51
|
Yan B, Ouyang R, Huang C, Liu F, Neill D, Li C, Dewhirst M. Heat induces gene amplification in cancer cells. Biochem Biophys Res Commun 2012; 427:473-7. [PMID: 22975353 DOI: 10.1016/j.bbrc.2012.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. MATERIALS AND METHODS (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44°C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. RESULTS (1) Heat exposure at 42 or 44°C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44°C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. CONCLUSION This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.
Collapse
Affiliation(s)
- Bin Yan
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213, USA.
| | | | | | | | | | | | | |
Collapse
|
52
|
Singh M, Barman AS. Chromosome breakages associated with 45S ribosomal DNA sequences in spotted snakehead fish Channa punctatus. Mol Biol Rep 2012; 40:723-9. [PMID: 23065230 DOI: 10.1007/s11033-012-2112-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
It is well known that transcriptionally inactive rRNA genes are correlated with DNA hyper-methylation and histone hypo-methylation and there is clear evidence in humans that DNA and histone modification which alter chromatin structure are related to chromosome fragility. Very little is known about the biological cause of 45S rDNA fragility. In this report we characterized the chromosome breakage or gap associated with 45S rDNA in a fish species Channa punctatus. The rDNA mapping in C. punctatus, showed many chromosome breakages or gap formations, and all occurred exclusively in the 45S rDNA sites in anterior kidney cells. We observed that the number of chromosomes plus chromosome fragments was often more than the expected 32 in most cells. Total 67 % metaphase spread showed the expected or normal 32 chromosomes, while 33 % metaphase spread showed 33 and/or 34 chromosomes and/or chromosome fragments. The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are also discussed in present report.
Collapse
Affiliation(s)
- Mamta Singh
- Department of Fish Genetics and Reproduction, College of Fisheries (Central Agriculture University) Lembucherra, Tripura (W) 799210, India.
| | | |
Collapse
|
53
|
Bosco N, de Lange T. A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma 2012; 121:465-74. [PMID: 22790221 PMCID: PMC3590843 DOI: 10.1007/s00412-012-0377-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Mouse telomeres have been suggested to resemble common fragile sites (CFS), showing disrupted TTAGGG fluorescent in situ hybridization signals after aphidicolin treatment. This "fragile" telomere phenotype is induced by deletion of TRF1, a shelterin protein that binds telomeric DNA and promotes efficient replication of the telomeric ds[TTAGGG]n tracts. Here we show that the chromosome-internal TTAGGG repeats present at human chromosome 2q14 form an aphidicolin-induced CFS. TRF1 binds to and stabilizes CFS 2q14 but does not affect other CFS, establishing 2q14 as the first CFS controlled by a sequence-specific DNA binding protein. The data show that telomeric DNA is inherently fragile regardless of its genomic position and imply that CFS can be caused by a specific DNA sequence.
Collapse
Affiliation(s)
- Nazario Bosco
- Laboratory for Cell Biology and Genetics, The Rockefeller University, Box 159, 1230 York Avenue, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, Box 159, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
54
|
Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci 2012; 13:11974-11999. [PMID: 23109895 PMCID: PMC3472787 DOI: 10.3390/ijms130911974] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/09/2012] [Accepted: 09/05/2012] [Indexed: 01/08/2023] Open
Abstract
Genomic instability, a hallmark of cancer, occurs preferentially at specific genomic regions known as common fragile sites (CFSs). CFSs are evolutionarily conserved and late replicating regions with AT-rich sequences, and CFS instability is correlated with cancer. In the last decade, much progress has been made toward understanding the mechanisms of chromosomal instability at CFSs. However, despite tremendous efforts, identifying a cancer-associated CFS gene (CACG) remains a challenge and little is known about the function of CACGs at most CFS loci. Recent studies of FATS (for Fragile-site Associated Tumor Suppressor), a new CACG at FRA10F, reveal an active role of this CACG in regulating DNA damage checkpoints and suppressing tumorigenesis. The identification of FATS may inspire more discoveries of other uncharacterized CACGs. Further elucidation of the biological functions and clinical significance of CACGs may be exploited for cancer biomarkers and therapeutic benefits.
Collapse
|
55
|
Hao JJ, Shi ZZ, Zhao ZX, Zhang Y, Gong T, Li CX, Zhan T, Cai Y, Dong JT, Fu SB, Zhan QM, Wang MR. Characterization of genetic rearrangements in esophageal squamous carcinoma cell lines by a combination of M-FISH and array-CGH: further confirmation of some split genomic regions in primary tumors. BMC Cancer 2012; 12:367. [PMID: 22920630 PMCID: PMC3561653 DOI: 10.1186/1471-2407-12-367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/17/2012] [Indexed: 01/29/2023] Open
Abstract
Background Chromosomal and genomic aberrations are common features of human cancers. However, chromosomal numerical and structural aberrations, breakpoints and disrupted genes have yet to be identified in esophageal squamous cell carcinoma (ESCC). Methods Using multiplex-fluorescence in situ hybridization (M-FISH) and oligo array-based comparative hybridization (array-CGH), we identified aberrations and breakpoints in six ESCC cell lines. Furthermore, we detected recurrent breakpoints in primary tumors by dual-color FISH. Results M-FISH and array-CGH results revealed complex numerical and structural aberrations. Frequent gains occurred at 3q26.33-qter, 5p14.1-p11, 7pter-p12.3, 8q24.13-q24.21, 9q31.1-qter, 11p13-p11, 11q11-q13.4, 17q23.3-qter, 18pter-p11, 19 and 20q13.32-qter. Losses were frequent at 18q21.1-qter. Breakpoints that clustered within 1 or 2 Mb were identified, including 9p21.3, 11q13.3-q13.4, 15q25.3 and 3q28. By dual-color FISH, we observed that several recurrent breakpoint regions in cell lines were also present in ESCC tumors. In particular, breakpoints clustered at 11q13.3-q13.4 were identified in 43.3% (58/134) of ESCC tumors. Both 11q13.3-q13.4 splitting and amplification were significantly correlated with lymph node metastasis (LNM) (P = 0.004 and 0.022) and advanced stages (P = 0.004 and 0.039). Multivariate logistic regression analysis revealed that only 11q13.3-q13.4 splitting was an independent predictor for LNM (P = 0.026). Conclusions The combination of M-FISH and array-CGH helps produce more accurate karyotypes. Our data provide significant, detailed information for appropriate uses of these ESCC cell lines for cytogenetic and molecular biological studies. The aberrations and breakpoints detected in both the cell lines and primary tumors will contribute to identify affected genes involved in the development and progression of ESCC.
