51
|
Mohanty BK, Kushner SR. Polynucleotide phosphorylase functions both as a 3' right-arrow 5' exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 2000; 97:11966-71. [PMID: 11035800 PMCID: PMC17278 DOI: 10.1073/pnas.220295997] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2000] [Indexed: 11/18/2022] Open
Abstract
In vitro, polynucleotide phosphorylase of Escherichia coli can both synthesize RNA by using nucleotide diphosphates as precursors and exonucleolytically degrade RNA in the presence of inorganic phosphate. However, because of the high in vivo concentration of inorganic phosphate in exponentially growing cells, it has been assumed that the enzyme works exclusively as an exonuclease. Here we demonstrate that, contrary to this prediction, polynucleotide phosphorylase not only synthesizes long, highly heteropolymeric tails in vivo, but also accounts for all of the observed residual polyadenylylation in poly(A) polymerase I deficient strains. In addition, the enzyme is responsible for adding the C and U residues that are found in poly(A) tails in exponentially growing cultures of wild type E. coli.
Collapse
Affiliation(s)
- B K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602-7223, USA
| | | |
Collapse
|
52
|
Spickler C, Mackie GA. Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J Bacteriol 2000; 182:2422-7. [PMID: 10762241 PMCID: PMC111303 DOI: 10.1128/jb.182.9.2422-2427.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 3'-->5' exoribonucleases, RNase II and polynucleotide phosphorylase (PNPase), play an essential role in degrading fragments of mRNA generated by prior cleavages by endonucleases. We have assessed the ability of small RNA substrates containing defined stem-loop structures and variable 3' extensions to impede the exonucleolytic activity of these enzymes. We find that stem-loops containing five G-C base pairs do not block either enzyme; in contrast, more stable stem-loops of 7, 9, or 11 bp block the processive action of both enzymes. Under conditions where enzyme activity is limiting, both enzymes stall and dissociate from their substrates six to nine residues, on average, from the base of a stable stem-loop structure. Our data provide a clear mechanistic explanation for the previous observation that RNase II and PNPase behave as functionally redundant.
Collapse
Affiliation(s)
- C Spickler
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
53
|
Callahan C, Neri-Cortes D, Deutscher MP. Purification and characterization of the tRNA-processing enzyme RNase BN. J Biol Chem 2000; 275:1030-4. [PMID: 10625642 DOI: 10.1074/jbc.275.2.1030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase BN, a tRNA-processing enzyme previously shown to be required for the 3'-maturation of certain bacteriophage T4-encoded tRNAs, was overexpressed and purified to near homogeneity from Escherichia coli. The purified enzyme, which is free of nucleic acid, is an alpha(2)-dimer with a molecular mass of approximately 65 kDa. RNase BN displays a number of unusual catalytic properties compared with the other exoribonucleases of E. coli. The enzyme is most active at pH 6.5 in the presence of Co(2+) and high concentrations of monovalent salts. It is highly specific for tRNA substrates containing an incorrect residue within the universal 3'-CCA sequence. Thus, tRNA-CU and tRNA-CA are effective substrates, whereas intact tRNA-CCA, elongated tRNA-CCA-Cn, phosphodiesterase-treated tRNA, and the closely related tRNA-CC are essentially inactive as substrates. RNA or DNA oligonucleotides also are not substrates. These data indicate that RNase BN has an extremely narrow substrate specificity. However, since tRNA molecules with incorrect residues within the -CCA sequence are not normally produced in E. coli, the role of RNase BN in uninfected cells remains to be determined.
