- R A Weisiger
- Department of Medicine and the Liver Center, University of California, San Francisco, California 94143-0538, USA.
| |
Collapse
|
64
|
Abstract
In early research on fatty acid transport, passive diffusion seemed to provide an adequate explanation for movement of fatty acids through the membrane bilayer. This simple hypothesis was later challenged by the discovery of several proteins that appeared to be membrane-related fatty acid transporters. In addition, some biophysical studies suggested that fatty acids moved slowly through the simple model membranes (phospholipid bilayers), which would provide a rationale for protein-assisted transport. Furthermore, it was difficult to rationalize how fatty acids could diffuse passively across the bilayer as anions. Newer studies have shown that fatty acids are present in membranes in the un-ionized as well as the ionized form, and that the un-ionized form can cross a protein-free phospholipid bilayer quickly. This flip-flop mechanism has been validated in cells by intracellular pH measurements. The role of putative fatty acid transport proteins remains to be clarified.
Collapse
Affiliation(s)
- J A Hamilton
- Department of Biophysics, Boston University School of Medicine, MA 02118, USA
| |
Collapse
|
65
|
Herr FM, Li E, Weinberg RB, Cook VR, Storch J. Differential mechanisms of retinoid transfer from cellular retinol binding proteins types I and II to phospholipid membranes. J Biol Chem 1999; 274:9556-63. [PMID: 10092641 DOI: 10.1074/jbc.274.14.9556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular retinol-binding proteins types I and II (CRBP-I and CRBP-II) are known to differentially facilitate retinoid metabolism by several membrane-associated enzymes. The mechanism of ligand transfer to phospholipid small unilamellar vesicles was compared in order to determine whether differences in ligand trafficking properties could underlie these functional differences. Unidirectional transfer of retinol from the CRBPs to membranes was monitored by following the increase in intrinsic protein fluorescence that occurs upon ligand dissociation. The results showed that ligand transfer of retinol from CRBP-I was >5-fold faster than transfer from CRBP-II. For both proteins, transfer of the other naturally occurring retinoid, retinaldehyde, was 4-5-fold faster than transfer of retinol. Rates of ligand transfer from CRBP-I to small unilamellar vesicles increased with increasing concentration of acceptor membrane and with the incorporation of the anionic lipids cardiolipin or phosphatidylserine into membranes. In contrast, transfer from CRBP-II was unaffected by either membrane concentration or composition. Preincubation of anionic vesicles with CRBP-I was able to prevent cytochrome c, a peripheral membrane protein, from binding, whereas CRBP-II was ineffective. In addition, monolayer exclusion experiments demonstrated differences in the rate and magnitude of the CRBP interactions with phospholipid membranes. These results suggest that the mechanisms of ligand transfer from CRBP-I and CRBP-II to membranes are markedly different as follows: transfer from CRBP-I may involve and require effective collisional interactions with membranes, whereas a diffusional process primarily mediates transfer from CRBP-II. These differences may help account for their distinct functional roles in the modulation of intracellular retinoid metabolism.
Collapse
Affiliation(s)
- F M Herr
- Department of Nutritional Sciences, Rutgers University, Cook College, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
66
|
Massey JB. Effect of cholesteryl hemisuccinate on the interfacial properties of phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:193-204. [PMID: 9858729 DOI: 10.1016/s0005-2736(98)00194-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cholesteryl hemisuccinate (CHEMS) is an amphipathic lipid that can regulate cell growth. A comparison of the effects of CHEMS and cholesterol on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers was investigated using fluorescence techniques. In liquid-crystalline phase POPC bilayers, CHEMS increased the interfacial surface charge, but was less effective than cholesterol in reducing acyl chain mobility and interfacial hydration. In liquid-crystalline phase DPPC bilayers, CHEMS and cholesterol were equally effective in reducing acyl chain mobility. Similar to the POPC matrix, CHEMS increased the interfacial surface charge and cholesterol decreased the surface hydration. The different effect of cholesterol and CHEMS on acyl chain mobility may be due to a preferential interaction of cholesterol with POPC. In gel phase DPPC bilayers, CHEMS and a succinylated pyrenyl cholesterol analog exhibited different effects on membrane physical-chemical properties than cholesterol. Succinylation also increased the rate of transfer of the pyrenyl cholesterol analog between single unilamellar vesicles approximately seven fold. This process demonstrated first-order kinetics which indicated that transbilayer migration was not a rate-limiting step. The succinylation of cholesterol places a carboxyl group at the lipid-water interface and the sterol ring deeper in the bilayer. For a structural model to explain its biological properties, CHEMS should be considered a bulky fatty acid.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine and The Methodist Hospital, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA.