Collapse
Affiliation(s)
- Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Science, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
The role of fragile sites in sporadic papillary thyroid carcinoma. J Thyroid Res 2012; 2012:927683. [PMID: 22762011 PMCID: PMC3384961 DOI: 10.1155/2012/927683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/18/2012] [Indexed: 12/15/2022] Open
Abstract
The incidence of thyroid cancer is increasing, especially papillary thyroid carcinoma (PTC), making it currently the fastest-growing cancer among women. Reasons for this increase remain unclear, but several risk factors including radiation exposure and improved detection techniques have been suggested. Recently, the induction of chromosomal fragile site breakage was found to result in the formation of RET/PTC1 rearrangements, a common cause of PTC. Chromosomal fragile sites are regions of the genome with a high susceptibility to forming DNA breaks and are often associated with cancer. Exposure to a variety of external agents can induce fragile site breakage, which may account for some of the observed increase in PTC. This paper discusses the role of fragile site breakage in PTC development, external fragile site-inducing agents that may be potential risk factors for PTC, and how these factors are especially targeting women.
Collapse
|
57
|
Ozeri-Galai E, Bester AC, Kerem B. The complex basis underlying common fragile site instability in cancer. Trends Genet 2012; 28:295-302. [PMID: 22465609 DOI: 10.1016/j.tig.2012.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Common fragile sites (CFSs) were characterized almost 30 years ago as sites undergoing genomic instability in cancer. Recently, in vitro studies have found that oncogene-induced replication stress leads to CFS instability. In vivo, CFSs were found to be preferentially unstable during early stages of cancer development and to leave a unique signature of instability. It is now increasingly clear that, along the spectrum of replication features characterizing CFSs, failure of origin activation is a common feature. This and other features of CFSs, together with the replication stress characterizing early stages of cancer development, lead to incomplete replication that results in genomic instability preferentially at CFSs. Here, we review the shared and unique characteristics of CFSs, their underlying causes and their implications, particularly with respect to the development of cancer.
Collapse
Affiliation(s)
- Efrat Ozeri-Galai
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
58
|
Kitada K, Aida S, Aikawa S. Coamplification of multiple regions of chromosome 2, including MYCN, in a single patchwork amplicon in cancer cell lines. Cytogenet Genome Res 2011; 136:30-7. [PMID: 22123490 DOI: 10.1159/000334349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 11/19/2022] Open
Abstract
Coamplification of multiple segments of chromosome 2, including an MYCN-bearing segment, was examined in 2 cancer cell lines, NCI-H69 (lung cancer) and IMR-32 (neuroblastoma). High-resolution array-CGH analysis revealed 13 and 6 highly amplified segments located at different sites in chromosome 2 in NCI-H69 and IMR-32, respectively. FISH analysis demonstrated that these segments were co-localized in double minutes in NCI-H69 and in homogeneously staining regions in IMR-32. Connectivity of the segments was determined by a PCR assay using designed primer sets. It was found that all the segments were connected to each other irrespective of their order and orientation against the genome sequence, and a single chain-like cluster was configured in both cell lines. Such patchwork structures of the amplicons suggest the possibility that massive genomic rearrangements, explained by the single catastrophic event model, are involved in the formation of the amplicons, enabling the coamplification of different chromosomal regions including the MYCN locus. The model comprises massive fragmentation of chromosomes and random rejoining of the fragments.
Collapse
Affiliation(s)
- K Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan.
| | | | | |
Collapse
|
59
|
Royo C, Salaverria I, Hartmann EM, Rosenwald A, Campo E, Beà S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol 2011; 21:322-34. [DOI: 10.1016/j.semcancer.2011.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
|
60
|
Colnaghi R, Carpenter G, Volker M, O'Driscoll M. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin Cell Dev Biol 2011; 22:875-85. [PMID: 21802523 DOI: 10.1016/j.semcdb.2011.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.
Collapse
Affiliation(s)
- Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | | | | |
Collapse
|
61
|
Dillon LW, Burrow AA, Wang YH. DNA instability at chromosomal fragile sites in cancer. Curr Genomics 2011; 11:326-37. [PMID: 21286310 PMCID: PMC2944998 DOI: 10.2174/138920210791616699] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/06/2010] [Accepted: 05/18/2010] [Indexed: 01/02/2023] Open
Abstract
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.
Collapse
Affiliation(s)
- Laura W Dillon
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | | | | |
Collapse
|
62
|
Guenthoer J, Diede SJ, Tanaka H, Chai X, Hsu L, Tapscott SJ, Porter PL. Assessment of palindromes as platforms for DNA amplification in breast cancer. Genome Res 2011; 22:232-45. [PMID: 21752925 DOI: 10.1101/gr.117226.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA amplification, particularly of chromosomes 8 and 11, occurs frequently in breast cancer and is a key factor in tumorigenesis, often associated with poor prognosis. The mechanisms involved in the amplification of these regions are not fully understood. Studies from model systems have demonstrated that palindrome formation can be an early step in DNA amplification, most notably seen in the breakage-fusion-bridge (BFB) cycle. Therefore, palindromes might be associated with gene amplicons in breast cancer. To address this possibility, we coupled high-resolution palindrome profiling by the Genome-wide Analysis of Palindrome Formation (GAPF) assay with genome-wide copy-number analyses on a set of breast cancer cell lines and primary tumors to spatially associate palindromes and copy-number gains. We identified GAPF-positive regions distributed nonrandomly throughout cell line and tumor genomes, often in clusters, and associated with copy-number gains. Commonly amplified regions in breast cancer, chromosomes 8q and 11q, had GAPF-positive regions flanking and throughout the copy-number gains. We also identified amplification-associated GAPF-positive regions at similar locations in subsets of breast cancers with similar characteristics (e.g., ERBB2 amplification). These shared positive regions offer the potential to evaluate the utility of palindromes as prognostic markers, particularly in premalignant breast lesions. Our results implicate palindrome formation in the amplification of regions with key roles in breast tumorigenesis, particularly in subsets of breast cancers.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Disruption of the BRCA1 tumor suppressor can be caused not only by inherited mutations in familial cancers but also by BRCA1 gene silencing in sporadic cancers. Hypoxia, a key feature of the tumor microenvironment, has been shown to downregulate BRCA1 at the transcriptional level via repressive E2F4/p130 complexes. Here we showed that hypoxia also drives epigenetic modification of the BRCA1 promoter, with decreased H3K4 methylation as a key repressive modification produced by the lysine-specific histone demethylase LSD1. We also observed increased H3K9 methylation coupled with decreased H3K9 acetylation. Similar modifications were seen in the RAD51 promoter, which is also downregulated by hypoxia, whereas exactly opposite changes were seen in the promoter of the hypoxia-inducible gene VEGF. In cells containing the BRCA1 promoter driving a selectable HPRT gene, long-term silencing of the promoter was observed following exposure to hypoxic stress. Clones with silenced BRCA1 promoters were detected at frequencies of 2% or more following hypoxia, but at less than 6 × 10(-5) without hypoxia. The silenced clones showed decreased H3K4 methylation and decreased H3K9 acetylation in the BRCA1 promoters, consistent with the acute effects of hypoxic stress. Hypoxia-induced BRCA1 promoter silencing persisted in subsequent normoxic conditions but could be reversed by treatment with a histone deacetylase (HDAC) inhibitor but not with a DNA methylation inhibitor. Interestingly, treatment of cells with inhibitors of poly(ADP-ribose) polymerase (PARP) can cause short-term repression of BRCA1 expression, but such treatment does not produce H3K4 or H3K9 histone modification or BRCA1 promoter silencing. These results suggest that hypoxia is a driving force for long-term silencing of BRCA1, thereby promoting genome instability and tumor progression.