Collapse
Affiliation(s)
- C Callahan
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | |
Collapse
|
54
|
Whittle G, Bloomfield GA, Katz ME, Cheetham BF. The site-specific integration of genetic elements may modulate thermostable protease production, a virulence factor in Dichelobacter nodosus, the causative agent of ovine footrot. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2845-55. [PMID: 10537206 DOI: 10.1099/00221287-145-10-2845] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gram-negative anaerobe Dichelobacter nodosus is the causative agent of footrot in sheep. The authors have previously characterized two genetic elements, the intA (vap) and intB elements, which integrate into the genome of D. nodosus. In the virulent strain A198 there are two copies of the intA element. One copy is integrated into the 3' end of the tRNA-serGCU gene, close to the aspartokinase (askA) gene, and the second copy is integrated into the 3' end of the tRNA-serGGA gene, next to the polynucleotide phosphorylase (pnpA) gene. In this study, a new genetic element was identified in the benign strain C305, the intC element, integrated into the 3' end of the tRNA-serGCU gene, next to askA. The intC element was found in most D. nodosus strains, both benign and virulent, which were examined, and was integrated into tRNA-serGCU in most strains. Between the askA and tRNA-serGCU genes, a gene (designated glpA), was identified whose predicted protein product has very high amino acid identity with RsmA from the plant pathogen Erwinia carotovora. RsmA acts as a global repressor of pathogenicity in E. carotovora, by repressing the production of extracellular enzymes. In virulent strains of D. nodosus the intA element was found to be integrated next to pnpA, and either the intA or intC element was integrated next to glpA. By contrast, all but one of the benign strains had intB at one or both of these two positions, and the one exception had neither intA, intB nor intC at one position. The loss of the intC element from the virulent strain 1311 resulted in loss of thermostable protease activity, a virulence factor in D. nodosus. A model for virulence is proposed whereby integration of the intA and intC genetic elements modulates virulence by altering the expression of glpA, pnpA, tRNA-serGCU and tRNA-serGGA.
Collapse
Affiliation(s)
- G Whittle
- Molecular and Cellular Biology, School of Biological Sciences, University of New England, Armidale, NSW, Australia
| | | | | | | |
Collapse
|
55
|
Viswanathan M, Dower KW, Lovett ST. Identification of a potent DNase activity associated with RNase T of Escherichia coli. J Biol Chem 1998; 273:35126-31. [PMID: 9857048 DOI: 10.1074/jbc.273.52.35126] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase T was first identified as an enzyme responsible for end turnover of tRNA in Escherichia coli. Its activity, specific for tRNA-C-C-A, catalyzes the release of tRNA-C-C and AMP. RNase T, along with several other RNases, plays a role in maturation of several other RNA species by a similar limited nuclease activity. In previous work, we identified the gene for RNase T, rnt, as a high copy suppressor of the UV sensitivity conferred by deficiency in three single-strand DNA-specific exonucleases, RecJ, exonuclease I, and exonuclease VII. This suggested that RNase T may process DNA substrates as well. In this work, we show that purified RNase T possesses a potent 3' to 5' single-strand DNA-specific exonucleolytic activity. Its Km for single-strand DNA substrates is many orders of magnitude lower than that for tRNA, suggesting that single-strand DNA may be a natural biological substrate for RNase T. We suggest that the DNase activity of RNase T may play a role in end trimming reactions during DNA recombination and/or DNA repair.
Collapse
Affiliation(s)
- M Viswanathan
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | |
Collapse
|
56
|
Abstract
Polyadenylation at the 3' terminus has long been considered a specific feature of mRNA and a few other unstable RNA species. Here we show that stable RNAs in Escherichia coli can be polyadenylated as well. RNA molecules with poly(A) tails are the major products that accumulate for essentially all stable RNA precursors when RNA maturation is slowed because of the absence of processing exoribonucleases; poly(A) tails vary from one to seven residues in length. The polyadenylation process depends on the presence of poly(A) polymerase I. A stochastic competition between the exoribonucleases and poly(A) polymerase is proposed to explain the accumulation of polyadenylated RNAs. These data indicate that polyadenylation is not unique to mRNA, and its widespread occurrence suggests that it serves a more general function in RNA metabolism.
Collapse
Affiliation(s)
- Z Li
- Department of Biochemistry and Molecular Biology. University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
57
|
Li Z, Pandit S, Deutscher MP. 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:2856-61. [PMID: 9501180 PMCID: PMC19659 DOI: 10.1073/pnas.95.6.2856] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to tRNA and 5S RNA, Escherichia coli contains several other small, stable RNA species; these are M1, 10Sa, 6S, and 4.5S RNA. Although these RNAs are initially synthesized as precursor molecules, relatively little is known about their maturation. The data presented here show that 3' exoribonucleolytic trimming is required for the final maturation of each of these molecules. As found previously with tRNA, but not 5S RNA, any one of a number of exoribonucleases can carry out the trimming reaction in vivo, although RNases T and PH are most effective. In their absence, large amounts of immature molecules accumulate for most of the RNAs, and these can be converted to the mature forms in vitro by the purified RNases. A model is proposed that identifies a structural feature present in all the small, stable RNAs of E. coli, and describes how this structure together with the RNases influences the common mechanism for 3' maturation.