| |
Collapse
|
67
|
|
68
|
Abstract
Plasma lipoprotein surface properties are important but poorly understood determinants of lipoprotein catabolism. To elucidate the relation between surface properties and surface reactivity, the physical properties of surface monolayers of native lipoproteins and lipoprotein models were investigated by fluorescent probes of surface lipid fluidity, surface lateral diffusion, and interfacial polarity, and by their reactivity to Naja melanoleuca phospholipase A2 (PLA2). Native lipoproteins were human very low, low-, and subclass 3 high-density lipoproteins (VLDL, LDL, and HDL3); models were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or its ether analog in single-bilayer vesicles, large and small microemulsions of POPC and triolein, and reassembled HDL (apolipoprotein A-I plus phospholipid). Among lipoproteins, surface lipid fluidity increased in the order HDL3 < LDL < VLDL, varying inversely with their (protein + cholesterol)/phospholipid ratios. Models resembled VLDL in fluidity. Both lateral mobility in the surface monolayer and polarity of the interfacial region were lower in native lipoproteins than in models. Among native lipoproteins and models, increased fluidity in the surface monolayer was associated with increased reactivity to PLA2. Addition of cholesterol (up to 20 mol%) to models had little effect on PLA2 activity, whereas the addition of apolipoprotein C-III stimulated it. Single-bilayer vesicles, phospholipid-triolein microemulsions, and VLDL have surface monolayers that are quantitatively similar, and distinct from those of LDL and HDL3. Surface property and enzymatic reactivity differences between lipoproteins and models were associated with differences in surface monolayer protein and cholesterol contents. Thus differences in the surface properties that regulate lipolytic reactivity are a predictable function of surface composition.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
69
|
Kleinfeld AM, Chu P, Romero C. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Biochemistry 1997; 36:14146-58. [PMID: 9369487 DOI: 10.1021/bi971440e] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence from a number of laboratories suggests that membrane proteins may meditate the transport of physiologic fatty acids (FA) across cell membranes. However, studies using lipid membranes indicate that FA are capable of spontaneous flip-flip, raising the possibility that rapid transport through the lipid phase obviates the need for a transport protein. Determining the rate-limiting steps for transport of FA across lipid membranes, therefore, is central to understanding FA transport across cell membranes. The transport of long-chain FA across lipid membranes, from the aqueous compartment on one side of the lipid bilayer to the aqueous phase on the other side, has not been measured previously. In this study, we have used the fluorescent probe ADIFAB to monitor the time course of FA movement from the outer to the inner aqueous compartments and from the lipid membrane to the outer aqueous compartment of lipid vesicles. These two measurements, together with measurements of the lipid:aqueous partition coefficients, allowed the determination of the rate constants for binding (kon), flip-flop (kff), and dissociation (koff) for the transport of long-chain natural FA across lipid vesicles. These rates were determined using large unilamellar vesicles (LUV) of approximately 1000 A diameter, prepared by extrusion and giant unilamellar vesicles (GUV), prepared by detergent dialysis, that are >/=2000 A diameter. The results of these studies for vesicles composed of egg phosphatidylcholine (EPC) and cholesterol reveal kff values that range from 3 to 15 s-1 for LUV and from 0.1 to 1.0 s-1 for GUV, depending upon temperature and FA type. For these same vesicles, dissociation rate constants range from 4 to 40 s-1 for LUV and from 0.3 to 2.5 s-1 for GUV. In all instances, the rate constant for flip-flop is smaller than koff, and because the rate of binding is greater than the rate of transport, we conclude that flip-flop is the rate-limiting step for transport. These results demonstrate that (1) kff and koff are smaller for GUV than for LUV, (2) the rate constants increase with FA type according to oleate (18:1) < palmitate (16:0) < linoleate (18:2), and (3) the barrier for flip-flop has a significant enthalpic component. Comparison of the flip-flop rates determined for GUV with values estimated from previously reported metabolic rates for cardiac myocytes, raises the possibility that flip-flop across the lipid phase alone may not be able to support metabolic requirements.
Collapse
Affiliation(s)
- A M Kleinfeld
- Medical Biology Institute, 11077 North Torrey Pines Rd., La Jolla, California 92037, USA
| | | | | |
Collapse
|