Collapse
|
64
|
Blumrich A, Zapatka M, Brueckner LM, Zheglo D, Schwab M, Savelyeva L. The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum Mol Genet 2011; 20:1488-501. [DOI: 10.1093/hmg/ddr027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
65
|
Lundberg G, Sehic D, Länsberg JK, Øra I, Frigyesi A, Castel V, Navarro S, Piqueras M, Martinsson T, Noguera R, Gisselsson D. Alternative lengthening of telomeres--an enhanced chromosomal instability in aggressive non-MYCN amplified and telomere elongated neuroblastomas. Genes Chromosomes Cancer 2011; 50:250-62. [PMID: 21319260 DOI: 10.1002/gcc.20850] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/30/2010] [Indexed: 01/18/2023] Open
Abstract
Telomere length alterations are known to cause genomic instability and influence clinical course in several tumor types, but have been little investigated in neuroblastoma (NB), one of the most common childhood tumors. In the present study, telomere-dependent chromosomal instability and telomere length were determined in six NB cell lines and fifty tumor biopsies. The alternative lengthening of telomeres (ALT) pathway was assayed by scoring ALT-associated promyelocytic leukemia (PML) bodies (APBs). We found a reduced probability of overall survival for tumors with increased telomere length compared to cases with reduced or unchanged telomere length. In non-MYCN amplified tumors, a reduced or unchanged telomere length was associated with 100% overall survival. Tumor cells with increased telomere length had an elevated frequency of APBs, consistent with activation of the ALT pathway. The vast majority of tumor biopsies and cell lines exhibited an elevated rate of anaphase bridges, suggesting telomere-dependent chromosomal instability. This was more pronounced in tumors with increased telomere length. In cell lines, there was a close correlation between lack of telomere-protective TTAGGG-repeats, anaphase bridging, and remodeling of oncogene sequences. Thus, telomere-dependent chromosomal instability is highly prevalent in NB, and may contribute to the complexity of genomic alterations as well as therapy resistance in the absence of MYCN amplification and in this tumor type.
Collapse
Affiliation(s)
- Gisela Lundberg
- Department of Clinical Genetics, Lund University, University and Regional Laboratories, Skåne University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2010; 2011:984505. [PMID: 21318118 PMCID: PMC3035048 DOI: 10.1155/2011/984505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022] Open
Abstract
Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.
Collapse
|
67
|
Brown JD, O'Neill RJ. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 2010; 11:291-316. [PMID: 20438362 DOI: 10.1146/annurev-genom-082509-141554] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
Collapse
Affiliation(s)
- Judith D Brown
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
68
|
Pelliccia F, Bosco N, Rocchi A. Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562 - Molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett 2010; 299:37-44. [PMID: 20851513 DOI: 10.1016/j.canlet.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022]
Abstract
Genome amplification is often observed in human tumors. The breakage-fusion-bridge (BFB) cycle is the mechanism that often underlies duplicated regions. Some research has indicated common fragile sites (CFS) as possible sites of chromosome breakages at the origin of BFB cycles. Here we searched two human genome regions known as amplification hot spots for any DNA copy number amplifications by analyzing 21 cancer cell lines to investigate the relationship between genomic fragility and amplification. We identified a duplicated region on a chromosomes der(2) present in the karyotype of two analysed leukemia cell lines K562. The two duplicated regions are organized into large palindromes, which suggests that one BFB cycle has occurred. Our findings show that the three breakpoints are localized in the sequence of three CFSs: FRA2H (2q32.1-q32.2), which here has been characterized molecularly; FRA2S (2q22.3-q23.3), a newly localized aphidicolin inducible CFS; and FRA2G (2q24.3-q31).
Collapse
Affiliation(s)
- Franca Pelliccia
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy.
| | | | | |
Collapse
|
69
|
Bea S. Amplifications and target genes in diffuse large B-cell lymphoma: real targets or consequences of structural features of the genome? Leuk Lymphoma 2010; 51:743-4. [PMID: 20233055 DOI: 10.3109/10428191003699894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Silvia Bea
- Molecular Pathology Laboratory, Hospital Clínic de Barcelona, IDIBAPS, Casanova, 143, Barcelona, 08036 Spain.
| |
Collapse
|
70
|
Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR. Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 2010; 4:255-66. [PMID: 20434415 PMCID: PMC2904860 DOI: 10.1016/j.molonc.2010.04.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/27/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease, appreciable by molecular markers, gene-expression profiles, and most recently, patterns of genomic alteration. In particular, genomic profiling has revealed three distinct patterns of DNA copy-number alteration: a "simple" type with few gains or losses of whole chromosome arms, an "amplifier" type with focal high-level DNA amplifications, and a "complex" type marked by numerous low-amplitude changes and copy-number transitions. The three patterns are associated with distinct gene-expression subtypes, and preferentially target different loci in the genome (implicating distinct cancer genes). Moreover, the different patterns of alteration imply distinct underlying mechanisms of genomic instability. The amplifier pattern may arise from transient telomere dysfunction, although new data suggest ongoing "amplifier" instability. The complex pattern shows similarity to breast cancers with germline BRCA1 mutation, which also exhibit "basal-like" expression profiles and complex-pattern genomes, implicating a possible defect in BRCA1-associated repair of DNA double-strand breaks. As such, targeting presumptive DNA repair defects represents a promising area of clinical investigation. Future studies should clarify the pathogenesis of breast cancers with amplifier and complex-pattern genomes, and will likely identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Kevin A Kwei
- Department of Pathology, Stanford University School of Medicine, CCSR-3245A, 269 Campus Drive, Stanford, CA 94305-5176, USA
| | | | | | | | | |
Collapse
|
71
|
Lopez-Gines C, Gil-Benso R, Ferrer-Luna R, Benito R, Serna E, Gonzalez-Darder J, Quilis V, Monleon D, Celda B, Cerdá-Nicolas M. New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol 2010; 23:856-65. [PMID: 20305620 DOI: 10.1038/modpathol.2010.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene amplification is a process that is characterized by an increase in the copy number of a restricted region in a chromosome arm, and is frequently associated with an overexpression of the corresponding amplified gene. Amplified DNA can be organized either as extrachromosomal elements, repeated units at a single locus or scattered throughout the genome. The amplification of the gene for epidermal growth factor receptor (EGFR) is a common finding in glioblastomas and the amplified gene copies appears as double minutes. The aim of this study was to investigate the different patterns of EGFR amplification in 40 cases of glioblastoma using FISH analysis in metaphases and paraffin sections, and to investigate the relationship of gene copy number with gene expression profile. The analysis of copy number alterations of EGFR was validated by quantitative PCR and SNP microarrays. We observed that in 42% of the cases, the type of amplification of EGFR was as double minute chromosomes. In addition, we detected another type of amplification, with extra copies of EGFR inserted in different loci of chromosome 7, present in 28% of cases. In this form of amplification, the number of copies is small, and the percentage of cells with EGFR amplification is rarely more than 15%. This model of amplification could correspond to a variant of the insertion mechanism, or a consequence of a process of duplication. Our results suggest that this mechanism could represent an early stage of amplification in glioblastomas. Overall, we found a close correlation between EGFR gene copy-number alterations and the level of EGFR protein expression. However, all cases with a high level of mRNA exhibited strong expression for the EGFR protein, and most cases with a low level of mRNA showed no overexpression of EGFR protein.