Collapse
Affiliation(s)
- Z Li
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
58
|
Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 1997; 91:457-66. [PMID: 9390555 DOI: 10.1016/s0092-8674(00)80432-8] [Citation(s) in RCA: 752] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We identified a complex in S. cerevisiae, the "exosome," consisting of the five essential proteins Rrp4p, Rrp41p, Rrp42p, Rrp43p, and Rrp44p (Dis3p). Remarkably, four of these proteins are homologous to characterized bacterial 3'-->5' exoribonucleases; Rrp44p is homologous to RNase II, while Rrp41p, Rrp42p, and Rrp43p are related to RNase PH. Recombinant Rrp4p, Rrp44p, and Rrp41p are 3'-->5' exoribonucleases in vitro that have distributive, processive, and phosphorolytic activities, respectively. All components of the exosome are required for 3' processing of the 5.8S rRNA. Human Rrp4p is found in a comparably sized complex, and expression of the hRRP4 gene in yeast complements the rrp4-1 mutation. We conclude that the exosome constitutes a highly conserved eukaryotic RNA processing complex.
Collapse
Affiliation(s)
- P Mitchell
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
59
|
Zhou Z, Deutscher MP. An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J Bacteriol 1997; 179:4391-5. [PMID: 9209058 PMCID: PMC179264 DOI: 10.1128/jb.179.13.4391-4395.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli cells lacking both polynucleotide phosphorylase (PNPase) and RNase PH, the only known P(i)-dependent exoribonucleases, were previously shown to grow slowly at 37 degrees C and to display a dramatically reduced level of tRNA(Tyr)su3+ suppressor activity. Here we show that the RNase PH-negative, PNP-negative double-mutant strain actually displays a reversible cold-sensitive phenotype and that tRNA biosynthesis is normal. In contrast, ribosome structure and function are severely affected, particularly at lower temperatures. At 31 degrees C, the amount of 50S subunit is dramatically reduced and 23S rRNA is degraded. Moreover, cells that had been incubated at 42 degrees C immediately cease growing and synthesizing protein upon a shift to 31 degrees C, suggesting that the ribosomes synthesized at the higher temperature are defective and unable to function at the lower temperature. These data indicate that RNase PH and PNPase play an essential role that affects ribosome metabolism and that this function cannot be taken over by any of the hydrolytic exoribonucleases present in the cell.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
60
|
Han SJ, Kang HS. Purification and characterization of the precursor tRNA 3'-end processing nuclease from Aspergillus nidulans. Biochem Biophys Res Commun 1997; 233:354-8. [PMID: 9144538 DOI: 10.1006/bbrc.1997.6448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The precursor-tRNA 3'-end processing nuclease activity was purified homogeneously about 15,300 fold from the heat-treated fraction. The precursor-tRNA 3'-end processing nuclease was a single polypeptide of 160,000 Da. This nuclease generates a mature 3'-end of nuclear tRNA(Asp) of Aspergillus nidulans by the endonuclease activity and prefers the 5'-end processed tRNA(Asp) rather than primary precursor-tRNA(Asp) as a substrate. However, this enzyme did not process both primary mitochondrial precursor-tRNA(His) and 5'-end processed mitochondrial precursor-tRNA(His) of A. nidulans.
Collapse
Affiliation(s)
- S J Han
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | |
Collapse
|
61
|
Papadimitriou A, Gross HJ. Pre-tRNA 3'-processing in Saccharomyces cerevisiae. Purification and characterization of exo- and endoribonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:747-59. [PMID: 9022706 DOI: 10.1111/j.1432-1033.1996.0747r.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated ribonucleases from Saccharomyces cerevisiae which are active in pre-tRNA 3'-processing in vitro. Two pre-tRNA 3'-exonucleases with molecular masses of 33 and 60 kDa, two pre-tRNA 3'-endonucleases with molecular masses of 45 kDa/60 kDa and 55 kDa and 70-kDa 3'-pre-tRNase were purified from yeast whole cell extracts by several successive chromatographic purification steps. The purified exonucleases are non-processive 3'-exonucleases that catalyze the exonucleolytic processing of 3'-trailer sequences of pre-tRNAs to produce mature tRNAs. The 45-kDa/60-kDa 3'-endonuclease is tRNA-specific and catalyzes the processing of pre-tRNAs in a single endonucleolytic step. Two isoenzymes of this activity (p45 and p60) were identified by chromatography. The second endonuclease, p55, is dependent on monovalent ions and cleaves about three nucleotides downstream the mature 3'-end. All of the purified 3'-pre-tRNases accept homologous as well as heterologous pre-tRNA substrates. Pre-tRNAs carrying a 5'-leader are processed with almost the same efficiency as those lacking this 5'-leader. Mature tRNAs carrying the CCA 3'-sequence and tRNA pseudogene products carrying mutations in the mature domain are processed by the 3'-exonucleases, not by the 3'-endonucleases. The specific endonuclease p45/p60 discriminates between UUUOH as a 3'-flank, which is cleaved, and the CCA 3'-end of mature tRNAs, which is not cleaved. This study suggests that several 3'-pre-tRNases are active on tRNA precursors in vitro and might therefore in pre-tRNA 3'-processing in yeast, partly in a cooperative manner.