Collapse
|
72
|
Knutsen T, Padilla-Nash HM, Wangsa D, Barenboim-Stapleton L, Camps J, McNeil N, Difilippantonio MJ, Ried T. Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes Chromosomes Cancer 2010; 49:204-23. [PMID: 19927377 DOI: 10.1002/gcc.20730] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In defining the genetic profiles in cancer, cytogenetically aberrant cell lines derived from primary tumors are important tools for the study of carcinogenesis. Here, we present the results of a comprehensive investigation of 15 established colorectal cancer cell lines using spectral karyotyping (SKY), fluorescence in situ hybridization, and comparative genomic hybridization (CGH). Detailed karyotypic analysis by SKY on five of the lines (P53HCT116, T84, NCI-H508, NCI-H716, and SK-CO-1) is described here for the first time. The five lines with karyotypes in the diploid range and that are characterized by defects in DNA mismatch repair had a mean of 4.8 chromosomal abnormalities per line, whereas the 10 aneuploid lines exhibited complex karyotypes and a mean of 30 chromosomal abnormalities. Of the 150 clonal translocations, only eight were balanced and none were recurrent among the lines. We also reviewed the karyotypes of 345 cases of adenocarcinoma of the large intestine listed in the Mitelman Database of Chromosome Aberrations in Cancer. The types of abnormalities observed in the cell lines reflected those seen in primary tumors: there were no recurrent translocations in either tumors or cell lines; isochromosomes were the most common recurrent abnormalities; and breakpoints occurred most frequently at the centromeric/pericentromeric and telomere regions. Of the genomic imbalances detected by array CGH, 87% correlated with chromosome aberrations observed in the SKY studies. The fact that chromosome abnormalities predominantly result in copy number changes rather than specific chromosome or gene fusions suggests that this may be the major mechanism leading to carcinogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Turid Knutsen
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-8010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Trombetta D, Mertens F, Lonoce A, D'Addabbo P, Rennstam K, Mandahl N, Storlazzi CT. Characterization of a hotspot region on chromosome 12 for amplification in ring chromosomes in atypical lipomatous tumors. Genes Chromosomes Cancer 2010; 48:993-1001. [PMID: 19691106 DOI: 10.1002/gcc.20700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ring chromosomes are cytogenetic hallmarks of genomic amplification in several bone and soft tissue tumors, in particular atypical lipomatous tumors (ALT). In ALT, the ring chromosomes invariably contain amplified material from the central part of the long arm of chromosome 12, mainly 12q12-->15, but often also segments from other chromosomes are involved. Previous studies have shown that one of the recurrent amplicons in ALT, located in 12q13.3-14.1 and harboring the candidate target genes TSPAN31 and CDK4, often has a sharp centromeric border. To characterize this breakpoint region in more detail, 12 cases of ALT with ring chromosomes were analyzed by array comparative genomic hybridization and fluorescence in situ hybridization. In the seven cases showing a sharply delineated amplicon in 12q13.3-14.1, the breakpoint region was further investigated by real time quantitative polymerase chain reaction and Vectorette PCR. The breakpoints clustered to a 146-kb region containing 11 genes. Whereas there was no indication that the breakpoints gave rise to fusion genes, in silico analysis revealed that the breakpoint region was enriched for repeated elements that could be important for ring chromosome formation in ALT.
Collapse
Affiliation(s)
- Domenico Trombetta
- Department of Genetics and Microbiology, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
74
|
Wan C, Kulkarni A, Wang YH. ATR preferentially interacts with common fragile site FRA3B and the binding requires its kinase activity in response to aphidicolin treatment. Mutat Res 2010; 686:39-46. [PMID: 20060399 DOI: 10.1016/j.mrfmmm.2009.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/17/2009] [Accepted: 12/29/2009] [Indexed: 11/17/2022]
Abstract
The instability of common fragile sites (CFSs) contributes to the development of a variety of cancers. The ATR-dependent DNA damage checkpoint pathway has been implicated in maintaining CFS stability, but the mechanism is incompletely understood. The goal of our study was to elucidate the action of the ATR protein in the CFS-specific ATR-dependent checkpoint response. Using a chromatin immunoprecipitation assay, we demonstrated that ATR protein preferentially binds (directly or through complexes) to fragile site FRA3B as compared to non-fragile site regions, under conditions of mild replication stress. Interestingly, the amount of ATR protein that bound to three regions of FRA3B peaked at 0.4microM aphidicolin (APH) treatment and decreased again at higher concentrations of APH. The total amounts of cellular ATR and several ATR-interacting proteins remained unchanged, suggesting that ATR binding to the fragile site is guided initially by the level of replication stress signals generated at FRA3B due to APH treatment and then sequestered from FRA3B regions by successive signals from other non-fragile site regions, which are produced at the higher concentrations of APH. This decrease in ATR binding to fragile site FRA3B at the higher concentrations of APH may account for the increasing number of chromosome gaps and breaks observed under the same conditions. Furthermore, inhibition of ATR kinase activity by treatment with 2-aminopurine (2-AP) or by over-expression of a kinase-dead ATR mutant showed that the kinase activity is required for the binding of ATR to fragile DNAs in response to APH treatment. Our results provide novel insight into the mechanism for the regulation of fragile site stability by ATR.
Collapse
Affiliation(s)
- Cheng Wan
- Department of Biochemistry, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | | | | |
Collapse
|
75
|
Tuduri S, Crabbé L, Conti C, Tourrière H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 2009; 11:1315-24. [PMID: 19838172 DOI: 10.1038/ncb1984] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/24/2009] [Indexed: 12/16/2022]
Abstract
Topoisomerase I (Top1) is a key enzyme in functioning at the interface between DNA replication, transcription and mRNA maturation. Here, we show that Top1 suppresses genomic instability in mammalian cells by preventing a conflict between transcription and DNA replication. Using DNA combing and ChIP (chromatin immunoprecipitation)-on-chip, we found that Top1-deficient cells accumulate stalled replication forks and chromosome breaks in S phase, and that breaks occur preferentially at gene-rich regions of the genome. Notably, these phenotypes were suppressed by preventing the formation of RNA-DNA hybrids (R-loops) during transcription. Moreover, these defects could be mimicked by depletion of the splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2), which interacts functionally with Top1. Taken together, these data indicate that Top1 prevents replication fork collapse by suppressing the formation of R-loops in an ASF/SF2-dependent manner. We propose that interference between replication and transcription represents a major source of spontaneous replication stress, which could drive genomic instability during the early stages of tumorigenesis.
Collapse
Affiliation(s)
- Sandie Tuduri
- Institute of Human Genetics CNRS UPR1142, F-34396 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, Goosen L, Swanson C, Binz RL, Barlogie B, Shaughnessy J. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol 2009; 147:484-94. [PMID: 19744130 DOI: 10.1111/j.1365-2141.2009.07869.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene amplification is defined as a copy number (CN) increase in a restricted region of a chromosome arm, and is a mechanism for acquired drug resistance and oncogene activation. In multiple myeloma (MM), high CNs of genes in a 1q12 approximately 23 amplicon have been associated with disease progression and poor prognosis. To investigate the mechanisms for gene amplification in this region in MM, we performed a comprehensive metaphase analysis combining G-banding, fluorescence in situ hybridization, and spectral karyotyping in 67 patients with gain of 1q. In six patients (9%), evidence for at least one breakage-fusion-bridge (BFB) cycle was found. In three patients (4%), extended ladders of 1q12 approximately 23 amplicons were identified. Several key structures that are predicted intermediates in BFB cycles were observed, including: equal-spaced organization of amplicons, inverted repeat organization of amplicons along the same chromosome arm, and deletion of sequences distal to the amplified region. The 1q12 pericentromeric heterochromatin region served as both a recurrent breakpoint as well as a fusion point for sister chromatids, and ultimately bracketed both the proximal and distal boundaries of the amplicon. Our findings provide evidence for a novel BFB mechanism involving 1q12 pericentromeric breakage in the amplification of a large number of genes within a 1q12 approximately 23 amplicon.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
78
|
Hattinger CM, Stoico G, Michelacci F, Pasello M, Scionti I, Remondini D, Castellani GC, Fanelli M, Scotlandi K, Picci P, Serra M. Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Genes Chromosomes Cancer 2009; 48:289-309. [PMID: 19105235 DOI: 10.1002/gcc.20640] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gene amplification and copy number changes play a pivotal role in malignant transformation and progression of human tumor cells by mediating the activation of genes and oncogenes, which are involved in many different cellular processes including development of drug resistance. Since doxorubicin (DX) and methotrexate (MTX) are the two most important drugs for high-grade osteosarcoma (OS) treatment, the aim of this study was to identify genes gained or amplified in six DX- and eight MTX-resistant variants of the human OS cell lines U-2OS and Saos-2, and to get insights into the mechanisms underlying the amplification processes. Comparative genomic hybridization techniques identified amplification of MDR1 in all six DX-resistant and of DHFR in three MTX-resistant U-2OS variants. In addition, progressive gain of MLL was detected in the four U-2OS variants with higher resistance levels either to DX or MTX, whereas gain of MYC was found in all Saos-2 MTX-resistant variants and the U-2OS variant with the highest resistance level to DX. Fluorescent in situ hybridization revealed that MDR1 was amplified in U-2OS and Saos-2/DX-resistant variants manifested as homogeneously staining regions and double minutes, respectively. In U-2OS/MTX-resistant variants, DHFR was amplified in homogeneously staining regions, and was coamplified with MLL in relation to the increase of resistance to MTX. Gene amplification was associated with gene overexpression, whereas gene gain resulted in up-regulated gene expression. These results indicate that resistance to DX and MTX in human OS cell lines is a multigenic process involving gene copy number and expression changes.
Collapse
Affiliation(s)
- Claudia M Hattinger
- Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Tanaka H, Yao MC. Palindromic gene amplification--an evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer 2009; 9:216-24. [PMID: 19212324 DOI: 10.1038/nrc2591] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The clinical importance of gene amplification in the diagnosis and treatment of cancer has been widely recognized, as it is often evident in advanced stages of diseases. However, our knowledge of the underlying mechanisms is still limited. Gene amplification is an essential process in several organisms including the ciliate Tetrahymena thermophila, in which the initiating mechanism has been well characterized. Lessons from such simple eukaryotes may provide useful information regarding how gene amplification occurs in tumour cells.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, 9,500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
80
|
Morales C, García MJ, Ribas M, Miró R, Muñoz M, Caldas C, Peinado MA. Dihydrofolate reductase amplification and sensitization to methotrexate of methotrexate-resistant colon cancer cells. Mol Cancer Ther 2009; 8:424-32. [DOI: 10.1158/1535-7163.mct-08-0759] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Koszul R, Fischer G. A prominent role for segmental duplications in modeling Eukaryotic genomes. C R Biol 2009; 332:254-66. [DOI: 10.1016/j.crvi.2008.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/12/2008] [Indexed: 01/22/2023]
|
82
|
Marella NRV, Zeitz MJ, Malyavantham KS, Pliss A, Matsui SI, Goetze S, Bode J, Raska I, Berezney R. Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63. Chromosome Res 2008; 16:1177-92. [PMID: 19005637 PMCID: PMC2990676 DOI: 10.1007/s10577-008-1267-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
The organization of the type I interferon (IFN) gene cluster (9p21.3) was studied in a human osteosarcoma cell line (MG63). Array comparative genomic hybridization (aCGH) showed an amplification of approximately 6-fold which ended at both ends of the gene cluster with a deletion that extended throughout the 9p21.3 band. Spectral karyotyping (SKY) combined with fluorescence in-situ hybridization (FISH) identified an arrangement of the gene cluster in a ladder-like array of 5-7 'bands' spanning a single chromosome termed the 'IFN chromosome'. Chromosome painting revealed that the IFN chromosome is derived from components of chromosomes 4, 8 and 9. Labelling with centromeric probes demonstrated a ladder-like amplification of centromeric 4 and 9 sequences that co-localized with each other and a similar banding pattern of chromosome 4, as well as alternating with the IFN gene clusters. In contrast, centromere 8 was not detected on the IFN chromosome. One of the amplified centromeric 9 bands was identified as the functional centromere based on its location at the chromosome constriction and immunolocalization of the CENP-C protein. A model is presented for the generation of the IFN chromosome that involves breakage-fusion-bridge events.