Collapse
Affiliation(s)
- A Papadimitriou
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | |
Collapse
|
62
|
Callahan C, Deutscher MP. Identification and characterization of the Escherichia coli rbn gene encoding the tRNA processing enzyme RNase BN. J Bacteriol 1996; 178:7329-32. [PMID: 8955422 PMCID: PMC178653 DOI: 10.1128/jb.178.24.7329-7332.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene encoding RNase BN was localized to 88 min on the Escherichia coli chromosome by a novel suppressor assay and conjugational and transductional analysis. Assay of subclones derived from lambda phage 543 of the Kohara library, which encompasses this region of the chromosome, for elevated RNase BN activity identified o290, a previously reported open reading frame, as the gene encoding RNase BN. Interruption of this gene with a Kan(r) cassette and introduction into the chromosome eliminated cellular RNase BN activity but had no effect on cell growth. On the basis of these data, we suggest that o290 be renamed rbn. Potential homologs of rbn in other organisms also were identified.
Collapse
Affiliation(s)
- C Callahan
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
63
|
Abstract
tRNA maturation consists of the specific removal of precursor sequences from both the 5' and 3' termini of an initial RNA transcript. How this is accomplished has heretofore not been ascertained in any system. Using Northern analysis of RNA isolated from a variety of RNase-deficient E. coli strains, we have identified the processing intermediates that accumulate in the absence of specific processing nucleases. From this information we have established the maturation pathways for 12 different E. coli tRNAs including the specific role of each of the relevant RNases in the process. The surprising conclusion from this work is that tRNA maturation is a stochastic process that lacks a defined order and that can proceed with a variety of alternative 3' processing nucleases.
Collapse
Affiliation(s)
- Z Li
- Department of Biochemistry University of Connecticut Health Center Farmington 06030, USA
| | | |
Collapse
|
64
|
Coburn GA, Mackie GA. Overexpression, purification, and properties of Escherichia coli ribonuclease II. J Biol Chem 1996; 271:1048-53. [PMID: 8557629 DOI: 10.1074/jbc.271.2.1048] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ribonuclease II (RNase II) is a major exonuclease in Escherichia coli that hydrolyzes single-stranded polyribonucleotides processively in the 3' to 5' direction. To understand the role of RNase II in the decay of messenger RNA, a strain overexpressing the rnb gene was constructed. Induction resulted in a 300-fold increase in RNase II activity in crude extracts prepared from the overexpressing strain compared to that of a non-overexpressing strain. The recombinant polypeptide (Rnb) was purified to apparent homogeneity in a rapid, simple procedure using conventional chromatographic techniques and/or fast protein liquid chromatography to a final specific activity of 4,100 units/mg. Additionally, a truncated Rnb polypeptide was purified, solubilized, and successfully renatured from inclusion bodies. The recombinant Rnb polypeptide was active against both [3H]poly(A) as well as a novel (synthetic partial duplex) RNA substrate. The data show that the Rnb polypeptide can disengage from its substrate upon stalling at a region of secondary structure and reassociate with a new free 3'-end. The stalled substrate formed by the dissociation event cannot compete for the Rnb polypeptide, demonstrating that duplexed RNAs lacking 10 protruding unpaired nucleotides are not substrates for RNase II. In addition, RNA that has been previously trimmed back to a region of secondary structure with purified Rnb polypeptide is not a substrate for polynucleotide phosphorylase-like activity in crude extracts. The implications for mRNA degradation and the proposed role for RNase II as a repressor of degradation are discussed.