Collapse
Affiliation(s)
- Narasimha Rao V. Marella
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Michael J. Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kishore S. Malyavantham
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Artem Pliss
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sei-ichi Matsui
- SKY Core Resource Facility, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sandra Goetze
- HZI, Helmholtz Centre for Infection Research/Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Juergen Bode
- HZI, Helmholtz Centre for Infection Research/Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Ivan Raska
- First Faculty of Medicine, Charles University in Prague and Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, 128 00 Prague, Czech Republic
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
83
|
Ragland RL, Glynn MW, Arlt MF, Glover TW. Stably transfected common fragile site sequences exhibit instability at ectopic sites. Genes Chromosomes Cancer 2008; 47:860-72. [PMID: 18615677 DOI: 10.1002/gcc.20591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Common fragile sites (CFSs) are loci that are especially prone to forming gaps and breaks on metaphase chromosomes under conditions of replication stress. Although much has been learned about the cellular responses to gaps and breaks at CFSs, less is known about what makes these sites inherently unstable. CFS sequences are highly conserved in mammalian evolution and contain a number of sequence motifs that are hypothesized to contribute to their instability. To examine the role of CFS sequences in chromosome breakage, we stably transfected two BACs containing FRA3B sequences and two nonCFS control BACs containing similar sequence content into HCT116 cells and isolated cell clones with BACs integrated at ectopic sites. Integrated BACs were present at just a few to several hundred contiguous copies. Cell clones containing integrated FRA3B BACs showed a significant, three to sevenfold increase in aphidicolin-induced gaps and breaks at the integration site as compared to control BACs. Furthermore, many FRA3B integration sites displayed additional chromosome rearrangements associated with CFS instability. Clones were examined for replication timing and it was found that the integrated FRA3B sequences were not dependent on late replication for their fragility. This is the first direct evidence in human cells that introduction of CFS sequences into ectopic nonfragile loci is sufficient to recapitulate the instability found at CFSs. These data support the hypothesis that sequences at CFSs are inherently unstable, and are a major factor in the formation of replication stress induced gaps and breaks at CFSs.
Collapse
Affiliation(s)
- Ryan L Ragland
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
84
|
Unterschiedliche koexistierende Genotypen in der Brustkrebszelllinie MDA-MB-468. DER PATHOLOGE 2008; 29 Suppl 2:333-7. [DOI: 10.1007/s00292-008-1021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
85
|
Kitada K, Yamasaki T. The complicated copy number alterations in chromosome 7 of a lung cancer cell line is explained by a model based on repeated breakage-fusion-bridge cycles. ACTA ACUST UNITED AC 2008; 185:11-9. [PMID: 18656688 DOI: 10.1016/j.cancergencyto.2008.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/31/2008] [Accepted: 04/07/2008] [Indexed: 10/21/2022]
Abstract
The drug-resistant lung cancer cell line PTX250, which has been previously established by exposure to an anti-cancer drug paclitaxel, has an increased copy number in the MDR1/ABCB1 locus region. In addition, the flanking regions also exhibit aberrant copy numbers, making the copy number profile of chromosome 7 complicated. In this study, we tested whether the breakage-fusion-bridge (BFB) cycle model can explain such copy number alterations. An analysis using fluorescence in situ hybridization (FISH) with a painting probe demonstrated that the aberrant chromosome, designated chromosome 7(amp), was derived from an intact chromosome 7. Using high-density comparative genomic hybridization arrays, we examined the copy number profile in detail and divided chromosome 7(amp) into seven segments. Based on copy numbers of each segment, which were determined using interphase- and metaphase-FISH analysis, we constructed a formation model for the complicated copy number alteration. Six-time BFB cycles and the cycle-termination by healing of broken ends were presupposed in the model. Locations and orientations of the segments observed in chromosome 7(amp) agreed well with those predicted from the model. Telomere addition was also cytogenetically confirmed. In all, it could be concluded that the complicated copy number alteration found in chromosome 7(amp) is generated from the intact chromosome 7 by the repeated BFB cycles.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200-Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | |
Collapse
|
86
|
Fischer U, Keller A, Leidinger P, Deutscher S, Heisel S, Urbschat S, Lenhof HP, Meese E. A different view on DNA amplifications indicates frequent, highly complex, and stable amplicons on 12q13-21 in glioma. Mol Cancer Res 2008; 6:576-84. [PMID: 18403636 DOI: 10.1158/1541-7786.mcr-07-0283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To further understand the biological significance of amplifications for glioma development and recurrencies, we characterized amplicon frequency and size in low-grade glioma and amplicon stability in vivo in recurring glioblastoma. We developed a 12q13-21 amplicon-specific genomic microarray and a bioinformatics amplification prediction tool to analyze amplicon frequency, size, and maintenance in 40 glioma samples including 16 glioblastoma, 10 anaplastic astrocytoma, 7 astrocytoma WHO grade 2, and 7 pilocytic astrocytoma. Whereas previous studies reported two amplified subregions, we found a more complex situation with many amplified subregions. Analyzing 40 glioma, we found that all analyzed glioblastoma and the majority of pilocytic astrocytoma, grade 2 astrocytoma, and anaplastic astrocytoma showed at least one amplified subregion, indicating a much higher amplification frequency than previously suggested. Amplifications in low-grade glioma were smaller in size and displayed clearly different distribution patterns than amplifications in glioblastoma. One glioblastoma and its recurrencies revealed an amplified subregion of 5 Mb that was stable for 6 years. Expression analysis of the amplified region revealed 10 overexpressed genes (i.e., KUB3, CTDSP2, CDK4, OS-9, DCTN2, RAB3IP, FRS2, GAS41, MDM2, and RAP1B) that were consistently overexpressed in all cases that carried this amplification. Our data indicate that amplifications on 12q13-21 (a) are more frequent than previously thought and present in low-grade tumors and (b) are maintained as extended regions over long periods of time.
Collapse
Affiliation(s)
- Ulrike Fischer
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Huang J, Ma L, Yang F, Fei SZ, Li L. 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS One 2008; 3:e2167. [PMID: 18478113 PMCID: PMC2366065 DOI: 10.1371/journal.pone.0002167] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Ma
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Yang
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shui-zhang Fei
- Department of Horticulture and Interdepartmental Plant Physiology and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lijia Li
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
88
|
Kimmel RR, Agnani S, Yang Y, Jordan R, Schwartz JL. DNA copy-number instability in low-dose gamma-irradiated TK6 lymphoblastoid clones. Radiat Res 2008; 169:259-69. [PMID: 18302486 DOI: 10.1667/rr1096.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/24/2007] [Indexed: 11/03/2022]
Abstract
Genomic instability that might occur early during low-dose, fractionated radiation exposures may be traceable in radiogenic compared to spontaneous cancers. Using a human 18K cDNA microarray-based comparative genome hybridization protocol, we measured changes in DNA copy number at over 14,000 loci in nine low-dose (137)Cs gamma-irradiated (acute exposure to 10 cGy/day x 21 days) and nine unirradiated TK6 clones and estimated locus-specific copy-number differences between them. Radiation induced copy-number hypervariability at thousands of loci across all chromosomes, with a sevenfold increase in low-level, randomly positioned DNA gains. Recurrent gains at 40 loci occurred among irradiated clones and were distributed nonrandomly across the genome, with the highest densities in 3q, 13q and 20q at sites that were hypodiploid without irradiation. Another nonrandomly distributed set of 94 loci exhibited relative recurrent gains from a hypodiploid state to a diploid state, suggesting hemizygous-to-homozygous transitions. Frequently recurring losses at 57 loci were concentrated on the single X-chromosome but were sparsely distributed at 0-2 loci per autosome. These results suggest induced mitotic homologous recombination as a possible mechanism of low-dose radiation-induced genomic instability. Genomic instability induced in TK6 cells resembled that seen in radiogenic tumors and suggests a way that radiation could induce genomic instability in preneoplastic cells.
Collapse
Affiliation(s)
- Robert R Kimmel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
89
|
Methylation perturbations in retroelements within the genome of a Mus interspecific hybrid correlate with double minute chromosome formation. Genomics 2008; 91:267-73. [DOI: 10.1016/j.ygeno.2007.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/10/2007] [Accepted: 12/05/2007] [Indexed: 12/22/2022]
|
90
|
Abstract
Areas of hypoxic tumour tissue are known to be resistant to treatment and are associated with a poor clinical prognosis. There are several reasons why this might be, including the capacity of hypoxia to drive genomic instability and alter DNA damage repair pathways. Significantly, current models fail to distinguish between the complexities of the hypoxic microenvironment and the biological effects of acute hypoxia exposures versus longer-term, chronic hypoxia exposures on the transcription and translation of proteins involved in genetic stability and cell survival. Acute and chronic hypoxia might lead to different biology within the tumour and this might have a direct effect on the design of new therapies for the treatment of hypoxic tumours.
Collapse
Affiliation(s)
- Robert G Bristow
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto and Ontario Cancer Institute and Princess Margaret Hospital (University Health Network), 610 University Avenue, Toronto, Ontario, M5G2M9, Canada.
| | | |
Collapse
|
91
|
Gajduskova P, Snijders AM, Kwek S, Roydasgupta R, Fridlyand J, Tokuyasu T, Pinkel D, Albertson DG. Genome position and gene amplification. Genome Biol 2008; 8:R120. [PMID: 17584934 PMCID: PMC2394771 DOI: 10.1186/gb-2007-8-6-r120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 01/05/2023] Open
Abstract
Genomic analyses of human cells expressing dihydrofolate reductase provide insight into the effects of genome position on the propensity for a drug-resistance gene to amplify in human cells.
Background Amplifications, regions of focal high-level copy number change, lead to overexpression of oncogenes or drug resistance genes in tumors. Their presence is often associated with poor prognosis; however, the use of amplification as a mechanism for overexpression of a particular gene in tumors varies. To investigate the influence of genome position on propensity to amplify, we integrated a mutant form of the gene encoding dihydrofolate reductase into different positions in the human genome, challenged cells with methotrexate and then studied the genomic alterations arising in drug resistant cells. Results We observed site-specific differences in methotrexate sensitivity, amplicon organization and amplification frequency. One site was uniquely associated with a significantly enhanced propensity to amplify and recurrent amplicon boundaries, possibly implicating a rare folate-sensitive fragile site in initiating amplification. Hierarchical clustering of gene expression patterns and subsequent gene enrichment analysis revealed two clusters differing significantly in expression of MYC target genes independent of integration site. Conclusion These studies suggest that genome context together with the particular challenges to genome stability experienced during the progression to cancer contribute to the propensity to amplify a specific oncogene or drug resistance gene, whereas the overall functional response to drug (or other) challenge may be independent of the genomic location of an oncogene.
Collapse
Affiliation(s)
- Pavla Gajduskova
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská, Brno, 612 65, Czech Republic
| | - Antoine M Snijders
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Serena Kwek
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Ritu Roydasgupta
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Jane Fridlyand
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Taku Tokuyasu
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Daniel Pinkel
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Donna G Albertson
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143-0808, USA
| |
Collapse
|
92
|
Abstract
Glioblastoma is the most frequent primary brain tumor in adults. The average survival time of less than 1 year did not improve notably over the last three decades. The dismal prognosis of glioblastoma patients is largely due to the striking radioresistance of this tumor. Here, we attempt a combined view on the genetics, the repair mechanisms and the radioresistance of glioblastoma. Specifically, we address the role of DNA-PKcs and the novel potential end-joining factor KUB3 in maintaining the radioresistant phenotype, the interrelationship between genetic lesions and repair mechanisms, and new perspectives that emerge from the identification of glioblastoma stem cells.
Collapse
|
93
|
Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW. Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci U S A 2008; 105:246-51. [PMID: 18162546 PMCID: PMC2224195 DOI: 10.1073/pnas.0708097105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 01/22/2023] Open
Abstract
Common fragile sites (CFSs) are loci that preferentially exhibit metaphase chromosome gaps and breaks after partial inhibition of DNA synthesis. The fragile site FRA3B, which lies within the FHIT tumor-suppressor gene, is a site of frequent heterozygous and homozygous deletions in many cancer cells and precancerous lesions. The great majority of FHIT and other CFS-associated gene rearrangements in tumors are submicroscopic, intralocus deletions of hundreds of kilobases that often result in inactivation of associated genes. Although CFS instability leads to chromosome gaps and breaks and translocations, there has been no direct evidence showing that CFS instability or replication stress can generate large submicroscopic deletions of the type seen in cancer cells. Here, we have produced FHIT/FRA3B deletions closely resembling those in tumors by exposing human-mouse chromosome 3 somatic hybrid cells to aphidicolin-mediated replication stress. Clonal cell populations were analyzed for deletions by using PCR, array comparative genomic hybridization (aCGH), and FISH. Thirteen percent to 23% of clones exhibited submicroscopic FHIT deletions spanning approximately 200-600 kb within FRA3B. Chromosomes with FRA3B deletions exhibited significantly decreased fragility of this locus, with a 2- to 12-fold reduction in metaphase gaps and breaks compared with controls. Sequence analysis showed no regions of homology at breakpoints and suggests involvement of NHEJ in generating the deletions. Our results demonstrate that replication stress induces a remarkably high frequency of tumor-like microdeletions that reduce fragility at a CFS in cultured cells and suggests that similar conditions during tumor formation lead to intralocus deletion and inactivation of genes at CFSs and perhaps elsewhere in the genome.