Collapse
Affiliation(s)
- G A Coburn
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
65
|
Li Z, Zhan L, Deutscher MP. The role of individual cysteine residues in the activity of Escherichia coli RNase T. J Biol Chem 1996; 271:1127-32. [PMID: 8557640 DOI: 10.1074/jbc.271.2.1127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli RNase T, which is responsible for the 3' processing and end-turnover of tRNA and the maturation of 5 S RNA, is extremely sensitive to sulfhydryl reagents and to oxidation, suggesting a role for cysteine residues in its activity. Titration of homogeneous RNase T with 5,5'-dithiobis-(2-nitrobenzoic acid) revealed that the 4 cysteine residues present in each of the two protein subunits are in a reduced form and that 1 or 2 of them are important for activity. To identify these residue(s), each of the cysteines in RNase T was changed individually to either serine or alanine. The serine mutant at position 168 is greatly reduced in RNase T activity both in vivo and in vitro; likewise, the serine mutant at position 112 and the alanine mutants at positions 112 and 168 also display decreased RNase T activity. Mutations at the other cysteine positions show little or no change. Kinetic analyses of the mutant enzymes showed that the Km values of C168S and C168A are increased considerably, whereas their Vmax values are reduced only slightly compared to the wild type enzyme. The other mutant enzymes are little changed. Additional amino acid replacements at position 168 showed that the in vivo and in vitro activities of RNase T are in the order Cys approximately Val > Ala >> Ser >> Asn approximately Asp, which closely follows the relative hydrophobicity of these amino acid residues. However, the affinity for tRNA, determined by fluorescence quenching, is not altered in C168S, suggesting that Cys-168 is not directly involved in substrate binding. Interestingly, proteins altered at position 168 showed increased temperature sensitivity as the residue at that position became less hydrophobic. These data indicate that Cys-168 contributes a hydrophobic group that influences the structure and ultimately the catalytic activity of RNase T.
Collapse
Affiliation(s)
- Z Li
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305, USA
| | | | | |
Collapse
|
66
|
Nierlich DP, Murakawa GJ. The decay of bacterial messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:153-216. [PMID: 8821261 DOI: 10.1016/s0079-6603(08)60967-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D P Nierlich
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
67
|
Reuven NB, Koonin EV, Rudd KE, Deutscher MP. The gene for the longest known Escherichia coli protein is a member of helicase superfamily II. J Bacteriol 1995; 177:5393-400. [PMID: 7559321 PMCID: PMC177343 DOI: 10.1128/jb.177.19.5393-5400.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Escherichia coli rnt gene, which encodes the RNA-processing enzyme RNase T, is cotranscribed with a downstream gene. Complete sequencing of this gene indicates that its coding region encompasses 1,538 amino acids, making it the longest known protein in E. coli. The gene (tentatively termed lhr for long helicase related) contains the seven conserved motifs of the DNA and RNA helicase superfamily II. An approximately 170-kDa protein is observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 35S-labeled extracts prepared from cells in which lhr is under the control of an induced T7 promoter. This protein is absent when lhr is interrupted or when no plasmid is present. Downstream of lhr is the C-terminal region of a convergent gene with homology to glutaredoxin. Interruptions of chromosomal lhr at two different positions within the gene do not affect the growth of E. coli at various temperatures in rich or minimal medium, indicating that lhr is not essential for usual laboratory growth. lhr interruption also has no effect on anaerobic growth. In addition, cells lacking Lhr recover normally from starvation, plate phage normally, and display normal sensitivities to UV irradiation and H2O2. Southern analysis showed that no other gene closely related to lhr is present on the E. coli chromosome. These data expand the known size range of E. coli proteins and suggest that very large helicases are present in this organism.
Collapse
Affiliation(s)
- N B Reuven
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | | | | | |
Collapse
|
68
|
Yu D, Deutscher MP. Oligoribonuclease is distinct from the other known exoribonucleases of Escherichia coli. J Bacteriol 1995; 177:4137-9. [PMID: 7608090 PMCID: PMC177148 DOI: 10.1128/jb.177.14.4137-4139.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oligoribonuclease, an exoribonuclease specific for small oligoribonucleotides, was initially characterized 20 years ago (S. K. Niyogi and A. K. Datta, J. Biol. Chem. 250:7307-7312, 1975) and shown to be different from RNase II and polynucleotide phosphorylase. Here we demonstrate, using mutant strains and purified enzymes, that oligoribonuclease is not a manifestation of RNases D, BN, T, PH, and R, exoribonucleases discovered subsequently. Thus, oligoribonuclease is the eighth distinct exoribonuclease discovered in Escherichia coli. We also show that oligoribonuclease copurifies with polynucleotide phosphorylase.
Collapse
Affiliation(s)
- D Yu
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|