Collapse
Affiliation(s)
- Sandra G. Durkin
- *Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618; and
| | - Ryan L. Ragland
- *Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618; and
| | - Martin F. Arlt
- *Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618; and
| | | | | | - Thomas W. Glover
- *Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618; and
| |
Collapse
|
94
|
Human chromosome fragility. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:3-16. [DOI: 10.1016/j.bbagrm.2007.10.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 11/21/2022]
|
95
|
Kitada K, Yamasaki T. The MDR1/ABCB1 regional amplification in large inverted repeats with asymmetric sequences and microhomologies at the junction sites. ACTA ACUST UNITED AC 2007; 178:120-7. [PMID: 17954267 DOI: 10.1016/j.cancergencyto.2007.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
A multidrug-resistant lung cancer cell line PTX250, established by treatment with the anti-cancer drug paclitaxel, has been demonstrated to have an increased copy number in the 7q21.12 region including the MDR1/ABCB1 gene. The amplicon is 2.7 megabases in size, and the copy number increase is 11-fold compared with the parental cell line. Here, we examined the amplicon structure and determined nucleotide sequences at both junctions of the amplicon. Fluorescence in situ hybridization analysis using an MDR1 probe demonstrated a cluster of fluorescent signals at the chromosomal end, suggesting an intra-chromosomal amplification. DNA fragments of both junctions were cloned and sequenced. The distal junction was a head-to-head fusion with a 4-base pair (bp) overlap separated by an asymmetric sequence of 1,265 bp, and the proximal junction was a tail-to-tail fusion with a 2-bp overlap intervened by an asymmetric sequence of 2,203 bp. These results suggest that the amplicon has a large palindromic structure with an asymmetric sequence and has been amplified through the breakage-fusion-bridge cycle. Specific sequences, which might be related to the occurrence of double-strand-breakages, were found at or near the junctions of the amplicon -- an inverted repeat in the distal junction and a highly AT-rich region near the proximal junction.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co Ltd, 200-Kajiwara, Kamakura, Kanagawa, Japan.
| | | |
Collapse
|
96
|
Abstract
Chromosomal fragile sites are specific loci that preferentially exhibit gaps and breaks on metaphase chromosomes following partial inhibition of DNA synthesis. Their discovery has led to novel findings spanning a number of areas of genetics. Rare fragile sites are seen in a small proportion of individuals and are inherited in a Mendelian manner. Some, such as FRAXA in the FMR1 gene, are associated with human genetic disorders, and their study led to the identification of nucleotide-repeat expansion as a frequent mutational mechanism in humans. In contrast, common fragile sites are present in all individuals and represent the largest class of fragile sites. Long considered an intriguing component of chromosome structure, common fragile sites have taken on novel significance as regions of the genome that are particularly sensitive to replication stress and that are frequently rearranged in tumor cells. In recent years, much progress has been made toward understanding the genomic features of common fragile sites and the cellular processes that monitor and influence their stability. Their study has merged with that of cell cycle checkpoints and DNA repair, and common fragile sites have provided insight into understanding the consequences of replication stress on DNA damage and genome instability in cancer cells.
Collapse
Affiliation(s)
- Sandra G Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| | | |
Collapse
|
97
|
Calcagnile O, Gisselsson D. Telomere dysfunction and telomerase activation in cancer – a pathological paradox? Cytogenet Genome Res 2007; 118:270-6. [DOI: 10.1159/000108310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 08/29/2006] [Indexed: 11/19/2022] Open
|
98
|
Stewénius Y, Jin Y, Øra I, de Kraker J, Bras J, Frigyesi A, Alumets J, Sandstedt B, Meeker AK, Gisselsson D. Defective Chromosome Segregation and Telomere Dysfunction in Aggressive Wilms' Tumors. Clin Cancer Res 2007; 13:6593-602. [DOI: 10.1158/1078-0432.ccr-07-1081] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99
|
Reshmi SC, Huang X, Schoppy DW, Black RC, Saunders WS, Smith DI, Gollin SM. Relationship between FRA11F and 11q13 gene amplification in oral cancer. Genes Chromosomes Cancer 2007; 46:143-54. [PMID: 17099871 DOI: 10.1002/gcc.20394] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Common fragile sites (CFS) are nonstaining gaps or breaks in chromosomes that are expressed under conditions inducing replicative stress. CFS have been suggested to play a role in epithelial cancers by their association with loss of heterozygosity, loss of gene expression, and/or gene amplification in the form of homogeneously staining regions (hsrs). In oral squamous-cell carcinomas (OSCC), amplification of chromosomal band 11q13 occurs in the form of an hsr. We suggested previously that CFS flanking 11q13 may be susceptible to breakage induced by tobacco or other carcinogens and/or human papillomavirus, promoting formation of the 11q13 amplicon. Examination of OSCC cell lines with 11q13 amplification using fluorescence in situ hybridization showed loss of FRA11F sequences, whereas cell lines without 11q13 amplification displayed an intact FRA11F site. Cell lines with more complex 11q rearrangements expressed FRA11F in the form of an inverted duplication, characteristic of breakage-fusion-bridge cycles. Our findings suggest that gene amplification involving chromosomal band 11q13 in OSCC may be initiated by breakage at FRA11F.
Collapse
Affiliation(s)
- Shalini C Reshmi
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Emerging evidence indicates that the tumor microenvironmental stress of hypoxia can induce genetic instability in cancer cells. We and others have found that the expression levels of key genes within the DNA mismatch repair (MMR) and homologous recombination (HR) pathways are coordinately repressed by hypoxia. These decreases are associated with functional impairments in both MMR and HR repair under hypoxic conditions, and thus they represent a possible mechanistic explanation for the observed phenomenon of hypoxia-induced genetic instability. In parallel, studies also indicate that several DNA damage response factors are activated in response to hypoxia and subsequent reoxygenation, including ATM/ATR, Chkl/Chk2 and BRCA1. Taken together, these findings reveal that hypoxia induces a unique cellular stress response involving an initial, acute DNA damage response to hypoxia and reoxygenation, followed by a chronic response to prolonged hypoxia in which selected DNA repair pathways are coordinately suppressed. In this review, we discuss these pathways and the possible mechanisms involved, as well as the consequences for genetic instability and tumor progression within the tumor microenvironment.
Collapse
Affiliation(s)
- Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | |
Collapse
|